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Osteosarcoma (OS) is the most common non-hematologic primary tumor of bone in chil-
dren and adults. High-dose cytotoxic chemotherapy and surgical resection have improved
prognosis, with long-term survival for non-metastatic disease approaching 70%. However,
most OS tumors are high grade and tend to rapidly develop pulmonary metastases. Despite
clinical advances, patients with metastatic disease or relapse have a poor prognosis.Toward
a better understanding of the molecular pathogenesis of human OS, several genetically
modified OS mouse models have been developed and will be reviewed here. However,
better animal models that more accurately recapitulate the natural progression of the dis-
ease are needed for the development of improved prognostic and diagnostic markers as
well as targeted therapies for both primary and metastatic OS.
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INTRODUCTION
Osteosarcoma (OS) is a highly malignant form of bone cancer
characterized by osteoid production. Although OS comprises <1%
of cancers diagnosed in the United States, it is the most common
primary malignancy of the bone (1, 2). It occurs predominantly
after the first decade of life during periods of skeletal growth, with
a second peak incidence in the geriatric patient population (1,
3). The vast majority of OS in children, adolescents, and young
adults is high grade and begins in the intramedullary space of
metaphyseal locations in long bones of the lower extremity. This
suggests a relationship with active growth plates. After a low inci-
dence in individuals between 25 and 59 years of age, the incidence
of OS rises again in individuals over 60 years of age, and is most
often associated with Paget’s disease or radiation exposure (1, 2).
This may suggest that the underlying pathogenesis is not identical
in young and older patients. Conventional OS presents in three
major subtypes based on histological classification: osteoblastic,
fibroblastic, and chondroblastic. Osteoblastic is the most common
(around 60%) with fibroblastic and chondroblastic being equally
represented (4).

Osteosarcoma is characterized by a local invasion of bone and
soft tissue, loss of the function of the affected extremity, and dis-
tant metastasis, most often to the lung (90%). Metastases are also
found in bone (8–10%) and rarely in lymph nodes (5). Treat-
ment involves aggressive removal of the primary tumor to afford
local control via limb sparing surgery or amputation. Systemic
chemotherapy (both prior to and after tumor removal) is used
to suppress development of metastasis and effect cure. The most
common chemotherapy regimens comprise the drugs, cisplatin,
doxorubicin, and high-dose methotrexate in combination (6–
8). Although chemotherapy slows tumor growth, it can induce
cardiomyopathy, hearing loss, and risk of secondary malignancy
(8, 9). In patients without metastases at the time of diagnosis
(80–90%), surgical treatment in combination with chemotherapy
has resulted in long-term survival rates that approach 70%. In

contrast, for patients with established metastases there is currently
no reliable therapeutic option to provide long-term tumor con-
trol. Despite intensive efforts to improve both chemotherapeutics
and surgical management, 40% of all OS patients succumb to
the disease. Specifically, the clinical outcome for metastatic OS
remains poor; fewer than 30% of patients who present metastases
survive 5 years after initial diagnosis. Therefore, there is an urgent
need for the development of novel therapeutics for OS agents with
increased capacity to eliminate systemic tumor burden as well as
reduced toxicity in healthy tissues.

ETIOLOGY OF OS
Osteosarcoma is characterized by a complex karyotype and a
lack of recurrent translocations. Genetic approaches have iden-
tified several genes of potential importance in the development
and progression of the disease (10–12). However, the widespread
chromosomal alterations of the OS genome have limited the inter-
pretation of these findings. Genetic alterations of OS are usually
sporadic though genetic predisposition has been documented in
patients with Li-Fraumeni and retinoblastoma syndrome. Somatic
deletions and point mutations in P53 occur in approximately 50%
of human OS (13–16) and half of those mutations are associated
with loss of the remaining allele (14). Additionally, almost 70%
of OS have at least one RB allele alteration (17, 18). Homozygous
deletions of RB are seen in 23% of tumors, while point mutations
appear in 6% (18, 19). In addition, numerous alterations that dis-
rupt the RB pathway have also been reported; for example, the
loss of function at the INK4a/ARF locus and the amplification of
CDK4 have been found to occur (one or the other) in 22% of OS
(20–22). The prevalence of these alterations would suggest that the
deregulation of both G1/S and G2/M checkpoint in the cell cycle
are a common event in OS.

