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We developed NeuroManager, an object-oriented simulation management software

engine for computational neuroscience. NeuroManager automates the workflow of

simulation job submissions when using heterogeneous computational resources,

simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to

adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous

computational resources, from desktops to super computer clusters, and (3) improves

tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB,

a widely used engineering and scientific language, for its signal and image processing

tools, prevalence in electrophysiology analysis, and increasing use in college Biology

education. To design and develop NeuroManager we analyzed the workflow of simulation

submission for a variety of simulators, operating systems, and computational resources,

including the handling of input parameters, data, models, results, and analyses. This

resulted in 22 stages of simulation submission workflow. The software incorporates

progress notification, automatic organization, labeling, and time-stamping of data

and results, and integrated access to MATLAB’s analysis and visualization tools.

NeuroManager provides users with the tools to automate daily tasks, and assists principal

investigators in tracking and recreating the evolution of research projects performed by

multiple people. Overall, NeuroManager provides the infrastructure needed to improve

workflow, manage multiple simultaneous simulations, and maintain provenance of the

potentially large amounts of data produced during the course of a research project.

Keywords: grid computing, NEURON, NeuroML, simulation, parameter search, MATLAB

Introduction

Access to High Performance Computing (HPC) resources allows exploring the parameter space
of complex neurobiological models. As the number of parameters increases it is necessary to keep
track of the provenance of simulator configuration, reference models and implementations, data
produced by the simulations, the analyses performed and their results; it is also important that
the software itself be well documented, tested, and tracked (Gewaltig and Cannon, 2014). Such
activities become more cumbersome when using heterogeneous computational infrastructure to
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perform multiple simulations in parallel (Casanova et al., 2004).
By analyzing the workflow of these processes, it is possible
to automate them and increase throughput while minimizing
delays, errors, and loss of data. Thus, it is important to develop
workflow automation tools to set up simulations, label data files,
and track analyses to increase productivity and reproducibility of
computational neuroscience research.

We have developed a software tool we call NeuroManager
to organize modeling efforts using different simulators and
computing infrastructure. NeuroManager is based on an
analysis of the simulation submission workflow for several
neuroscience simulators. NeuroManager is written in object-
oriented MATLAB (Natick, MA), a widely used numerical
analysis and visualization software suite that is used extensively
in engineering and neurophysiology (Drongelen, 2007; Cui
et al., 2008; Gabbiani and Cox, 2010; Van Drongelen, 2010;
Cohen, 2014; Wallisch, 2014) and is increasingly part of biology
education (Gross, 2004; Stefan et al., 2015). NeuroManager
virtualizes the hardware, the user, and the simulator. The
objects in NeuroManager can be used to generate Machine
Sets composed of heterogeneous computational resources, from
desktops to HPC centers. The simulator also becomes an object
that combines with the specific simulation files, thus allowing
the tracking of the evolution of simulation-simulator during a
project. Finally, the steps needed for a user to interact with
different systems, for example the different steps necessary to
submit a simulation run in a local server or a cluster, are also
virtualized. The object-oriented approach allows the generation
of object trees that can help in keeping the provenance of
simulators, data, and their analyses. The software provides
progress notification, automatic organization, and labeling of
data and results, and integrated access to MATLAB’s analysis and
visualization tools. The program generates compiled MATLAB
code to distribute across platforms, minimizing the number
of licenses required. Since our focus is neuroscience, we
have developed our code to support a variety of standard
neuroscience simulators. Altogether NeuroManager provides a
unified platform that reduces the complexity of developing and
analyzing computational projects.

The intended users of our software are laboratories that have
a need to keep computational simulation sessions and their
evolution organized, efficiently use heterogeneous computational
resources, and preserve the provenance of simulations and their
analyses across multiple users. However, our software can also
be used for teaching. While this paper presents the motivation,
theory, and design of the workflow and of the software, the
Supplemental Materials provides a detailed description of each
workflow step. In addition, we provide the code and an extensive
User Guide with examples at the GitHub site mentioned below.

Workflow of Simulation Submissions in
Computational Neuroscience

A workflow is an abstraction of the set of tasks required to
run a simulation (Garijo et al., 2014). In general, a simulation-
analysis task requires breaking down the process into workflow

stages (Deelman et al., 2009). We developed a list of abstract
workflow stages by analyzing the submission of simulation jobs
using computational neuroscience tasks and tools. In general
we assumed that a user operates a host computer to run
a simulation on a remote computer or cluster, on which a
software simulator is installed. For our analysis we used a
combination of two types of host computers: Windows and
UNIX; three simulators: MATLAB-only code, NEURON (Hines
and Carnevale, 2001), and MCell (Stiles and Bartol, 2000); and
three remote machine types: Linux multi-core server, Sun Grid
Engine (SGE) Cluster, also known as Univa Grid Engine (Univa,
2015), and Simple Linux Utility for Resource Management
(SLURM) Cluster (SLURM, 2015). We identified nine abstract
stages:

