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Cholera outbreaks occur each year in the remote coastal areas of Bangladesh

and epidemiological surveillance and routine monitoring of cholera in these areas is

challenging. In this study, a total of 97 Vibrio cholerae O1 isolates from Mathbaria,

Bangladesh, collected during 2010 and 2014 were analyzed for phenotypic and

genotypic traits, including antimicrobial susceptibility. Of the 97 isolates, 95 possessed

CTX-phage mediated genes, ctxA, ace, and zot, and two lacked the cholera toxin

gene, ctxA. Also both CTX+ and CTX− V. cholerae O1 isolated in this study carried

rtxC, tcpAET, and hlyA. The classical cholera toxin gene, ctxB1, was detected in 87

isolates, while eight had ctxB7. Of 95 CTX+ V. cholerae O1, 90 contained rstRET

and 5 had rstRCL. All isolates, except two, contained SXT related integrase intSXT.

Resistance to penicillin, streptomycin, nalidixic acid, sulfamethoxazole-trimethoprim,

erythromycin, and tetracycline varied between the years of study period. Most

importantly, 93% of the V. cholerae O1 were multidrug resistant. Six different

resistance profiles were observed, with resistance to streptomycin, nalidixic acid,

tetracycline, and sulfamethoxazole-trimethoprim predominant every year. Ciprofloxacin

and azithromycin MIC were 0.003–0.75 and 0.19–2.00µg/ml, respectively, indicating

reduced susceptibility to these antibiotics. Sixteen of the V. cholerae O1 isolates showed

higher MIC for azithromycin (≥0.5µg/ml) and were further examined for 10 macrolide

resistance genes, erm(A), erm(B), erm(C), ere(A), ere(B),mph(A),mph(B),mph(D),mef (A),

and msr(A) with none testing positive for the macrolide resistance genes.

Keywords: Vibrio cholerae, El Tor, antibiotic resistance, reduced susceptibility, ciprofloxacin, azithromycin

INTRODUCTION

Vibrio cholerae, the causative agent of cholera, is autochthonous to the estuarine and marine
environment worldwide. Of more than 200 O-antigen serogroups identified in V. cholerae, only
toxigenic O1 and O139 are primarily associated with epidemics and pandemics (Sack et al.,
2004). Cholera, an ancient diarrheal disease, continues to be a serious threat in countries of Asia,
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Africa, and South America. Even though cholera is
underreported in many countries, 3–5 million cases are
recorded annually in different parts of the world, with a
significant number of deaths (Ali et al., 2012). The case fatality
rate of cholera has been reduced over the past few decades,
mainly because patients are treated with oral and/or intravenous
rehydration therapy together with appropriate dosage of
antibiotics. Effective antibiotic treatment shortens the duration
of diarrhea and limits the loss of body fluids by ca. 50% (Sack
et al., 2004). However, antibiotic resistant enteropathogens,
including V. cholerae, are emerging rapidly due to the selective
pressure of antibiotics existing in the environment and from
excessive use (Laxminarayan et al., 2013; Andersson and
Hughes, 2014). V. cholerae, both O1 and O139, have developed
resistance to several antimicrobial drugs, including tetracycline
(TE), chloramphenicol (C), furazolidone, ampicillin (AM), and
trimethoprim-cotrimoxazole, used successfully to treat cholera
over the years (Garg et al., 2001; Kitaoka et al., 2011). As a
consequence, multidrug resistant (MDR) V. cholerae has been
on the rise, causing clinicians to face a serious challenge when
deciding a drug of choice and regimen for treating cholera
patients.

Two biotypes of V. cholerae O1, Classical (CL) and El Tor
(ET) are universally recognized, with each possessing distinct
phenotypic and genetic traits, including major virulence genes,
i.e., toxin coregulated pilus (tcpA) and B-subunit of cholera
toxin (ctxB; Kaper et al., 1995; Safa et al., 2010). Of the two
biotypes, CL is associated with the sixth and presumably the
earlier pandemics of cholera that occurred between 1817 and
1923 (Kaper et al., 1995; Devault et al., 2014), while ET is reported
to have initiated the ongoing seventh pandemic in the early
1960s, gradually displacing the CL biotype (Kaper et al., 1995;
Kim et al., 2015). Over the past two decades, variants of ET
with only a few CL attributes (phage-encoded repressor rstRCL