For this, a tumor of unknown origin, chaotic genetics, early
onset, and aggressive behavior, there is a need for more represen-
tative models to learn more about the biology of OS.
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ANIMAL MODELS IN OS
Animal models hold significant promise in increasing our under-
standing of the genetic basis of OS and more importantly, in
advancing preclinical studies aimed to the rational development
of new therapeutic approaches as well as their validation prior to
clinical trials.

In order for any animal model of human disease to be useful and
informative, it is preferable to accurately recapitulate the natural
course of the disease. Unfortunately, the etiology and pathogenesis
of OS are not completely understood; therefore, the establishment
and induction of representative experimental models are challeng-
ing and incomplete. Currently, there is not a robust animal model
of OS that fully represents its biological and clinical features. The
ideal would be one in which there was a naturally occurring pri-
mary bone lesion and spontaneous pulmonary metastases. To date,
the major species used to generate OS models are mouse and rat;
however, OS arising in dogs is also of note as a validated model of
spontaneous OS.

Many aspects of the biology of the disease have been deter-
mined from a variety of animal model approaches. Genetically
modified mouse models of OS have given the field much insight.
However, spontaneous OS, secondary OS as a consequence of ani-
mals receiving radiation, human and murine OS cell lines, and
xenotransplantation studies are also important to understand the
biology of this malignancy.

CANINE MODELS
Spontaneous OS is much more common in large dogs than in
humans, making the dog an attractive candidate model to study
human disease (23). Canine OS is indistinguishable from human
tumors at the histological and gene expression levels (24–27). The
primary differences between the two are the age of development
and the prevalence of the disease. In dogs, OS is a disease of
older, large breed dogs (6–12 years of age), and it is estimated
that over 10,000 cases occur annually in the United States. The
median disease-free interval following surgery alone is 4 months,
and after surgery with chemotherapy, 13 months. This high preva-
lence and the relatively rapid rate of disease progression provide
the opportunity to model metastasis development and progression
and evaluate novel treatment options in a relatively short period
of time (28–32). Many of the genes involved in human OS patho-
genesis appear to participate in canine OS, including P53, RB, and
PTEN (33–36).

Although canine OS serves as an excellent comparative tumor
model for human OS, there are some limitations to be consid-
ered. First, OS affects skeletally mature, geriatric dogs, which is
different from humans where the peak of incidence occurs during
adolescence. Second, some breeds have specific heritable germ-line
mutations in certain genes that may influence OS biology, progres-
sion, and response to treatment without driving the initiation of
the disease (37).

SECONDARY OS AFTER RADIATION
The development of rodent OS models began with the exposure
of rats and mice to chemical and radioactive carcinogens (38–40).
Of note, among those was the development of OS in rats treated
with P32-orthophosphate, which resulted in a high incidence (41).

These models yielded tumors that histologically resembled the
human cancer and produced cell lines that complement human
OS studies (42). Despite the high penetrance of the models, their
relevance remains unclear since the majority of OS in humans
is sporadic, while the carcinogen-induced murine model is more
representative of a therapy induced disease.