1. General setup on host and remote resources
2. Build simulators on remotes
3. Upload model files to remotes
4. Fetch simulation input parameter vector
5. Upload input data files to remotes
6. Process model files on remotes
7. Run simulation and post-process results on remotes
8. Download output files into labeled directory to host
9. Post-simulation processing, and repeat from 4 for all

parameter vectors

Stage 1 includes the starting of a log, preliminary notifications,
and testing of machine communications. Stage 2 uploads the
files that form the remote-based simulator (including MATLAB
m-files or Python files which may make calls to standard
simulators such as MCell, or may form a simulator on their
own), configures compiles code as required. Stage 3 uploads
the simulation model files (if any) to the remote machine.
In Stage 4 the user draws a parameter vector to use in a
simulation from the set of vectors to be used. The parameters
in the vector determine whether some of the model files have
to be modified and which data files might be required for a
particular simulation (Stages 5 and 6). Once all modeling files
are processed then the simulation runs (Stage 7). This might
involve generating a script or job file in the host machine, moving
it to the remote machine and then invoking a job submission
queuing system such as those found in HPC clusters. After
each simulation the resulting output data is downloaded (Stage
8). This is trivial in a single-simulation process, but because
using multiple heterogeneous computational resources raises the
possibility of submitting multiple jobs concurrently, the software
needs to ensure the output data is associated with its input vector.
Finally, it is necessary to update reports, clean and ready the
work directories in the remote machine for the next simulation
(Stage 9).

We expanded these nine workflow stages into a 22 stage
Simulation Submission Workflow, Figure 1. We used object-
oriented programming to handle intra-stage differences between
machines, operating systems, and simulator requirements. Each
stage of this workflow corresponds to a NeuroManager class
method. A full description of the data structures developed to
implement this workflow is in the Supplementary Materials.
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NeuroManager Design

Overall Object Interaction and Flow
NeuroManager is run from a host computer to perform
simulations on remote resources. In the simplest case, the
host and remote computers are the same machine. Since
NeuroManager is an object itself, it can be embedded within
larger MATLAB programs as a simulation submission engine,
or run from a script. NeuroManager builds objects called

PreProcessing (16)

Submit job (17)

PostProcessing (18)

Run simulation

and analyse

Prepare, set up,
and gather files (1)

Upload, distribute,
and set up

model files (9-10)
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FIGURE 1 | NeuroManager workflow. Nine abstract stages (left) are

expanded to 22 NeuroManager processes (right). Indications on the right

show the location or nature of the process. General preparation (Gen Prep) is

done primarily by the host machine; Simulator Preparation, in general, takes

place on remote machines; and Simulator Parallelism takes place in all the

remote machines at the same time. See Supplementary Material for detailed

descriptions of the stages. The numbers in parenthesis indicate the 22

processes.

SimMachines, by wrapping real machines in classes, then
bringing multiple SimMachines together to form a single
Machine Set (Figure 2A). Similarly, NeuroManager builds
objects called Simulators by wrapping real simulators, e.g.,
MCell, in a combination of class definitions. The most specific
simulator classes are called SimTypes. Each SimMachine hosts
multiple Simulators that form a Simulator Pool (Figure 2B). Each
Simulation run on a Simulator differs from others by its Input
Parameter Vector. The Input Parameter Vector is a set of strings
that correspond to parameters used by the simulation. The set of
simulations defined by all the Input Parameter Vectors is called a
SimSet. The input parameters can be generated by code or stored
in a text file called a SimSet Specification.

The Simulator object is composed of a SimCore, a default
model, and pre- and post- processing activities. This object
contains the static parameters that never change in the
development of a sub-project, such as the time step, temperature,
cell morphologies, or use of stochastic vs. deterministic
algorithms. The Simulator object makes use of a SimCore which
is the simulation engine to be used. This could be NEURON,
MCell, or a custom executable.
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FIGURE 2 | Basic NeuroManager objects. (A) SimMachines are objects

that wrap a computational resource. A Machine Set is a combination of

SimMachines. (B) A Simulator Pool is the set of all Simulators that have been

constructed on any SimMachine in a Machine Set. For each Simulation in the

SimSet, NeuroManager gives an Input Parameter Vector for execution to an

available Simulator from the Pool. When each Simulation is finished its Results

and Products are moved to isolated time—stamped directories in the host.
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Once the SimSet is built, NeuroManager fetches each
Simulation from the SimSet and hands it to an available
Simulator from the Simulator Pool using a first-come first-served
algorithm. Load-balancing is performed manually at setup by the
user’s choice of number of Simulators per SimMachine. After a
Simulation is complete the Simulator downloads the results into a
directory structure on the host machine and tells NeuroManager
it is free for another Simulation. This process is the same for
each Simulator in the Simulator Pool, thus providing concurrent
execution of multiple Simulations across the Machine Set.

Class Hierarchies
NeuroManager implements the Simulator, Simulation, SimSet,
and SimMachine concepts as distinct software objects. The
Simulator and SimMachine objects each have class hierarchies
which are diagrammed fully in the User Guide. The Simulator
class hierarchy uses the Simulator base class to handle most
aspects of NeuroManager Simulator operation, with sub-classes
to make the Simulator specific to a given SimCore and further
sub-classes to make the Simulator specific to a user’s Model
and research goals. An advantage of this approach is that,
as research demands guide the researcher through various
simulator/simulation configurations, the nuances are captured
in the Simulator object tree, so the researcher can make use of
inheritance to simplify the development of a new configuration;
see Figure 3.

The SimMachine class hierarchy provides isolation and
inheritance of each element of the heterogeneity of machines
and job submission utilities that comprise the Machine Set. An
excerpt from the SimMachine Class Hierarchy can be seen in

ModelFileSim

SimNeuron

Simulator

SimSpecificModel

SimType01 SimType02

SimSubType01-1

SimSubType01-2

Specific Free Parameters and
pre/post processing

Variations on
pre/post processing

Base class

Basic model file
processing

Specific SimCore

Specific model

Core

User

FIGURE 3 | Simulators are defined hierarchically. Left, the general class

hierarchy to implement a Simulator. Right, example to implement three

different Simulator types. Arrows point to the super-class. The implementation

of a Simulator can be divided into Core, provided in NeuroManager, and

User-defined sections. The core starts with a Simulator base class, then adds

a ModelFileSim subclass which allows to work with files; then a specific

SimCore class adds working properties to process specific models, in this

case is SimNeuron that allows to run NEURON simulations. Users can then

add other functionality specific to a particular simulation with the

SimSpecificModel sub-class. Finally, setting up different global parameters to

define sub-projects results in individual SimTypes. Further variations produce

branching of simulator types.

