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As a consequence of an increasingly aging population, the number of people

affected by neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s

disease and Huntington’s disease, is rapidly increasing. Although the etiology of

these diseases has not been completely defined, common molecular mechanisms

including neuroinflammation, excitotoxicity and mitochondrial dysfunction have been

confirmed and can be targeted therapeutically. Moreover, recent studies have shown

that endogenous cannabinoid signaling plays a number of modulatory roles throughout

the central nervous system (CNS), including the neuroinflammation and neurogenesis. In

particular, the up-regulation of type-2 cannabinoid (CB2) receptors has been found in a

number of neurodegenerative disorders. Thus, the modulation of CB2 receptor signaling

may represent a promising therapeutic target with minimal psychotropic effects that can

be used to modulate endocannabinoid-based therapeutic approaches and to reduce

neuronal degeneration. For these reasons this review will focus on the CB2 receptor as

a promising pharmacological target in a number of neurodegenerative diseases.
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INTRODUCTION

The field of cannabinoid (CB) research has flourished over the past decade and has brought to light
diverse functions of the CB system in normal and pathological conditions (D’Addario et al., 2014;
Bonnet and Marchalant, 2015). In fact, several studies have demonstrated that endocannabinoid
(eCB) system plays significant roles in many biological processes, including neurogenesis, synaptic
plasticity, emotional regulation and stress responsiveness (Lu and Mackie, 2015).

The eCB system consists of eCBs, cannabinoid receptors and enzymes involved in the synthesis
and degradation of endogenous ligands (Lu and Mackie, 2015).

The eCBs are endogenous lipids that engage CB receptors, affecting behavior in a fashion that at
least partially recapitulates the effects produced by the psychoactive components of cannabis, most
notably (2)-trans-19-tetrahydrocannabinol (THC) (Mechoulam and Gaoni, 1965; Mechoulam,
1970). The two best-characterized eCBs are N-arachidonoylethanolamide (anandamide, AEA)
(Devane et al., 1992) and 2-arachidonoylglycerol (2-AG) (Mechoulam et al., 1995; Sugiura et al.,
1995). Both eCBs are synthetized at the post-synaptic terminal from membrane lipid precursors
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in response to high intracellular calcium concentration (Howlett
et al., 2002). Thus, eCBs act as retrograde messengers to depress
transmitter release from presynaptic terminals (Freund et al.,
2003; Fagan and Campbell, 2014).

AEA and 2-AG possess specific pharmacological properties,
are engaged in different forms of synaptic plasticity andmodulate
different behavioral functions (Mechoulam and Parker, 2013).

The CB type 1 (CB1) and type 2 (CB2) receptors are coupled
to G-protein, and their signal transduction is mediated by
the inhibition of adenylyl cyclases and voltage-gated calcium
channels (e.g., N-type, P/Q-type and L-type calcium currents),
and by the activation of mitogen-activated protein kinases
(MAPK) and inwardly rectifying potassium channels (Howlett
et al., 2002; Lu and Mackie, 2015). AEA is a high affinity, CB1-
selective partial agonist, whereas 2-AG is a moderate affinity,
CB1/CB2 full agonist (Sugiura et al., 2000). AEA activates also
peroxisome proliferator-activated receptors-alpha and transient
receptor potential vannilloid-1 channels (Maccarrone et al.,
2010). In humans, CB1 is localized preferentially in the terminals
of central and peripheral neurons and glial cells, where it
regulates neurotransmitter release and psychoactivity (Egertová
et al., 2003; Sánchez and García-Merino, 2012). As far as
peripheral tissues, CB1 is also expressed in heart, uterus, testis,
liver and small intestine, as well as in immune cells (Maccarrone
et al., 2001; Nong et al., 2001; Klein et al., 2003) and adipose tissue
(Spoto et al., 2006).

CB2 was dubbed the “peripheral cannabinoid receptor” as a
result of in situ hybridization study that showed high CB2mRNA
expression in spleen, whereas no expression was observed in
the brain (Shire et al., 1996; Griffin et al., 2000; Brown et al.,
2002). Besides the cells of the immune and hematopoietic systems
(e.g., leukocytes, spleen and tonsils), CB2 receptors were found
also in other peripheral organs, such as muscle, liver, intestine
and testis (Liu et al., 2009). However, CB2 receptor can be
also detected in the central nervous system (CNS) (albeit at a
lower expression level than CB1receptors) (Núñez et al., 2004;
Van Sickle et al., 2005), where its expression is significantly
increased following a number of stressful conditions (Viscomi
et al., 2009). In particular, CB2 receptor expression is found in
neurons within the brainstem, microglia and astrocytes only after
specific insults (e.g., neuroinflammation), whereas it cannot be
detected in resting microglia (Van Sickle et al., 2005; Núñez et al.,
2008; Cabral and Griffin-Thomas, 2009).