XENOTRANSPLANTATION STUDIES
There is a significant amount of literature related to the develop-
ment and use of xenograft and allograft models of human and
murine OS cells injected into immunocompromised mice. The
injected cells form a solid tumor locally grown within days or
weeks after implantation (42, 43). The use of these systems has
become a prominent tool in current oncological research due
to the quick onset, its affordable cost, and ease of handling and
maintenance. In addition, OS donor-derived cells may metasta-
size to the lungs, providing an opportunity to investigate primary
and secondary tumor growth. The principal limitation is that the
approach uses fully developed OS cells and therefore does not pro-
vide information about the initiation of the tumor and its etiology.
Furthermore, since the tumor microenvironment can contribute
significantly to the tumor behavior, such interactions may be lost
when establishing the disease by direct introduction into a recipi-
ent animal (44–46). In certain circumstances, the injected cell line
may not be metastatic in the rodent context, making it impossible
to study the dissemination of the disease. Despite these limita-
tions, many groups have successfully used this model to identify
factors involved in OS migration (47, 48) and more importantly for
screening drugs with tumoricidal potential (49). Distinct advan-
tages of the subcutaneous cell suspension injection model are high
rate of incidence and reproducibility that allows for accurate titra-
tion of cell numbers in the inoculum to quantify tumorigenic
potential of the injected cells.

A variation of injecting cell suspensions into recipient animals
is to transplant pieces of tumor directly harvested from the patient.
The advantage is that the human malignant cells can grow in its
native environment maintaining the heterogeneity that may be
required for their proliferation, which in some reports has been
shown to enhance tumor growth and metastasis. With the use
of cell suspension and transplants, murine host cells can infil-
trate the tumor, possibly influencing the activities of the tumor
cells, and in some cases, cells of the rodent host can overgrow the
human cell population (50). Alternatively orthotopic, intratibial
implantation of OS cells has been shown to induce OS at local
and metastatic sites (proximal tibia and lung) (43, 51–53). This
approach allows the study of primary tumor formation within a
more native context as well as the early stages of metastatic progres-
sion of OS, thereby reconstituting the entire metastatic process. Its
use, however, is limited by a lack of reproducibility due in part to
the technical skill required to perform the implantation and the
associated lack of quantifiable inoculum.

GENETICALLY ENGINEERED MOUSE MODELS
Of the sarcomas with complex karyotypes, OS is one of the
most well-studied as exemplified by the development of numer-
ous mouse models available for this disease. The ability to alter
specifically the expression of individual genes (by loss or gain of
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function) became available in the mouse with the evolution of
gene targeting technologies (54, 55).

Many murine OS models have been developed to recapitu-
late the P53 and RB mutations in hereditary and sporadic human
OS. Germ-line deletion of P53 resulted in an OS incidence of 4%
in homozygous P53 null mice (56) and 25% in heterozygous P53
mice (57), underlying the importance of altered P53 in driving OS.
This unexpected ratio of tumor formation, though, is likely due to
the early lethality seen in the homozygous null population. Fur-
ther, the rapid development, the higher incidence of other tumors
(mostly lymphomas), and the long latency of OS (58) necessitate
the sacrifice of the mice before OS onset, hampering in many cases
the utility of these models. The role of P53 was further highlighted
by tumor analysis of P53 knock-in mice containing a mutant copy
of P53R172H (corresponding to the R175H hot-spot mutation in
humans) that not only develop primary tumors but also metasta-
size to the lungs as well as other organs (59, 60). Conversely, mice
with germ-line deletions of Rb did not develop OS: homologous
deletion of Rb is embryonic lethal and the heterozygotes are not
predisposed to OS (61, 62).

The application of conditional gene regulation and the avail-
ability of tissue specific Cre expressing mouse lines (63) have greatly

enhanced our ability to generate specific models of mesenchymal
osteogenic lineage that more faithfully resemble human OS (55,
64). The majority of these models have used the loss of P53 with
or without the disruption of the Rb pathway to generate penetrant
OS models (54). They use conditional gene deletion approaches
restricted to multipotent mesenchymal progenitors, early com-
mitted osteoblasts (pre-osteoblasts) and the osteoblast population
(Figure 1) (Table 1).