Figure 4; the full tree is in the User Guide. There are three
ancestral lines which combine to build a SimMachine with
full and specific functionality. The first ancestral line provides
the infrastructure to run jobs in a specific resource, in this
case an SGE cluster. This line is divided in two sections,
the first section deals with building a generic machine, using
the RealMachine class, and then adds the functionality to
transfer files between host and remotes, and the configurations
necessary to compile MATLAB code. The second part of this
line adds the basic and specific job submission procedures
culminating in an object that can submit jobs to a SGE cluster
(MachineSGECluster). The MATLAB compilation capability,
through the MATLABCompileMachine class, is a subclass of
FileTransferMachine because MATLAB compilation requires the
ability to transfer files from the host to the remote. The
second ancestral line is the SimMachine line which provides
all the aspects to deal with Simulators and interactions with
Simulations. The third is the NeuronMachine line that provides
location about the simulation engine to be used on the specific

Core

User

RunJobMachine

MATLABCompileMachine

QSubMachine

RealMachine

FileTransferMachine

MachineSGECluster

MachineMySGECluster01

NeuronMachine

MachineMySGEClus01All

SimMachine

1

Machin

2

Neuron

3

FIGURE 4 | The SimMachine Class Hierarchy. A SimMachine is the

combination of three inheritance lines of objects. In this example a first

ancestral line (1) is composed of classes that provide basic communications;

file transfers between host and remote; ability to do MATLAB compilations of

Simulator files; basic job submission facilities; and job submission specific to a

SGE Cluster. The second line (2) supplies knowledge of how to build and host

Simulators. Line 1 and 2 produce a machine class that can host and run

Simulators on an SGE cluster. Adding the third line (3) provides location

information for the NEURON software installed on a specific cluster. Together

they give rise to a class MachineMySGECluster01 which corresponds to an

actual computational resource. Further modifications result in an object that

executes in a specific queue in a HPC resource. Classes above the dashed

line are supplied with the Core code and those below are user-supplied.

Arrows point to the superclass. Full diagram tree in User Guide.
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machine, in this case NEURON. The three lines are combined
using multiple inheritance to produce machine classes that can
host NEURON-based Simulators on a specific SGE cluster.
Instantiations of this class are Machines used by NeuroManager.

NeuroManager Properties

Provenance
Provenance is the documentation of the processes and data
that have produced a digital object (Simmhan et al., 2005;
Moreau et al., 2011). For simulations provenance requires
recording the data, processes, and conditions under which a
given simulation’s output products were obtained, together with
those products, with the intent of proof of correctness and
reproducibility and test cases and conditions software validation
(Miles et al., 2008; Gewaltig and Cannon, 2014). In order to
record provenance of neuroscience simulations, NeuroManager
puts all program output and simulation results into a time/date-
stamped directory; keeps a detailed log of all activities, including
machine data and job submission; keeps a copy of input
parameter vector files and dynamically constructed or modified
model files; records all related software versions; records the
versions of the NeuroManager, software, core simulator and user
simulator classes; permits the user to add new simulator versions
into the simulator class tree; provides utilities to retain other
simulation byproducts as desired; and records most scripts and
software output and error output.

Interaction with Clusters and HPC Resources
NeuroManager interacts with cluster submission managers, such
as SGE and SLURM using SSH2. Queue identity, number of
cores/nodes, timeouts, and other job characteristics are specified
through the job file which the user controls either directly,
through sub-class settings, or through the Input Parameter
Vector. NeuroManager writes the job file for the user and
automates choice of names, file locations, and compilation
location, and provides user notification. With NeuroManager the
user interacts with the host machine and the software takes care
of all the uploading, compiling, job submission, collecting results,
and downloading to host automatically.

Monitoring
NeuroManager allows the user to monitor simulation progress
in four ways: (1) Logging; as described above; (2) Webpage;
the MATLAB interface provides a built-in browser which we
use to present the current state of all simulations; (3) Remote
operation; through the use of the UNIX screen utility; (4)
User notifications; NeuroManager provides SMS and/or email
messages for essential points in session evolution which can be
programmed globally or on a simulation-by-simulation basis and
could include attachments such as plots.

Scheduling and Resource Allocation
NeuroManager’s Simulation scheduling algorithm is a First
Come First Served approach (Kacprzyk et al., 2008). Once all
of the Simulators in the Machine Set have been constructed
NeuroManager begins placing Simulations on Simulators.
Starting at the beginning of the Simulator Pool the first available

Simulator will be given the next Simulation in the batch. The
Simulations are all presumed to be equal in communications
requirements and computational load (footprint and number of
machine operations), which is appropriate except in the situation
where the user is specifically changing number of simulation
steps in the input parameter vector. The Simulations are also
considered independent and of equal priority and are scheduled
in the order in which they appear in the SimSet, which has
no specified completion time or performance criteria. In our
current approach, the Simulators are assumed to be independent,
identical, and static—that is, they are not affected by each other,
have equal computational power and resources, and are not
affected by external workload.