In the last decade, increasing evidence has shown that CB
receptors may act as CB1-CB2 receptor heteromers in the brain
(Callén et al., 2012). In fact, the expression of CB1-CB2 receptor
heteromers was determined in a variety of brain regions, such as
the nucleus accumbens, pineal gland and globus pallidus (Callén
et al., 2012). Due to this tight functional interaction between
CB receptors, the response to molecules acting as agonists or
antagonists may be different when a CB receptor is engaged
in heteroreceptor complexes. Although the clinical relevance of
this phenomenon is not entirely clear, additional studies are
needed in order to shed further light on this important functional
interaction.

eCBs after their actions are rapidly eliminated by cellular
uptake and enzymatic hydrolysis. To this regard, AEA is mainly

inactivated by fatty acid amide hydrolase (FAAH) (Cravatt
et al., 1996; Dinh et al., 2002), whereas 2-AG is predominantly
catalyzed by monoacylglycerol lipase (Dinh et al., 2002).

As previously reported, CB1 receptor expression is abundant
in the CNS, where it seems to mediate the psychoactive effects
of cannabis (Mackie, 2005). Therefore, the scarcity of CNS CB2
receptors makes CB2 selective drugs attractive as therapeutics as
they would presumably invoke minimal psychoactive responses.
In support of this hypothesis, CB2 knockout mice demonstrated
typical behavioral responses to THC but lost their normal
immune responsiveness to THC (Buckley et al., 2000). CB2 levels
are also increased under certain conditions and disease states
further adding to its attractiveness as a potential therapeutic
target (Zhang et al., 2003; Wotherspoon et al., 2005; Yiangou
et al., 2006).

Therefore, we will review the role of eCB system in
two chronic neurodegenerative diseases, in which the
neuroprotective effects following CB receptors modulation
have been reported in different studies. Specifically, we will focus
on the role of CB2 receptors and their agonists, as potential
therapeutical targets in Alzheimer’s disease (AD) and Parkinson’s
disease (PD).

ROLE OF CB2 RECEPTOR IN THE
NEURODEGENERATION AND
NEUROPROTECTION

Recently, much research has paid attention to the
neuroprotective effects of compounds targeting the eCB
system. In particular, these studies have focused on identifying
molecular targets within the eCB system that may lead to
neuroprotection against the most prevalent neurodegenerative
disorders (Fernández-Ruiz et al., 2010, 2015).

One of the most important features of CBs as potential
neuroprotectants is their broad-spectrum of activity. This
aspect is particularly important in neurodegenerative diseases
since declines in neural function are likely due to the
concerted involvement of different insults including protein
misfolding, neuroinflammation, excitotoxicity, oxidative stress
and mitochondrial dysfunction (Serviddio et al., 2011; Cassano
et al., 2012, 2016; Aureli et al., 2014). All these pathological
processes appear to be modulated by the eCB signaling system.
In fact, during aging and neuroinflammation (or when both are
present together) there is a widespread disruption of brain tissue
homeostasis that involves eCB signaling, and this contributes to
specific dysfunctions in cell function.

Although the CNS is considered a relatively immune-
privileged tissue, it is able to initiate an endogenous immune
response. To this regard, astrocytes and microglia are the main
innate immune response effectors in brain parenchyma (Halliday
and Stevens, 2011).

The most extensively studied mechanism of neuroprotection
includes the anti-inflammatory effects of the CB2 receptors,
in which CB2 protects the brain by restraining inflammatory
processes (Benito et al., 2008; Cabral and Griffin-Thomas, 2009).
In particular, CB2 receptor activation modulates the release of
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cytokines, protein molecules responsible for the regulation of
immune function and inflammatory responses (Mecha et al.,
2016; Turcotte et al., 2016). Differently, the CB1 receptor
has been implicated in protection against cell death induced
by an overstimulation of excitatory receptors and concurrent
calcium release, also known as excitotoxicity (Vendel and de
Lange, 2014). CB receptors, therefore, may have an impact on
neurodegenerative diseases through two main ways, restraining
exitotoxic and immunological processes (Di Iorio et al., 2013).