and B-subunit of cholera toxin ctxBCL) have emerged in Asia
and Africa. These variants are collectively known as atypical ET
(Safa et al., 2010; Kim et al., 2015). Moreover, based on amino
acid substitutions in CtxB, 12 different ctxB genotypes have been
identified in V. cholerae (Kim et al., 2015). In 1992, V. cholerae
O139 carrying the SXT/R391 family integrative conjugative
element (ICE) appeared transiently as the major cause of cholera
in Bangladesh and India (Albert et al., 1993; Ramamurthy
et al., 1993; Waldor et al., 1996). SXT/R391 ICE was the first
MDR marker detected in V. cholerae, conferring resistance to
streptomycin (S), sulfamethoxazole, and trimethoprim (Waldor
et al., 1996; Hochhut et al., 2001). SXT/R391 ICE also found to
provide a selective advantage to V. cholerae O1 ET, a strain that
has been tracked globally in three overlapping waves during the
seventh pandemic (Mutreja et al., 2011).

Interestingly, outbreaks of cholera that occur in the coastal
areas are seasonal each year in Bangladesh. For example, in
Mathbaria, cholera occurs predominantly during the spring,
months of March through May, with inhabitants lacking safe
drinking water are most susceptible (Emch et al., 2008; Akanda
et al., 2013). Several antibiotics are used to treat cholera,
including doxycycline, ciprofloxacin (CIP), and azithromycin
(AZ), all greatly influenced by the drug sensitivity pattern of

the bacterium reported in the contemporary literature (Harris
et al., 2012). In Bangladesh, a single dose of AZ or CIP
currently is used for prophylactic treatment. Not surprising,
V. cholerae O1 is now reported to have reduced susceptibility
to CIP in Bangladesh, India, Vietnam, Haiti, Zimbabwe, and
Western Africa (Islam et al., 2009; Quilici et al., 2010; Sjölund-
Karlsson et al., 2011; Tran et al., 2012; Kumar et al., 2014;
Khan et al., 2015). MDR V. cholerae O1 resistant to TE,
AM, S, sulfonamides, norfloxacin, gentamicin, furazolidone,
kanamycin (K), sulfamethoxazole-trimethoprim (SXT), and
erythromycin (E), is currently circulating in cholera endemic
countries of Asia and Africa (Finch et al., 1988; Faruque
et al., 2007; Jain et al., 2011; Rashed et al., 2012; Dixit
et al., 2014). Furthermore, genes conferring resistance to CIP
and AZ have been shown to be transferred to V. cholerae
via plasmids, gene cassettes, and mobile genetic elements
with horizontal gene transfer mechanisms in environmental
reservoir implicated in transforming sensitive bacteria to
resistant (Kitaoka et al., 2011). Considering these phenotypic
and genetic modifications that are reported, a study of 97
V. cholerae O1 isolates was undertaken to determine the
antibiotic resistance/susceptibility status of V. cholerae O1
isolated from environmental samples and cholera cases in cholera
endemic Mathbaria, Bangladesh.

MATERIALS AND METHODS

Bacterial Strains
In this study, a total of 97 V. cholerae O1 isolated from
rectal swabs and surface water samples collected in the coastal
villages of Mathbaria, Bangladesh, between June, 2010 and
December, 2014, as a part of epidemiological surveillance
conducted by the International Centre for Diarrheal Disease
Research, Bangladesh (ICDDR,B) were analyzed for antibiotic
susceptibility and genotypic traits. Mathbaria is geographically
adjacent to the Bay of Bengal, located ∼165 km south-west
of Dhaka city. Clinical isolates (n = 52) were obtained from
rectal swabs of suspected cholera patients seeking treatment at
the local health center during the cholera peak and off-peak
season. Environmental isolates (n = 45) were obtained from
water and plankton samples collected periodically at six different
ponds and a river in the same area where the clinical samples
were collected. The clinical and environmental samples were
collected, transported, and subjected to bacteriological analysis
forV. cholerae, following standard procedures (Alam et al., 2006a;
Huq et al., 2012). Isolation and identification were performed
according to standard methods (Alam et al., 2006a,b; Huq
et al., 2012). All samples were collected according to protocols
approved by institutional review boards at the Johns Hopkins
University, University of Maryland (College Park, MD, USA),
and ICDDR,B. Informed consent was obtained from the patients,
and parents or legal guardians of the children who participated in
this study. Genomic DNA was prepared from the presumptively
identified V. cholerae isolates using the boiling lysis method
of Park et al. (2013) and V. cholerae species-specific ompW
PCR was done to confirm identity of the isolates (Nandi et al.,
2000).
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Serogrouping
The serogroups of the V. cholerae isolates were confirmed by
a slide agglutination test using specific polyvalent antisera for
V. choleraeO1 and O139. Isolates showing positive agglutination
reaction with O1 antisera were tested further using a serotype-
specific monoclonal antibody, i.e., Inaba and Ogawa (Alam et al.,
2006b). The serogroups of these isolates were reconfirmed by
multiplex PCR, targeting O1-(wbe) and O139-(wbf ) specific O
biosynthetic genes, together with the cholera toxin gene (ctxA;
Hoshino et al., 1998).