Requirements and Performance

Installation and Requirements
A detailed installation and configuration procedure is described
in the User’s Guide. Briefly, NeuroManager requires:

• A MATLAB version 2013a+ with compiler toolbox. In the
simplest installation the host machine will have the compiler.
However, it is possible to have a remote compiler machine that
NeuroManager can use to produce executables. This allows
MATLAB student versions to be used as a host. As part
of the configuration of NeuroManager all necessary files are
gathered, moved to the compilation machine and then moved
to the remote machines. All this is done automatically. Thus, it
is possible to run NeuroManager with a single compile license.

• Host machines can be Windows (tested on 7, 8, and 10)
and UNIX (tested on Centos 5.6 and 6.6). Remotes have
to be UNIX machines. Windows machines have to have
freely available Putty (Tatham et al., 2006) (included in
NeuroManager). All remotes have to have SSH2.

• A compatible Java version.
• The MATLAB ssh2-v2 library (Freedman, 2015) (included in

NeuroManager).
• Some XML examples make use of the free HE edition of

the Saxon processor from Saxonica installed on the host
(Saxonica, 2015).

• The SimCore (simulator engine) has to be available in each
remote machine.

• All remote machines have to have the appropriate freely
available MATLAB MCR (Mathworks, 2015c).

NeuroManager can run from the MATLAB graphical interface,
but also runs without the use of the desktop, which for UNIX
hosts permits remote operation. The User Guide gives details on
how to operate NeuroManager remotely. All software is available
at https://github.com/SantamariaLab/NeuroManager as well as
per request to the authors.

Configuration
Configuration of NeuroManager involves defining the machines
to be used for simulations, the Simulators to be used, and the
parameters used for individual simulations. Each of these tasks
is done using object-oriented classes in individual MATLAB
m-files. We provide examples to assist the user with the
configuration procedure. Some of the examples make use of
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Python on the remote machine. The code is published with an
open source license.

We have tested NeuroManager, both independently and
simultaneously, with eight machines in many configurations: two
multi-core UNIX servers, four queues on a local UTSA cluster
(CBI, 2015), and three queues on the Stampede cluster at the
Texas Advanced Computing Center (TACC, 2014). We have run
sets of simulations with runtimes ranging from a few seconds to
several days.

Tests
We tested NeuroManager on two multi-core servers and two
queues in a cluster (CBI, 2015). The tests consisted of running
a simulation of a neuron using the NEURON simulator. Stand-
alone, this simulation running on our reference server, took
between 5 and 30min depending on the parameters of the
particular test being studied.

We defined the temporal overhead as the total session time
minus the SimSet time. The SimSet time consists of fetching an
Input Parameter Vector and running the actual simulation plus
moving the necessary input/output files for all the simulations.
We calculated the overhead of NeuroManager as a function of
the number of simulators on single machines and clusters. For
a session in the reference server consisting of 12 simulations
on two concurrent Simulators the run time was 3950 s with a
SimSet time of 3741 s which results in an overhead of 209 s. As the
number of Simulators increased to 12 the session time dropped
to 1183 s with a SimSet time of 959 s and an overhead of 226 s.
We also calculated the overhead of SimSet for the 12 Simulator
example. The average execution time of all simulations was
780 s, thus the total SimSet overhead was 179 s for 12 simulators
which results in an average overhead per simulation of 15 s. We
repeated this same procedure in a queue of the cluster. For the
case of 12 simulators, distributed over 12 nodes, the run time
was 1408 s, the SimSet time was 1242 s resulting in an overhead
of 166 s. The SimSet overhead was 825 resulting in an average
overhead per Simulator of 35 s. We repeated this for different
numbers of Simulators, from 2 to 12, in the server and the cluster.
In all cases the overhead remains practically constant for each
particular machine. Consequently, the overhead fraction of the
total session time decays as the number of Simulators increases.
The overhead also remained constant when the number of
simulations performed increased.

We determined the performance of NeuroManager by
distributing a fixed number of Simulators over 4 configurations
of SimMachines mixing servers with clusters. The session time
for 2 simulators on Server 1, 2 on Server 2, 8 on Cluster 1 and 8 on
Cluster 2 was 1536 s. For another simulation with 8 simulators on
each server and 2 on each cluster was 1566 s. For all simulators on
the servers the session time was 1326 s and for all simulators on
the clusters it was 1488 s. Thus, we obtained similar performance
independent of the distribution of Simulators. Finally, we tested
NeuroManager’s stability, the property of obtaining identical
behavior for identical tasks, by running a 17min session on four
SimMachines with 12 Simulators 10 times. The average session
time was 1028 ± 19 s (STD) and the average SimSet time was
713± 13 s.

Using NeuroManager

Here we provide an overall description of the main programming
and conceptual properties of NeuroManager starting with the
execution of MATLAB code in one machine. Explanations with
more detail can be found in the User Guide and accompanying
example programs.

Basic Simulation
In the simplest case the host machine is the same as the remote
machine. The definition of a new machine is done in a file called
something like MachineMyMach1.m (Figure 5A) and stored
in a subdirectory called LocalMachines. In that file we define
an individual machine as a new class based on a superclass.
We provide super-classes for a generic UNIX machine, an
SGE Cluster, and a SLURM cluster. Referring to Figure 5A, we
describe the fundamental properties of a machine class file. The
machine is defined as a class definition using

classdef MachineMyMach1 < MachineGenericUNIX (1)

which declares that the new object will be a subclass of the
MachineGenericUNIX class and will inherit its properties and
methods. The class constructor

function obj = MachineMyMach1(...) (2)

will create an instance of that class; its inputs are structures or
variables that define the machine ID, local directories and other
information necessary set up the machine properly.