Moreover, it has been demonstrated that changes in the
expression of CB receptors may be time-dependent and could
occur both in the brain and peripheral tissues at different stages
of the neurodegenerative process (Bedse et al., 2014, 2015; Di
Marzo et al., 2015). For this reason, targeting the CB receptors
for therapeutic benefit needs more caution. To this regard, CB1
activity was higher at earlier AD stages in limited hippocampal
areas and internal layers of the frontal cortex, but a decrease was
observed during the advanced stages (Lastres-Becker et al., 2001;
Manuel et al., 2014; Rodríguez-Cueto et al., 2014). The increased
CB1 receptor activity during the initial stages of ADmay indicate
neuroprotective action mediated by eCBs in response to initial
neuronal damage.

However, CB1 receptors are not usually considered as realistic
targets for neuroprotection, because during neurodegenerative
processes it has been described a progressive loss of specific
populations of neurons that express CB1 receptors (Ramírez
et al., 2005; Solas et al., 2013). In line with these results, our
group (Bedse et al., 2014), but also Kalifa et al. (2011) reported
a decrease in CB1 protein expression in transgenic mice models
of AD.

In contrast, CB2 receptors are generally less expressed in
the neurons of healthy brains, but their expression increases
dramatically in reactive microglia and activated astrocytes
during neuroinflammation (Stella, 2010; Di Marzo et al., 2015;
Fernández-Ruiz et al., 2015). Therefore, the CB2 receptors
have the potential to restrain the inflammatory processes that
contribute to the declines in neural function occurring in a
number of neurodegenerative disorders.

CB2 RECEPTORS AND ALZHEIMER’S
DISEASE

AD is a devastating neurodegenerative disease leading to
progressive cognitive dysfunction. The iconic hallmarks of AD
are Aβ plaques, neurofibrillary tangles (NFTs) and a deficiency
in cholinergic neurotransmission. It is widely accepted that the
deposition of Aβ initiates an inflammatory process leading to
neurodegeneration (McGeer et al., 2000; Walsh and Selkoe,
2004). Microglial cells are the resident CNS phagocytes of
the immune system that mediate inflammatory responses to
pathogens and injury by inducing release of pro-inflammatory
cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis
factor-α (TNF-α). IL-1β and TNF-α are considered as primary
cytokines responsible for chronic inflammation in AD (Sastre
et al., 2006). Microglia-derived pro-inflammatory cytokines,
in turn, aggravate and propagate inflammation throughout

the brain. In fact, IL-1β released from microglia can induce
the upregulation of nuclear factor-kappa B (NFκB), MAPK,
and Jun-N-terminal kinase (JNK) signaling in neurons and
astrocytes, leading to increased inflammatory process and
tau phosphorylation, respectively (Sastre et al., 2006; Munoz
and Ammit, 2010). Additionally, Aβ oligomers can induce
production of inducible nitric oxide synthase (iNOS), nitric oxide
(NO), and TNF-α in astrocytes (White et al., 2005). NO secreted
from astrocytes induces abnormal tau hyperphosphorylation in
neurons, which prompts an accumulation of NFTs in axons,
leading to a disruption of synaptic plasticity and neuronal
death (Duan et al., 2012). Moreover, the activation of toll-like
receptors (TLR; e.g., TLR-4), involved in pathogen recognition
and activation of innate immunity, can also activate the MAPK
and NFκB pathways, as well as members of the caspase family
responsible for hyperphosphorylation of tau (Churcher, 2006;
Reed-Geaghan et al., 2009; Rohn, 2010; Arroyo et al., 2011).
Activation of these signaling cascades in neurons could further
inhibit synaptic plasticity.