Antimicrobial Susceptibility
Susceptibility to antimicrobials was determined by standard
disc diffusion on Muller-Hinton agar (BD, USA) according
to Clinical and Laboratory Standards Institute guidelines for
V. cholerae (CLSI, 2010a) and Enterobacteriaceae (CLSI, 2010b).
Escherichia coli ATCC 25922 was used as a control for
antimicrobial susceptibility. All strains of V. cholerae were
tested for resistance to AM (10µg), CIP (5µg), C (30µg),
E (15µg), K (30µg), S (10µg), TE (30µg), nalidixic acid
(NA, 30µg), penicillin (P, 10µg), and SXT (23.75 and 1.25µg,
respectively) using commercially available discs (BD BBL Sensi-
Disc). Minimum inhibitory concentrations (MIC) of CIP and
AZ were determined using E-test strips (bioMérieux-USA),
according to the manufacturer’s instructions. Cut-off levels
for assessing resistance were determined following the CLSI
document M45 guidelines (CLSI, 2010b).

PCR Assay
PCR assays were carried out to detect genes encoding
accessory cholera enterotoxin (ace), zonula occludens toxin (zot),
hemolysin (hlyA; Rivera et al., 2001), SXT-related integrase
(intSXT; Hochhut et al., 2001) and biotype-specific (ET and
CL) toxin coregulated pilus (tcpA; Rivera et al., 2001), phage-
encoded repressor (rstR; Kimsey et al., 1998), and repeat in
toxin (rtxC; Chow et al., 2001) using primers and conditions
described previously. Double mismatch amplification mutation
assay (DMAMA)-PCRwas performed to identify three genotypes
of the cholera toxin gene, i.e., ctxB1, ctxB3, and ctxB7, based
on nucleotide substitution at position 58, 115, and 203 (Naha
et al., 2012). V. cholerae O1 strains O395 (CL), N16961 (ET),
and 2010EL-1786 were used as control for the PCR analysis.
V. cholerae O1 isolates showing MIC for AZ ≥ 0.5µg/mL were
analyzed further for the macrolide resistance genes: erm(A),
erm(B), and erm(C), that encode methylase; ere(A) or ere(B)
encoding esterases; mph(A), mph(B), and mph(D) encoding
phosphotransferases; and mef (A) and msr(A) encoding efflux
pumps (Phuc Nguyen et al., 2009).

RESULTS

Phenotypic and Geneotypic
Characteristics
All 97 isolates produced colonies typical of V. cholerae on
both taurocholate tellurite gelatin agar (TTGA) and thiosulfate
citrate bile-salts sucrose (TCBS) agar. These isolates gave
biochemical reactions characteristic of V. cholerae and reacted

to polyvalent antibody specific for V. cholerae serogroup O1.
Of 97 isolates, 89 gave positive agglutination with monovalent
Ogawa antisera, while the remaining eight reacted positively
with monovalent Inaba antisera. All isolates were serologically
identified as V. cholerae O1. Notably, the serotype of 89 strains
was determined to be Ogawa and eight to Inaba (Table 1).