Simulators, also defined using a class hierarchy, typically form
a wrapper around a common simulator such as NEURON or
MCell, but can also be built using MATLAB code, Python,
or other languages. Simulators are formed from a pair of m-
files: the class file that operates on the host, and a file called
userSimulation.m that operates on the remote. We provide
MATLAB-only, NEURON, and MCell classes, and examples of
their partner userSimulation.m files. Each class has functions
and properties particular to the simulator to be used. Once the
user defines a simulator then it has to be added to the SimType
class that defines all the simulators available to the user. In
the example seen in (Figure 5B) the SimMySimulator class is a
subclass of the SimNoModelMLOnly class, which is for simulators
that are composed ofMATLAB code only and have nomodel files
to process.

Finally a session script file called, for example, mySession.m,
brings together the machines, the simulators, and the parameters
to be explored (Figure 5C). First we construct an instance
of the NeuroManager class with location of simulation files,
SSH authentication key information, and user information for
text or email notifications. The SSH key information allows
NeuroManager to log in and work on remote machines without
the need for user intervention once the private key passphrase
has been entered. The object generated by the NeuroManager
constructor (here called “nm”) provides methods that direct all
the functions of NeuroManager. Next, we tell NeuroManager
which of our predefined machines to use for this session by
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A   file: MachineMyMach1.m

classdef MachineMyMach1 < MachineGenericUNIX 

methods

 function obj = MachineMyMach1(...)

  md = RMD()

  md.AddSetting('ID', 'myMach1')

  md.AddSetting('UserName', 'john.doe')

  md.AddSetting('IPAddress', '12.34.56.789')

  ...

B  file: SimMySimulator.m 

classdef SimMySimulator < SimNoModelMLOnly

methods

 function obj =

             SimMySimulator(simulatorID,...)

  obj@SimNoModelMLOnly(...)

  ...

C   file: mySession.m

...

nm = NeuroManager(DirectorySet,

                 AuthenticationDataSet,

                 UserData)

config = MachineSetConfig()

config.AddMachine(MachineType.MACHINE_MYMACH1,

                                 2, workdir1)

config.AddMachine(MachineType.MACHINE_MYMACH2,

                                 5, workdir2)

...

nm.ConstructMachineSet(SimType.SIM_MYSIMULATOR,

                                      config)

nm.RunFromFile('myParameterSets.txt')

nm.Shutdown() 

FIGURE 5 | NeuroManager setup. (A) Define at least one SimMachine. This example defines MachineMyMach1 as a sub-class of MachineGenericUNIX, with

corresponding machine type of MACHINE_MYMACH1. (B) Define a Simulator class that specifies a particular Simulator/Free Parameters setup. In this example, it is a

simulator called SimMySimulator that is MATLAB only. This class has a corresponding SimType of SIM_MYSIMULATOR. (C) Write a session script that constructs

NeuroManager. Use the SimMachines defined in A and specify the number of Simulators and work directory for each SimMachine, construct the MachineSet with a

specific SimType SIM_MYSIMULATOR defined in (B). Finally, run the simulations defined by the Input Parameter Vectors in “myParameterSets.txt.”

constructing a MachineSetConfig object and adding machines
using its addMachine() method. The resulting machine set could
be a single server or a collection of heterogeneous machines, e.g.,
local servers and clusters, defining a “Machine Set” (Figure 5).

Each call to addMachine() requires the MachineType as
described in Figure 5A, the number of virtual simulators to run
on each machine in parallel, and a user—provided remote work
directory. The set of all simulators forms a simulator pool that
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NeuroManager will use to run simulations. For example, machine
MY_MACH1 can be added with two simulators and machine
MY_MACH2 can be added with five simulators, forming a pool
of seven simulators. When the session script runs with a set of
20 simulations, then NeuroManager will place two simulations
on MY_MACH1 and five on MY_MACH2. As each simulation
finishes and its simulator becomes free, another simulation is
placed on it until all the parameters sets have been run.

In order to run the simulations (Figure 5C) we use the
NeuroManager class’s runFromFile() method. Each line of
myParameterSets.txt defines a vector of input parameters that
will be inputs to individual simulations via the userSimulation()
call running on the remote. After all the simulations in
myParameterSets.txt have been completed, we call the
NeuroManager class’s shutdown() method to clean scratch
directories, create reports, and do other housekeeping tasks.

We provide examples of using a local UNIX server in
combination with a local cluster and an HPC resource.
NeuroManager handles the interactions from the host to
each of the machines, including job submission protocols and
retrieval of simulation output files. We also provide examples
of using different simulators. One of our examples is a trivial
simulator called “SineSim” which is entirely in MATLAB
and plots sine waves based on two input free parameters:
frequency and duration. A class called SimSineSim (a subclass of
SimNoModelMLOnly) and its companion remote-side function
userSimulation() work together to form the sine wave and plot it.

Using NeuroManager with Neuron
Similar to defining a simulator to run MATLAB-only code
(Figure 5B), we can use the SimNeuron class to build a
virtual simulator based on the NEURON simulator (Figure 6).
NEURON simulations manage hoc and mod extension files
which can be named in the new subclass or dynamically
constructed or modified using class methods. The hoc files are
used to define the structure of neurons and general simulation
processes, while the mod files are used to describe biophysical
mechanisms used by the simulation. We provide examples that
incrementally describe how to use the different parts of this class.