Support for the involvement of the CB2 receptors in AD
pathology is provided by a number of preclinical and human
studies. In particular, post-mortem brains from patients with AD
have shown that CB2 receptors are upregulated in cells that are
associated with Aβ-enriched neuritic plaques (Benito et al., 2003;
Ramírez et al., 2005; Grünblatt et al., 2009; Halleskog et al., 2011;
Mulder et al., 2011; Solas et al., 2013). Apart from human studies,
transgenic models of AD have also revealed overexpression of
CB2 receptors in brain areas affected by AD-pathology (Horti
et al., 2010). Increased CB2 mRNA in peripheral blood has been
suggested as a peripheral biomarker for the early diagnosis of AD
(Grünblatt et al., 2009). Moreover, an increase in CB2 receptors
was also observed in rats and C6 astroglioma cells pre-treated
with Aβ42 (Esposito et al., 2007).

All these effects may be counteracted by the activation
of CB2 receptors, and mechanistic insights of the beneficial
effects provided by CB2 receptor stimulation in AD has been
provided (Ehrhart et al., 2005; Ramírez et al., 2005; Sheng
et al., 2005; Chen et al., 2010; Fakhfouri et al., 2012; Martin-
Moreno et al., 2012) (Table 1). In particular, the CB2 agonist,
JWH-015, significantly attenuated CD40-mediated inhibition
of microglial phagocytosis of Aβ42 by interfering with the
Janus kinase/Signal transducer and activator of transcription 1
(JAK/STAT1) pathway (Benveniste et al., 2004; Ehrhart et al.,
2005). Interestingly, CP55940 (CB1/CB2 full agonist) and JWH-
015 treatment significantly reduced the interferon-gamma- (IFN-
γ)-induced CD40 expression in microglial cells (Ehrhart et al.,
2005).

Ramírez and colleagues demonstrated the effects of CB
receptor agonists on microglial activation (Ramírez et al.,
2005). Authors studied in vitro the effects of WIN55,212-2,
the mixed CB1/CB2 agonist devoid of antioxidant properties
(Howlett et al., 2002; Marsicano et al., 2002), HU-210 and
JWH-133, respectively CB1 and CB2 selective agonist, in Aβ-
induced microglial cells (Ramírez et al., 2005). As expected,
Aβ peptide activated microglial cells and this was associated
with increased mitochondrial activity, TNF-α release, cellular
morphological changes and secretion of pro-inflammatory
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TABLE 1 | CB2 receptor agonists and their beneficial effects in neurodegenerative diseases (AD and PD).

Subjects CB2 agonists Effects and mechanisms involved References

ALZHEIMER’S DISEASE (AD)

IFN-γ-activated microglial cells (Aβ42 insult) JWH-015 ↓ CD40 expression induced by IFN-γ; Ehrhart et al., 2005

↓ JAK/STAT1 phosphorylation;

CP55940 ↑ phagocytosis of Aβ42;

↓ TNF-α and NO release.

Microglial cells (Aβ insult) WIN55,212-2 ↓ Microglial cell Aβ induced activation; Ramírez et al., 2005

JWH-133 ↓ TNF-α release.

Aβ-induced hippocampal neurodegeneration in adult rats WIN55,212-2 ↑ Memory functions; Fakhfouri et al., 2012

↓ TNF-α release;

↓ caspases-3 activation;

↓ nuclear NFκB levels.

IL-1β-activated human fetal astrocytes WIN55,212-2 ↓ iNOS expression; Sheng et al., 2005

↓ TNF-α and NO release;

↓ chemokines release (CXCL10, CCL2, CCL5).

Tg2576 mice WIN55,212-2 ↓ cognitive impairments; Martin-Moreno et al., 2012

JWH-133 ↓ microglial activation;

↓ COX-2 expression;

↓ TNF-α release;

↓ cortical Aβ deposition.

PARKINSON’S DISEASE (PD)

MPTP-lesioned mice WIN55,212-2 ↓ microglial activation; Price et al., 2009

JWH-015 ↓ degeneration of nigro-striatal DA neurons;

↓ MPTP-induced motor deficits;

↑ dopamine and 3,4-dihydroxyphenylacetic acid levels

in SNc and dorsal striatum;

↑ TH+ neurons in the SNc.

IFN-γ-activated microglial cells JWH-015 ↓ CD40 expression induced by IFN-γ; Ehrhart et al., 2005

CP55940 ↓ JAK/STAT1 phosphorylation;

↓ TNF-α and NO release.

Human microglial cells (from temporal lobe) JWH-015 ↑ neuroprotective effects; Klegeris et al., 2003

↓ TNF-α and IL-1β release (JWH-015);

BML-190 ↑ TNF-α release

(BML-190).