Genomic DNA of all isolates (n = 97) amplified V. cholerae
species-specific genes, namely ompW and O-antigen
biosynthetic-wbe (O1) confirming identification as V. cholerae
O1. None amplified the O-antigen biosynthetic-wbf (O139).
As shown in Table 1, except for two isolates, all amplified the
CTX-phage mediated genes ctxA, ace, and zot, suggesting 95
of the isolates were toxigenic V. cholerae O1. The PCR assay
results also showed hlyA gene present in all isolates (Table 1).
Of 97 V. cholerae O1, intSXT was identified in 95 isolates, while
two lacked intSXT. All V. cholerae O1 isolates contained the
ET biotype specific tcpA and rtxC, reflecting ET attributes.
Among the 95 toxigenic V. cholerae O1 isolates, 90 possessed
rstR of the ET biotype (rstRET), while the remaining five revealed
CL biotype specific rstRCL. Unlike hybrid ET strains, none
of the toxigenic isolates contained both rstRET and rstRCL.
DMAMA-PCR detected cholera toxin gene of CL biotype (ctxB1)
in 87 V. cholerae O1 isolates, while 8 had Orissa variant or
Haiti variant cholera toxin (ctxB7; Table 1). Overall, the PCR
results confirmed that 90 of the V. cholerae O1 isolates were
atypical ET, possessing the rstRET and either ctxB1 or ctxB7 gene.
Five toxigenic V. cholerae O1 possessing rstRCL and ctxB1 are
designated as variant ET and their genetic attributes were similar
to the Matlab variant (MJ1236) isolated in 1994 in Matlab,
Bangladesh. As shown in Table 1, V. cholerae O1 variant ET
was isolated from both clinical and environmental sources in
Mathbaria, Bangladesh only in 2012. V. cholerae O1 atypical ET
was associated with cholera cases that occurred during June,
2010, and December, 2014, in Mathbaria, Bangladesh and these
strains were also isolated frequently from environmental sources
(Table 1).

As shown in Figure 1, the CL type cholera toxin genotype,
ctxB1, was predominant, having been detected in 73, 80, 95, 100,
and 91% V. cholerae O1 isolates in 2010, 2011, 2012, 2013, and
2014, respectively. In contrast, Orissa, or Haiti variant cholera
toxin genotype ctxB7 was found in 27, 20, and 5% isolates in 2010,
2011, and 2012, respectively. Remarkably, ctxB7 was not detected
in V. cholerae O1 isolated in 2013 and thereafter (Table 1).
Although, 9% of the V. cholerae O1 were non-toxigenic in 2014,
ctxB1 was the only genotype prevailed among toxigenic isolates
in 2013 and 2014.

Antimicrobial Susceptibility
Antimicrobial susceptibility tests, using ten different antibiotics
revealed that 93% of the total set of V. cholerae O1 isolates were
MDR, i.e., resistant to at least three different antibiotics drugs
(Table 1). As shown in Figure 2A, six different resistance profiles
were observed, with a range of resistance to one to five antibiotics
during 2010 and 2014. V. cholerae O1 showing resistance to
S, NA, TE, and SXT was the dominant pattern (53–91%) each
year between 2010 and 2014 (Figure 2A). Interestingly, resistance
of V. cholerae O1 to P, S, NA, SXT, E, and TE varied during
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TABLE 1 | Genetic characteristics and drug resistance of V. cholerae O1 isolated in Bangladesh.

Year of

isolation

Number

of strains

Source Serotype wbeO1 ctxA ace zot tcpA rtxC ctxB type rstR hlyA intSXT Drug resistance

profile

2010 7 Env OGET + + + + ET + B1 ET + + S, NA, TE, SXT

3 Env OGET + + + + ET + B7 ET + + S, NA, SXT

1 Clinical OGET + + + + ET + B1 ET + + S, NA, TE, SXT

2011 3 Env OGET + + + + ET + B1 ET + + S, NA, TE, SXT

1 Env OGET + + + + ET + B1 ET + + S, NA, SXT

11 Clinical OGET + + + + ET + B1 ET + + S, NA, TE, SXT

4 Clinical OGET + + + + ET + B7 ET + + S, NA, SXT

1 Clinical OGET + + + + ET + B1 ET + + S, NA, TE, E, SXT

2012 5 Env OGET + + + + ET + B1 ET + + S, NA, TE, SXT

3 Env INET + + + + ET + B1 CL + + S, SXT

1 Env INET + + + + ET + B1 ET + + S, NA, SXT

4 Clinical OGET + + + + ET + B1 ET + + S, NA, TE, SXT

2 Clinical INET + + + + ET + B1 CL + + S, SXT

1 Clinical INET + + + + ET + B1 ET + + S, NA, TE, SXT

1 Clinical INET + + + + ET + B1 ET + + S, NA, SXT

1 Clinical OGET + + + + ET + B7 ET + + S, NA, SXT

1 Clinical OGET + + + + ET + B1 ET + + P, S, NA, TE, SXT

2013 10 Env OGET + + + + ET + B1 ET + + S, NA, TE, SXT

2 Env OGET + + + + ET + B1 ET + + P, S, NA, TE, SXT

10 Clinical OGET + + + + ET + B1 ET + + S, NA, TE, SXT

1 Clinical OGET + + + + ET + B1 ET + + P, S, NA, TE, SXT

1 Clinical OGET + + + + ET + B1 ET + − NA

2014 9 Env OGET + + + + ET + B1 ET + + S, NA, TE, SXT

1 Env OGET + + + + ET + B1 ET + + P, S, NA, TE, SXT

10 Clinical OGET + + + + ET + B1 ET + + S, NA, TE, SXT

2 Clinical OGET + − − − ET + − − + + S, NA, TE, SXT

1 Clinical OGET + + + + ET + B1 ET + − NA

Env, environmental; OGET, Ogawa El Tor; INET, Inaba El Tor; ET, El Tor; CL, classical.