Varying Ion Channel Distribution in a NEURON
Model using Hoc and Python Languages
Here we use NeuroManager to investigate the effect of varying
the concentration of an ion channel in a Purkinje cell model
(Hines et al., 2004), ModelDB Model 17664 (Miyasho et al.,
2001; ModelDB, 2015). We have modified the available hoc and
mod files for compatibility with NeuroManager (primarily by
removing all GUI elements) and we have made use of Python to
define the simulation input current placement and characteristics
and the place where voltage data will be collected. NeuroManager
runs the simulations with the given parameter sets, plots the
results, labels the plots, and ships them back to the host together
with time and voltage data.

We form a subclass of the SimNeuron class called the SimPc
simulator class, which inherits all the SimNeuron facilities. In
addition, it deals with both the list of mod files which determine
the behavior of the biophysical mechanisms used, and the

file: SimMyNeuron.m

classdef SimMyNeuron < SimNeuron

 methods

  ...

  function obj =...

     SimMyNeuron(simulatorID,...)

  ...

  modfilelist = {'m1.mod',...

                 'm2.mod',...};

  hocfilelist = {'h1.hoc',...

                 'h2.hoc',...};

  ...

FIGURE 6 | Defining a NEURON-based Simulator class/type. Sub-class

SimMyNeuron is based on class SimNeuron, which itself adds

NEURON-specific functionality to the ModelFileSim class. The list of mod and

hoc files that define the model can be hard coded in this file. The class

provides functions to modify or construct mod and hoc files before or during

execution. The user can also do custom pre- and post-processing in this new

class based on SimNeuron.

Purkinje.hoc file which holds (1) cell morphology information,
including soma, smooth dendrites, and spiny dendrites; (2)
global electrical characteristics such as axial resistance; and (3)
distribution and characteristics of each biophysical mechanism
to be inserted into each model section. Then we create a subclass
of SimPc called SimPcKh which adds the ability to distribute
the anomalous rectifier channel, Kh, differentially to the three
section types (soma, smooth dendrites, and spiny dendrites) on
a simulation-by-simulation basis. To achieve this, during the
PreRunModel Processing Host workflow stage for each simulation
we assemble a new Purkinje.hoc containing the simulation-
specific Kh insertions as well as the morphology and static
biomechanisms. This approach puts as much simulator—specific
processing directly in the SimPcKh class, so that the uploaded
m-files are as simple as possible and the modification process
is made an integral part of the class. Should we change our
process, we can make a new subclass called SimPcKh02, then
both versions of the simulator are inspectable and available for
use in the future. In this way, we have a clear, usable track of
the trajectory of simulator evolution. In addition, every simulator
class has access to the session log, so that users can make log
entries during simulator construction, hoc file modification, or
whenever a simulator method is employed. When all is ready
on the remote, each simulation will run with its simulation-
specific Kh concentration values for soma, smooth dendrite, and
spiny dendrite segments. The actual NEURON simulation on the
remote is done as a Python program importing the NEURON
module.

Varying Ion Channel Characteristics in a
NEURON Model Specified using NeuroML
SimCores such as NEURON can handle models specified in the
NeuroML format (Gleeson et al., 2010), while others cannot. In
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the first case, NeuroManager’s approach is to edit the NeuroML
model file using XML techniques in response to a Simulation’s
Input Parameter Vector, then send the resulting XML file to
the SimCore as is. If the SimCore cannot understand NeuroML,
NeuroManager’s approach is more involved: to edit the NeuroML
model file using XML techniques, then convert the edited XML
file into an input the SimCore can understand.

Although NEURON can handle NeuroML input, we present
the latter, more illustrative case—automatically turning a
NeuroML-format model file into standard NEURON mod
file format before its compilation into the mod library and
subsequent use in the simulation. We developed an example
called “NeuroML01,” which is a soma with two types of ion
channels, NaF and Khh, and a Leak channel. We use Padraig
Gleeson’s NeuroML specification of the NaF channel from the
NeuroML website (Gleeson, 2015b), and pull eight parameters
from it as Free Parameters to be specified in the Input Parameter
Vectors (mAlphaA, mAlphak, mBetaA, mBetak, hAlphaA,
hAlphak, hBetaA, and hBetak). The corresponding Simulator
class (SimNeuronSimpleSpike03) modifies the XML channel
specification according to the Input Parameter Vector for each
simulation, transforms the modified XML file into a NEURON
mod file using Gleeson’s XML stylesheet supplied at NeuroML’s
Source Forge presence (Gleeson, 2015a), and uploads the new
mod file to the remote for compilation and simulation. In this
example, we run nine simulations with different Input Parameter
Vectors, each corresponding to a different configuration of
the NaF ion channel. All other parameters are static and set
within the Simulator. The NeuroML01 example is presented as
a working session in the User Guide.

XML NeuroManager Sessions
We developed an XML format for single NeuroManager sessions
that consist of single SimSet multiple Simulations on a configured
Machine Set. Called NMSessionML, the format is host-OS-
independent and language-independent. NMSessionML may be
useful in integrating NeuroManager with other systems. We
have provided three examples (NMSessionML01-03) that do the
same simulations as examples SineSim03, SimpleSpike02A, and
KhStudy, but run from NMSessionML files instead (see the User
Guide for details).

The basic flow of NMSessionML action can be seen in
Figure 7. The user creates the XML file, which specifies the
SimSet, the Simulator type, the individual machines composing
the Machine Set, user information, and file locations. The run
script uses the NMSessionML Schema to check the XML file’s
format, then employs custom stylesheets to produce the SimSpec
data file and the language-specific script file required to run the
session.