Primary astrocyte cultures from 1 day-old CD1 mouse

brains (LPS insult)

CP55940 ↓ iNOS expression; Molina-Holgado et al., 2002

HU-210 ↓ NO release.

Primary glial cells and cerebrocortical neurons from 1

day-old mouse brains (LPS insult)

CP55940 ↑ IL-1ra and NO release (primary glial cells); Molina-Holgado et al., 2003

HU-210 ↑ neuroprotective effects.

LPS-lesioned rats HU-308 ↑ neuroprotective effects; García et al., 2011

↑ TH+ neurons in the substantia nigra.

LPS-lesioned mice HU-308 ↓ CD68, iNOS, TNF-α and IL-1β expression in the

striatum;

Gómez-Gálvez et al., 2016

↑ TH+ neurons in the substantia nigra;

↓ TNF-α expression in the substantia nigra.

Drosophila melanogaster (paraquat insult) CP55940 ↑ fly survival and locomotor activities; Jimenez-Del-Rio et al., 2008

↓ activation of JNK signaling.

6-OHDA-lesioned rats HU-308 ↓ dopamine depletion García-Arencibia et al., 2007

in caudate putamen;

↑ TH activity in caudate putamen (HU-308);

WIN55,212-2 = TH-mRNA levels in

the substantia nigra

(HU-308).

IL-1ra, endogenous IL-1 receptor antagonist.
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cytokines. Cannabinoid treatments prevented the enhancement
of TNF-α release and counteracted Aβ-mediated activation of
microglia (Ramírez et al., 2005).

The protective properties of WIN55,212-2 were also
demonstrated in Aβ-induced neurodegeneration in rat
hippocampus. WIN55,212-2 significantly improved memory
functions and decreased the elevated levels of neuroinflammatory
markers like TNF-α, activated caspase-3, and nuclear NFκB.
The use of antagonists confirmed that these neuroprotective
effects of WIN55,212-2 were partially mediated by CB1 and
CB2 receptors (Fakhfouri et al., 2012). Moreover, WIN55,212-2,
through CB2 receptors, inhibited iNOS and NO production,
the release of chemokines (CXCL10, CCL2, and CCL5) and
TNF-α from IL-1β-activated human fetal astrocytes (Sheng
et al., 2005). The CB1 and CB2 receptor-specific antagonists
SR141716A (Micale et al., 2013) and SR144528 (Saito et al.,
2010), respectively, partially blocked this suppressive effect,
which suggests the involvement of both receptors (Sheng et al.,
2005).

Furthermore, the effects of cannabinoids were studied in
transgenic murine models of AD treated chronically with
WIN55,212-2 or JWH-133, a potent selective CB2 receptor
agonist (Martin-Moreno et al., 2012). JWH-133 was able to
reduce cognitive impairments and decrease microglial activation
in Tg2576 mice, while WIN55,212-2 was ineffective. Moreover,
both cannabinoids significantly reduced the increase of COX-2,
TNF-α, and cortical Aβ levels, suggesting a critical role of CB2

in inflammatory processes in AD (Martin-Moreno et al., 2012)
(Figure 1).

From this scenario has emerged that the pleiotropic effects
of CB2 agonists and the growing number of preclinical effects
on AD rodent models should engage the interest of the research
community and be seen as a valuable potential alternative
treatment strategy to slow the progression and reduce the
symptoms of cognitive decline in AD.

CB2 RECEPTORS AND PARKINSON’S
DISEASE

PD, the second most common neurodegenerative disease, is
characterized by the progressive loss of dopaminergic neurons
primarily in the substantia nigra (SN) affecting the circuits of
the basal ganglia resulting in bradykinesia, rigidity and tremors
(de Lau and Breteler, 2006; Branchi et al., 2008, 2010; Bartels
and Leenders, 2009). Current treatments include dopaminergic
replacement therapies, which do alleviate some of the symptoms
but there are no available therapies that reverse any of the
underlying pathological mechanisms (Calne et al., 2005; Trapani
et al., 2011; Denora et al., 2012; Di Gioia et al., 2015).