Using Cre recombinase activated by the gene promoter of
Paired related homebox 1 (Prx1-Cre) (72) that deletes LoxP flanked
alleles in the early limb mesenchyme (multipotential cells), 22%
of mice with P53-mediated heterozygosity developed OS. Not sur-
prisingly, homozygous deletion of P53 had a threefold increase
in OS incidence over the heterozygous animals. In contrast, the
deletion of Rb in the mesenchymal Prx expressing progenitors
did not produce any OS tumors (65, 66). Interestingly, the high-
est incidence (92%) of OS occurred with the combined dele-
tion of one allele of Rb with homozygous P53 deletion (66).
Homozygous deletion of both genes resulted in more non-specific
tumor formation with only 18% OS tumors and the remainder
being poorly differentiated soft tissue sarcomas (PD-STS) and
lymphoma (65, 66).

FIGURE 1 | Model of osteoblast differentiation and putative stage of Cre expression is shown.

Table 1 | Summary of genetically modified OS murine models.

Cell Cre Gene OS penetrance (%) Other tumors Metastatic disease

MSC/skeletal Prx-1 p53fl/+ 22 (65)

Progenitors p53fl/fl 61 (65); 62(66) PDS (32%), LY (3%), LPS (3%);

RMS (15%), PDS (12%)

Yes (24%)

p53fl/fl-Rbfl/+ 92 (66) RMS (9%), PDS (18%), HIB (4%)

p53fl/fl-Rbfl/fl 18 (65); 29 (66) PDS (57%), LY (14%); RMS (12%),

PDS (3%), HIB (91%)

Pre-osteoblasts Osx p53fl/fl 100 (67); 100 (68) Yes (32%); yes (40%)

p53fl/fl-Rbfl/+ 53 (67); 100 (68)

p53fl/fl-Rbfl/fl 72 (67); 100 (68) Multiple tumors per animal;

concurrent HIB (20–25%)

Yes (37%)

shp53 100 (69) 0% Yes (83.33%)

shp53-Rbfl/+ 100 (69) 0% Yes (58.82%)

shp53-Rbfl/fl 100 (69) 0% Yes (85.72%)

Col1α1–3.6 p53fl/fl 60 (70)

Osteoblasts Col1α1–2.3 p53fl/fl 85 (65)

Og2 SV40 Tag 100 (71) Yes (90%)

LPS, liposarcoma; LY, lymphoma; RMS, rhabdomyosarcoma; PDS, poorly differentiated sarcoma; HIB, hibernomas.
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For a more restricted deletion of genes in the osteoblast lin-
eage, promoters of genes ranging from those expressed early in the
commitment of progenitors as Osterix 1 and Collagen1 α1–3.6
to those expressed in more lineage-restricted osteoblast precur-
sors such as Collagen1 α1–2.3 and osteocalcin (Og2) have been
used. Development of OS with a penetrance of 100% (67, 68)
has been observed following osteoblast specific deletion of P53
using Osterix-mediated Cre expression (Osx-Cre) (73). As with
mesenchymal progenitors, Rb deletions have no effect and com-
bined deletion of Rb and P53 in osteoblasts once again generated
fibroblastic or undifferentiated OS with high penetrance (100%)
(67, 68). Potential translational utility is the existence of short-
latency spontaneous metastatic OS similar to human tumors in
which cells are arrested in their differentiation (67, 68). Although
the greatest proportion of tumors was OS when P53 was con-
ditionally deleted, neuroendocrine tumors and hibernomas were
also reported to be generated in several mice (67, 68). However,
Walkley et al. enriched the C57BL/6 background of the mouse
strain and the percentage of hibernomas was reduced, suggesting
a possible impact of mouse strains in the phenotype observed (69).
A recent study in mice that expressed SV40 T/t antigen (Tag) in
mature osteoblasts under the Og2 (74) showed OS with complete
penetrance (71) and 90% incidence of lung metastases. Further
analysis of the tumors derived from this model revealed a recur-
rent genomic deletion of the Prkar1a gene in a specific subset also
in human OS. Transgenic shRNA has been used to specifically
knock down P53 (rather than delete) using the Osx-Cre transgene
(69). These mice develop osteoblastic OS with a 100% penetrance,
and although they have a longer latency to tumor onset, they more
often develop in long bones and are highly metastatic (lung and
liver), features similar to human OS. This model has not developed
any non-OS tumors.