the years of the study period. As shown in Figure 2B, 100% of
the V. cholerae O1 showed resistance to S and SXT in 2010,
2011, and 2012. However, S and SXT resistance fell to 96% the
following 2 years, 2013 and 2014. The SXT-related integrase
(intSXT) was detected in all isolates resistant to S and SXT,
suggesting the SXT/R391 ICE mediated the resistance to S and
SXT. Except for five of the V. cholerae O1 variant ET isolated
in 2012, all were resistant to NA (Figure 2B), an indicator
of reduced susceptibility to CIP. TE resistant V. cholerae O1
comprised 73, 75, 58, 96, and 96% in 2010, 2011, 2012, 2013,
and 2014, respectively (Figure 2B). Of 97 V. cholerae O1, five
showed resistance to P during 2012 and 2014, while only one
isolate showed resistance to E in 2011. Notably, all 97 V. cholerae
O1 isolates were uniformly sensitivity to AM, CIP, C, and K.

MIC of Ciprofloxacin
The MIC of CIP of all 97 V. cholerae O1 isolates was determined
to be 0.003–0.75µg/ml during 2010 and 2014. As shown in
Table 2, MIC50 and MIC90 of CIP was 0.5µg/ml in 2010.

However, the MIC50 and MIC90 were 0.38µg/ml in 2011,
maintained consistently over the following years until 2014. Five
of the V. cholerae O1 variant ET isolated in 2012 had an MIC for
CIP of 0.003µg/ml. Only 1% of the total set of strains had the
highest MIC, 0.75µg/ml, while 77% had an MIC of 0.38µg/ml
(Figure 3A).

MIC of Azithromycin
The MIC of AZ for 97 of the V. cholerae O1 isolates was 0.19–
2.00µg/ml. As shown in Table 2, except for the 2012 isolates,
MIC50 was consistently 0.25µg/ml. Year-wise data revealed
that the lowest MIC90 was 0.38µg/ml in 2010 and 2013 and
increased to 0.5 and 0.75µg/ml in 2011 and 2012, respectively
(Table 2). As shown in Figure 3B, 52 and 27% of the total isolates
had MIC 0.25 and 0.38µg/ml, respectively. The highest MIC
of 2.00µg/ml occurred in 1% of the V. cholerae O1 isolates
(Figure 3B). Sixteen (16%) V. cholerae O1 with an MIC of
≥0.5µg/ml were analyzed further for 10 macrolide resistance
genes. PCR assay results revealed that none of the isolates
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FIGURE 1 | Distribution of ctxB genotypes in 97 V. cholerae O1 from

Mathbaria, Bangladesh isolated during 2010 and 2014. In both the clinical

and environmental isolates, ctxB1 (gray bars) was predominant in each year.

Although ctxB7 in the V. cholerae O1 isolates (white bars) was detected in

relatively low percentage in 2010, 2011, and 2012, it was not detected in 2013

and 2014.

FIGURE 2 | (A) Drug resistance profile of 97 V. cholerae O1 isolates from

Mathbaria, Bangladesh. Six different resistance profiles were observed for V.

cholerae O1 isolated during 2010 and 2014, of which four profiles were

multidrug resistance: resistance to S, NA, TE, and SXT was most abundant

and predominant in V. cholerae O1 (B) V. cholerae O1 isolated during 2010

and 2014 showing resistance to six different drugs. The majority of the isolates

were resistant to S, SXT, TE, and NA, while only a few were resistant to

P and E.

contained the following macrolide resistance genes: erm(A);
erm(B); erm(C); ere(A); ere(B); mph(A); mph(B); mph(D);
mef (A); andmsr(A).