Moreover, there is an urgent need for a novel intervention
aimed at the prevention of dyskinesia induced by long-term
treatment with levodopa. To this regard, a randomized double-
blind crossover study showed that cannabis, which contains

FIGURE 1 | Schematic representation of anti-inflammatory and neuroprotective actions of CB2 agonists in AD and PD. AD and PD are characterized

respectively by the deposition of Aβ and α-synuclein proteins which in turn are directly or indirectly involved in microglial and astrocytic activation. This activation of

microglia and astrocytes triggers a neuroinflammatory and immune response which contributes to the progression of AD and PD. The pharmacological activation of

microglial and astrocytic CB2 cannabinoid receptors with CB2 agonists is a promising therapeutic approach because it promotes anti-inflammatory and

neuroprotective effects such as the suppression of pro-inflammatory cytokine release and an increases in anti-inflammatory molecules.
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more than 70 different cannabinoids (Mechoulam, 2005), failed
to demonstrate efficacy in treating dyskinetic patients with PD
(Carroll et al., 2004). Unfortunately, the latter study suffered
from methodological issues such as including small numbers of
patients, and having inadequate power to detect a small change
in dyskinesia.

PD is accompanied by multiple changes in the brain
that underlie the progression of the disease. In this context,
inflammation is an important pathogenic factor in sporadic PD,
where it is thought to disable or kill dopaminergic neurons of the
SN, which contributes to the dopaminergic denervation of the
striatum.

The involvement of inflammation in PD has been initially
investigated by McGeer et al. (1988), who showed microglia
activation in the SN of patients at post-mortem. Afterwards,
more evidence has accumulated that highlights the role of the
neuroinflammation in the pathogenesis of PD. In line with this, in
vivo studies using structural brain imaging have demonstrated in
the nigrostriatal system of PD patients the presence of activated
microglia and an increase of proinflammatory cytokines,
including TNF-α, IL-1β, IL-2, IL-4, and IL-6 (Ouchi et al., 2005;
Gerhard et al., 2006; Taylor et al., 2013).

α-synuclein (α-syn), the major component of Lewy bodies,
is another pre-disposing element in PD etiology (Spillantini
et al., 1998; Aureli et al., 2014). Missense mutations in the α-syn
gene have been identified to cause autosomal dominant familial
PD (Polymeropoulos et al., 1997; Krüger et al., 1998; Zarranz
et al., 2004). Several lines of evidence suggest that α-syn may
play an important role in the microglia-mediated inflammatory
response in PD (Zhang et al., 2005; Austin et al., 2006; Reynolds
et al., 2007, 2008; Thomas et al., 2007; Gao et al., 2008; Klegeris
et al., 2008; Aureli et al., 2014). It is believed that genetic and
environmental factors may initiate the neurodegeneration, which
is further sustained or exacerbated by neuroinflammation leading
to a “self-sustaining” process (Tansey and Goldberg, 2010).
Therefore, effective anti-inflammatory intervention may arrest
this cyclical process and counteract the neuroinflammation-
induced neuronal degeneration.

Recently, in post-mortem study it has been demonstrated
that PD patients showed elevated expression of CB2 receptors
in microglial cells of SN (Gómez-Gálvez et al., 2016). In
this context, as for AD, converging evidence indicates that
CB2 receptor may represent a promising anti-inflammatory
target in PD (Figure 1, Table 1). This hypothesis comes from
numerous studies where the pharmacological activation of
microglial CB2 receptors produced a reduction of microglial
activation and functional deficits in the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD (Price
et al., 2009), the suppression of pro-inflammatory cytokine
release (Molina-Holgado et al., 2002; Klegeris et al., 2003; Ehrhart
et al., 2005), and an increase in anti-inflammatory cytokines
(Molina-Holgado et al., 2003). Moreover, CB2 receptor–deficient
mice have shown an exacerbation of the PD pathology with
increased microglial activation, neural alterations and functional
deficits. Similar effects were also observed in other models of PD,
such as MPTP-lesioned and lipopolysaccharide- (LPS)-injected
mice (Price et al., 2009; García et al., 2011; Gómez-Gálvez

et al., 2016). Moreover, the genetic ablation of the CB2
receptor protects against nigro-striatal damage following 6-
hydroxydopamine (6-OHDA) lesion in mice (Ternianov et al.,
2012).