Independent of the stage of development in which Cre becomes
active, the latency of OS is essentially the same when comparing
either P53 alone or in combination with Rb. The use of Cre in
more primitive cells (Prx), however, leads to the development of
tumors of other mesenchymal lineages at higher frequency.

Possibly providing insight into the initiating events of OS (70),
a prominent cellular feature of conditional inactivation of P53
in osteoblastic progenitors is the hyperproliferation of osteoblasts
prior to tumor formation. Rb has been proposed to have a role
in influencing late osteoblast differentiation by interacting with
Runx2 (75). However, a number of independent studies have
shown that the removal of Rb alone is not sufficient to induce OS.
The different experimental approaches strongly suggest that muta-
tion in the p53 pathway can serve as an initiating event in OS, with
a subsequent mutation in the Rb pathway strongly accelerating
tumor development.

These engineered mouse models of OS reproduce many fea-
tures of human OS including similar gene-transcription signatures
(76) and cytogenetic complexity. However, the sites of primary
tumor formation in Cre–loxP mice do not recapitulate the spon-
taneous human disease. The majority of lesions (85%) arise in
axial skeletal sites (mandibule, maxilla, rib/vertebra, skull, ster-
num) while on 13.6% of tumors developed from the appen-
dicular skeleton (hind leg, front leg) (68). This contrasts with
the anatomic distribution of OS diagnosed in humans, with the

distal femur, proximal tibia, and proximal humerus being the
most common sites involved and only 10% develop in the axial
skeleton, most commonly the pelvis (5). Only in one study (69)
did the tumor arise primarily in long bones. In addition, the
observed frequency of distant metastases was comparatively low
when compared to human disease except for the P53 knock-
down model (69). As opposed to a complete deletion of P53,
the primary tumor cells proliferated slower and the animals did
not have to be sacrificed for local tumor size prior to comple-
tion of the metastatic process. Furthermore, the primary site of
metastases in human OS is predominantly the lung parenchyma
while in Cre–loxP mice, sites of metastases were more diverse
with both the lung and liver being affected in almost equal
proportions.

Other genes such as C-FOS (77, 78), TWIST (79), p14ARF (80),
p16INK4a (81), PRKAR1A (71), and p21CIP (82) have also been
implicated in OS pathogenesis based on studies of human OS sam-
ples. Their mutation appears to complement the defects in the P53
and RB pathways, and their involvement in osteosarcomagenesis
is also demonstrated from genetically engineered mouse models.
They provide important information regarding the genetics of
OS, but the long latency combined with low penetrance makes
utilization of these models less practical.

TARGETED THERAPIES IN OS
Osteosarcoma is very resistant to therapy and therefore there is an
urgent need to effectively treat affected patients. The emergence of
new anti-cancer drugs and the small number of patients eligible for
early-phase clinical trials present another challenge in the clinical
testing of novel compounds for OS treatment. As discussed ear-
lier, xenotransplantation models have provided the greatest utility
for preclinical screening of drugs with tumoricidal potential. To
this end, the National Cancer Institute (NCI) has implemented
the Pediatric Preclinical Testing Program (PPTP), a consortium of
institutions across the United States and in Australia. Its objective
is to identify agents with significant activity in panels of mouse
xenograft models representing the most common pediatric can-
cers including OS (83). The program has been successful, leading
to Phase I and II clinical trials for cixutumumab, sorafenib, and
rapamycin for OS treatment. (84–86). In each case, these agents
demonstrated high levels of response in the PPTP and were well-
tolerated with promising anti-tumor activity in some adult and
pediatric patients.