Discussion

In this work we described NeuroManager, an object-oriented
tool that simplifies computational neuroscience workflows in
heterogeneous computing resources and multiple simulator
types. Presently, the majority of the efforts in computational
neuroscience are centered in either developing simulation

NMSessionML

Schema

NMSessionML

XSLT Stylesheet

System

SimSpec.txt

Possible construction or

identification of

m-files or py-files

Language-specific

SimSet script

.m or .py

NMSessionML

XML session description file

---

SimSet simulation definitions

Filesystem paths

Machine Set configuration

SimType

Transformer program

---

Saxon HE

transformation

Start

v
e

ri
fi
c
a

ti
o

n

FIGURE 7 | Using NMSessioML to run a set of simulations. The user

describes the Session in a single XML file, specifying the SimSet, MachineSet

configuration, and SimType, then NeuroManager makes use of an XSLT

stylesheet system and a transformer program such as SaxonHE to write the

Session and SimSpec files and finally run the simulation.

environments or providing easy access to HPC resources. Our
software provides the infrastructure to leverage computational
resources, manage the use and evolution of simulators and
organize the potentially large amounts of data generated. As
such, NeuroManager provides a tool that will allow users to
manage, analyze, and improve their simulations in an orderly
environment.

Workflow and Software Design
Workflow modeling and management are a vital part of current
and future neuroscience as the era of Big Data continues to evolve
and scientific progress is increasingly multidisciplinary and
collaborative (Chen and Zhang, 2014). Designing NeuroManager
with an object-oriented approach allows flexible workflow
management. The design of NeuroManager is to relate a
workflow stage to specific processes related to simulation
submission. As a consequence, the workflow stages are
not independent modules. Other approaches to workflow
automation generate modules that can be separated and
distributed over different resources (Korkhov et al., 2007;
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Wibisono et al., 2007; Yu et al., 2008; Cushing et al., 2014).
For example the WS-VLAM (Web Service-Virtual Laboratory
Amsterdam) project approach is to make each element of
a workflow an independently-running component, then to
farm those components out to remote computational resources
(Korkhov et al., 2007). Workflow components communicate by
making use of channel services constructed for that specific
purpose.While highly flexible and scalable this approach requires
full grid-level support. In contrast, NeuroManager’s approach is
to use a fixed workflow and keep the stages internally flexible.
NeuroManager tailors workflow stages to specific actions, most of
which do not require HPC resources. Moreover, NeuroManager
does not require any sort of grid-level installation, and can make
use of any clusters or servers to which the user has access. As a
result, NeuroManager is more readily available to the individual
scientist.

The design of NeuroManager might be construed as a
MapReduce framework (Sakr et al., 2013; Radenski, 2014).
NeuroManager has a Map() stage in which the Simulations to
be performed are distributed on the SimMachines. After the
simulations are done, the Reduce() process is to run automated
analysis and gather the outcomes, e.g., plots or summary files. We
have used the terms “host” and “remote” rather than “master” and
“slave” because NeuroManager does not have direct control over
access to the remote nodes. As such, other tasks or users could be
sharing the same resources. Overall, NeuroManager operates as
middleware to virtualize hardware, software, and users.

Limitations
As is the case with all software tools, there are limitations
to their use. In the case of NeuroManager the limitations are
related to the use of commercial software, parallelization, and
overhead. We designed NeuroManager to minimize the use of
licenses. The advantage of using MATLAB is access to validated
software whose support does not depend on grant funding. This
allows NeuroManager to have a longer horizon of usability.
Nevertheless, we are currently developing equivalent Python
code.

NeuroManager is not an HPC scheduler; instead it makes use
of job submission utilities to run simulations on large resources.
Our software is focused on providing the infrastructure to
track simulations and their evolution. Potentially, NeuroManager
could integrate more sophisticated scheduling and load leveling
algorithms. The object-oriented approach provides a flexible
environment for such modifications.

The overhead of NeuroManager is variable; however, the
largest bottleneck is theMATLAB compilation. In our experience
this can take from 90 to 180 s depending on machines used.
So, taking into account this it would seem that NeuroManager
is best used for simulations that require many minutes to
days to run. Very short simulations will likely incur too much
overhead to be efficient time-wise; however, the time and effort
savings in user workflow automation such as file transfer, figure
production and labeling, may justify even such use. If a user
has 10,000 short simulations to run, they could be combined
into a 100 × 100 approach that would minimize overhead and
maximize the effectiveness of using HPC resources. Meanwhile,

the user would gain all the workflow advantages of having plots
automatically labeled correctly and not having to upload or
download manually, all of which could take a great deal of time
without the use of NeuroManager.

When using heterogeneous resources the first-come-first-
base scheduling algorithm could face bottlenecks if the
performance of the machines differs widely because the software
assumes that all Simulators are equal. This could be overcome
by adding performance description to the SimMachine for
particular Simulators, thus allowing NeuroManager to better
schedule jobs.

Related Work
There is increasing interest in the development of tools to
annotate, track, and organize the simulation or analysis of
data in areas of engineering and science. The tools most
related to computational neuroscience are Sumatra, Lancet, and
Mozaik. Sumatra (Davison, 2012) is a simulation project manager
designed to demonstrate replicability via close integration
with a version control tool. The user “checks out” the
manager and model files, then runs the simulations, which are
automatically placed into a database, under version control.
Sumatra automatically scans files for dependencies in order
to capture as much metadata as possible, and collects some
scientific/experiment context. Although the two approaches are
not compatible in their current configurations, the concept that
Sumatra investigates is a powerful one and might be useful in
future work on NeuroManager.