Neuroprotection has been provided by synthetic cannabinoids
such as the CP55,940, CB1/CB2 full agonist (Jimenez-Del-
Rio et al., 2008), which acts through CB receptor-independent
mechanisms, and involves the control of endogenous antioxidant
defenses. In particular, authors found that CP55,940 protects
Drosophila melanogaster mutants which lack CB receptors
(McPartland et al., 2001; Elphick and Egertová, 2005), and
alleviates the toxicity induced by paraquat (Jimenez-Del-Rio
et al., 2008). The latter effect was exerted by the inactivation of
JNK signaling and CB receptors were not involved (Jimenez-Del-
Rio et al., 2008). Other findings concerning the possible off-target
effects of CB agonists were obtained also from in vivo studies, in
which mice genetically deleted of CB receptors were treated with
molecules targeting “non-cannabinoids” receptors (see for review
Pertwee et al., 2010).

Selective CB2 receptor agonists induced gains of function
in MPTP-lesioned mice (Price et al., 2009) and LPS-injected
mice (García et al., 2011), but not in 6-OHDA-lesioned rats
(García-Arencibia et al., 2007). The lack of effects of CB2 agonists
may be due to a lower inflammatory response induced by 6-
OHDA compared to that caused by LPS and MPTP (Price
et al., 2009; García et al., 2011). In particular, HU-308, the
selective CB2 agonist, reversed the LPS-induced reduction of
tyrosine hydroxylase positive (TH+) neurons and the elevation
of CD68 immunostaining in the striatum, which identifies
activated microglia and infiltrated peripheral macrophages.
Moreover, authors found that HU-308 significantly reduced
increases in striatal iNOS gene expression following an LPS insult
(Gómez-Gálvez et al., 2016). In line with these results, García and
colleagues found that HU-308 preserved TH+ neurons in the SN
of LPS-injected mice (García et al., 2011).

A comprehensive study conducted by Price et al. (2009)
demonstrated that the chronic treatment with the non-
selective CB receptor agonist WIN55,212-2 protected against
MPTP-induced loss of TH+ neurons in the SN pars compacta
(SNc), independently of CB1 receptor activation. In fact,
the authors found that WIN55,212-2 was still able to
protect TH+ neurons from MPTP-lesioned CB1 receptor–
deficient mice. Moreover, WIN55,212-2 increased the levels
of dopamine and 3,4-dihydroxyphenylacetic acid in the SNc
and dorsal striatum of MPTP-lesioned mice and reversed
MPTP-associated motor deficits. WIN55,212-2 or JWH015,
agonist of CB2 receptor, reduced MPTP-induced microglial
infiltration. The suppressive effect of WIN55,212-2 and
JWH015 on microglia was due specifically to CB2 activation
as it was reversed by the CB2 antagonist JTE (Price et al.,
2009).

Unlike targeting CB2 receptor signaling, the activation of
CB1 receptors may cause hypokinetic side effects that could
aggravate the major symptoms of PD, such as bradykinesia
(García-Arencibia et al., 2009). Therefore, the modulation
of CB1 receptors seems not to be a promising target for
therapeutic intervention in PD. However, CB1 activation may
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alleviate the levodopa-induced dyskinesia, a motor complication
resulting from long-term use of levodopa (Morgese et al., 2007,
2009).

Taken together these results demonstrate that CB2 receptors
play an important role in the pathophysiology of PD and
that their activation with selective agonist may lead to
neuroprotective effect in the neurodegenerative processes
of PD.

CONCLUSIONS

Several lines of evidence suggest a major involvement of
inflammation in the neurodegenerative process and therapeutic
intervention strategies limiting the inflammatory responses
secondary to microglial activation have been proposed by
different authors based on many preclinical researches.
Furthermore, recent approaches to the development of
novel therapeutic strategies for neurodegenerative diseases
have focused on their neuroprotective properties rather
than concentrating on palliating symptoms of the diseases.
Because cannabinoids possess both anti-inflammatory and
neuroprotective actions, the use of CB2 receptor agonists offers
an interesting, novel and promising therapeutic approach for a
range of neurodegenerative disorders.

Moreover, modulation of CB2 receptor function has
considerable therapeutic advantages over the modulation
of the CB1 receptor, since the selective expression of
CB2 receptors on the microglial cells provides a highly
specialized target, without the psychoactivity due to CB1
activation. Although more studies are necessary to dissect
the molecular mechanisms which lead to changes in CB2
receptor expression in AD and PD, these studies suggest that
CB2 receptors may be key regulators of neuroinflammation
and may be successfully targeted by therapeutic
intervention.
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