The use of spontaneous and transgenic OS models for high
throughput screening of anti-OS drugs is hampered due to prac-
tical considerations associated with the cost and time of gener-
ating sufficient numbers of animals for statistically meaningful
data. This is due to variations in disease onset as well as tumor
heterogeneity, incidence, and progression. However, the recent
generation of transgenic animals expressing shRNAs to knock
down P53 (69) represents a potential breakthrough with respect
to preclinical screening. Unlike conventional Cre-mediated gene
deletion approaches, P53 knock down mice exhibited 100% pen-
etrance for osteoblastic OS (the most common form of the dis-
ease). Moreover, the tumors were most frequently present in long
bones and preferentially disseminated to the lungs, consistent with
human OS.
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Another consideration for preclinical testing in in vivo mod-
els is the accurate measurement of the disease burden at non-
accessible sites. The use of in vivo imaging offers the opportunity
to detect and monitor the development and progression of the dis-
ease. However, imaging systems are costly and not always widely
accessible for many researchers. OS has the advantage that the
primary tumor in genetically engineered mouse models appears
in long bones and is therefore more accessible than abdominal
tumors. The monitoring/visualization of micrometastases rep-
resents a greater challenge due to their small size. Inaccurate
evaluation of metastatic spread in preclinical studies potentially
leads to disappointing results in clinical trials. Consequently, there
is great interest in refining the methods to enable reproducible and
ultrasensitive detection of metastases at the single cell level. The
main focus therefore is on techniques, which allow the detection of
tumor cells in vivo, such as microcomputer tomography (micro-
CT), positron emission tomography (PET), bioluminescence, or
fluorescence imaging.

CONCLUSION
Our understanding of human OS biology is hindered by its rapid
onset, low prevalence, and absence of predisposing conditions or
precursor lesions. With limited human tissue available for study,
animal models provide a valuable tool to investigate the underly-
ing mechanisms driving tumor initiation, progression, metastatic
events, and therapeutic interventions. While these models have yet
to faithfully recapitulate all aspects of OS, there is no doubt that the
study of OS animal models has enabled insight into the genetics
of tumor initiation as well as the cellular and molecular profiles of
tumor growth and metastasis. In particular, gene knockout studies
have been instrumental in identifying genetic mutations that pro-
mote OS tumor initiation (P53), as well as co-operative mutations
that increase disease incidence (RB, c-FOS).

With the use of cell lineage specific markers, it is now possi-
ble to introduce genetic mutations by sequential targeting from
early precursor (multipotent mesenchymal cell) to more mature
osteoblastic cells (osteoblast to osteocyte) to investigate OS inci-
dence and tumor pathology. With this strategy, Prx1 and Osx
have been used to identify mesenchymal and osteoprogenitor cells,
respectively, following conditional mutation of P53. It remains to
be seen, however, whether these populations are truly distinct, as
Prx1 could be coexpressed with Osx in a certain subpopulation
of cells. Another consideration particularly relevant in OS is its
tumor heterogeneity among patients, which suggests that multi-
ple cell types could act as cell of origin. Additionally, this concept
of heterogeneity calls into question the utility of models exploit-
ing single gene manipulation. Its consideration may permit a more
systematic analysis of the genetic lesions involved in OS initiation
and progression and could serve as a platform for the identifica-
tion of early disease biomarkers. Cell of origin identification may
also have important implications in the prevention of relapse and
elucidate key molecular pathways and driver mutations that could
lead to new therapeutic approaches to prevent the disease.

Thus, although for now, conventional orthotopic and sub-
cutaneous transplantation models will remain indispensable to
continue the study of OS in vivo, new models of spontaneous
OS need to be developed to further our understanding of OS

biology. Models that accurately reproduce the establishment of
spontaneous micrometastases are necessary to investigate novel
antimetastatic agents, as this clinical scenario is most often the
lethal event for patients with this form of cancer.
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