Lancet (Stevens et al., 2013) is a Python application that
combines with IPython Notebook (Perez et al., 2011; Shen,
2014) to allow the researcher to grow a scientific workflow that
involves neural simulations. When in daily use, Lancet allows the
researcher’s workflow to evolve naturally, and keeps track of its
changes. Lancet creates a scripting language for its operations
that can be intermingled with notes via IPython Notebook. In
contrast, NeuroManager uses a fixed workflow that is adapted
by the user to research needs through object methods for each
stage. This more formalized, fixed workflow approach simplifies
the use of available computational resources, makes multiple
parallel simulations more observable, allows instant access to
all simulator versions, and facilitates sharing between groups.
Like NeuroManager, Lancet has a “simulator” object which can
handle a remote simulator, but it does not allow the definition
of a Machine Set. Lancet uses the simulator object primarily to
make the software simulator-independent. Although this is true
of NeuroManager, it also uses the simulator object to be able to
host multiple Simulators on a Machine Set, to customize pre-
and post-simulation scripting, and to allow a tree approach to
simulator evolution.

Finally,Mozaik is a resource focused onmanaging simulations
of 2D neural networks (Antolík and Davison, 2013a,b),
which uses PyNN (Davison et al., 2008) for simulator type
independence, Neo for data structuring (Garcia et al., 2014),
and Matplotlib for data plotting (Matplotlib, 2015). The software
is modular, enhancing extensibility and customizability. The
fundamental design of Mozaik is specific for 2D neural networks.
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NeuroManager, in contrast, is not specific to a given simulation
type.

The automation of complex workflow is becoming more
common in biological sciences. For example, Taverna (Oinn
et al., 2004) is a tool for working with web-based bioinformatics
databases, and Vistrails (Callahan et al., 2006) has the
goal to move visualization processing pipelines beyond the
tedious single-configuration-by-click approach by facilitating the
production of many visualization products at one time.

Interaction with Other Computational
Neuroscience Resources
NeuroManager has been tested with NEURON, MCell, and
MATLAB-only simulators, but its workflow-based approach
should be suitable for integration with MOOSE (Bhalla et al.,
2011), PyNN, and the Neo object model. Neuromanager could
also be extended to accept models built using neuroConstruct
(Gleeson et al., 2007), a tool that allows users to construct 3D
neural models in the NeuroML format.

NeuroManager could interface in the future with other
resources and tools. The Neuroscience Gateway is a large-
scale facility that acts as a portal between the neuroscientist
and various neuroscience simulators hosted on HPC resources
(Sivagnanam et al., 2013). While the Neuroscience Gateway
takes charge of many aspects of simulations management,
NeuroManager, once configured, provides the flexibility and
independence of using both local and HPC resources and
is capable of acting within other software as an embedded
simulation engine.

There are efforts to standardize the representation and
reporting of simulations in systems biology. One important effort
is around the development of SED-ML, which is an evolving
standard for simulation provenance (Köhn and Le Novere, 2008;
Waltemath et al., 2011). Although SED-ML deals with the use
of “simulation procedures” and “simulation algorithm,” “model,”
and most other aspects of daily simulation work, they do not
implement the concepts of “simulator” or “machine.” In order
to better to interact with NeuroManager it would be necessary
to implement the concepts of Simulator and Machine within
SED-ML.

NeuroManager could make use of the Python-based package
called RADICAL-SAGA (RADICAL, 2015), which is a light
implementation of the SAGA access layer to heterogeneous
distributed computational resources (Merzky et al., 2015).
Although there is no MATLAB binding of SAGA the Python
binding has adaptors for the two cluster types mentioned here
(SGE and SLURM).

Although outside the scope of this paper, NeuroManager’s
workflow automation should prove useful for parameter
space search and optimization. The NeuroManager class’s
runFromSimSpec() and runFromFile() methods return a
results structure that contains each simulation’s SimID, the
location of its results, and its success or failure. A script
embedding NeuroManager can access this structure, process the
results, and create and run a new SimSet based on its search

algorithm. NeuroManager’s use of a unique SimID for each
Simulation enables both single-threaded and multi-threaded

search algorithms to operate simultaneously within a given
SimSet. In this form, NeuroManager could interact with
Neurofitter (Van Geit et al., 2007), an application designed
to investigate parameter spaces in neuroscience. Other
important improvements will be to incorporate MATLAB’s
Global Optimization Toolbox (Mathworks, 2015b) and
the scipy.optimize Python module (SciPy.org, 2015). As we
have mentioned before, the object-oriented properties of
NeuroManager give it the flexibility to incorporate these
tools.

Future Work
In future versions of NeuroManager, we expect to provide
checkpoint management, high-level fault tolerance, handling
of assigned timeouts, and a more sophisticated scheduler.
Another useful addition to NeuroManager would be the ability
to add and/or subtract individual machines, simulators, and
simulations while NeuroManager is running. Also beneficial
will be integration with database facilities for cataloging inputs,
configurations, comments, results, and analyses. MATLAB
has facilities for interaction with databases, such as the
Database Toolbox (Mathworks, 2015a). Other efforts in this area
(Günay et al., 2009) may be compatible with NeuroManager’s
construction. We also hope to add provenance facilities that are
more formal and that allow submissions to ModelDB that not
only include model and hoc files, but also simulator class files,
specification files, and other related files that are sufficient to
recreate simulations in full.

We are aware of NeuroManager’s potential role in
integrating experiments involving both electrophysiology
and computational neuroscience simulations. This will require
the development of object classes that deal with the analysis of
experimental results which could then interact with modeling
results.
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