DISCUSSION

Endemic cholera occurs in many geographic locations of
Bangladesh each year, with two distinct seasonal peaks, one in
the spring (March–May) and the other in the fall (September–
November; Emch et al., 2008; Akanda et al., 2013). The Ganges
delta region of the Bay of Bengal is a well-known reservoir
of V. cholerae where it has established residence for centuries
(Sack et al., 2004). Historically, this part of Asia has been
affected severely by both CL and ET cholera during the seventh
pandemic up to 1991, prior to the disappearance of CL strains
from Bangladesh (Siddique and Cash, 2014). Epidemiological
data suggest that most of the recorded epidemics struck the
coastal populations first (Jutla et al., 2010), a pattern typical of
recent epidemics in Bangladesh as well before reaching inland
(Akanda et al., 2013). Since the beginning of the ongoing seventh
pandemic, V. cholerae O1 strains have undergone multiple
genetic changes, with the evolution of new clones and also
atypical ET strains (Chun et al., 2009; Safa et al., 2010; Kim
et al., 2014). Results of this study show association of V. cholerae
O1 atypical ET with cholera occurring in the coastal areas
of Mathbaria, Bangladesh during 2010 and 2014. Since 2001,
atypical ET emerged as the major cause of cholera in Bangladesh
superseding prototype ET, although isolated a decade earlier in
the 1990s in Matlab, Bangladesh (Nair et al., 2006; Safa et al.,
2006). This transition was considered remarkable for cholera
epidemiology, mainly because atypical ET strains possessing
CL cholera toxin (ctxB1) cause a more severe cholera than
prototype ET (Siddique et al., 2010). In recent years, several
non-synonymous mutations have been detected in the ctxB gene,
although, correlation of these mutations with clinical outcomes
of the disease remains to be clarified (Kim et al., 2015). The
ctxB7 genotypes have an amino acid substitution at position
20 [histidine (H)→asparagine (N)] first reported in a cholera
outbreak in Orissa, India (Kumar et al., 2009). Later, V. cholerae
O1 carrying ctxB7 was determined to be associated with cholera
in Haiti, Zimbabwe, India, Bangladesh, Nepal, Nigeria, and
Cameroon (Quilici et al., 2010; Chin et al., 2011; Hasan et al.,
2012; Rashed et al., 2012; Marin et al., 2013; Dixit et al., 2014). In
Mathbaria, Bangladesh, ctxB1was consistently dominant to ctxB7
during 2010 and 2012, whereas ctxB7 was not detected thereafter.
The alternating dominance of ctxB1 and ctxB7, i.e., one genotype
disappearing transiently for 2 or 3 years and reappearing in
the following years with remarkable dominance, was previously
observed in V. choleraeO1 causing cholera in Kolkata, India, and
Dhaka, Bangladesh (Rashed et al., 2012; Mukhopadhyay et al.,
2014; Rashid et al., 2016).

Bacterial resistance to antimicrobial drugs is a serious public
health concern worldwide and antibiotic therapy constitutes a
major component of the clinical management of cholera. An
antimicrobial drug considered to be a successful therapeutic
agent may not be successful in the future and notably so if
V. cholerae acquires resistance to drugs of choice. Resistance
can arise from single or multiple mutations in target genes
or by acquisition of resistance genes carried by mobile genetic
elements, such as plasmids, transposons, integrons, and ICEs
(Kitaoka et al., 2011). Prior to the use of macrolides and
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TABLE 2 | Minimum inhibitory concentration of ciprofloxacin and azithromycin for 97 V. cholerae O1 isolates.

Year of isolation No. of strains Ciprofloxacin Azithromycin

MIC Range (µg/ml) MIC50 MIC90 MIC Range (µg/ml) MIC50 MIC90

2010 11 0.38–0.75 0.5 0.5 0.19–0.75 0.25 0.38

2011 20 0.25–0.5 0.38 0.38 0.25–1.5 0.25 0.5

2012 19 0.003–0.38 0.38 0.38 0.25–0.75 0.38 0.75

2013 24 0.25–0.38 0.38 0.38 0.25–1 0.25 0.38

2014 23 0.25–0.38 0.38 0.38 0.19–2 0.25 0.5

FIGURE 3 | (A) MIC of CIP for 97 V. cholerae O1 isolates from Mathbaria,

Bangladesh. The MIC range for CIP was 0.003–0.75µg/ml. The majority of the

isolates showed MIC 0.38µg/ml, while a low percentage had MIC of 0.5 and

0.75µg/ml. (B) MIC of AZ for 97 V. cholerae O1 isolates from Mathbaria,

Bangladesh. The range of MIC for AZ was 0.19–2µg/ml. A relatively low

percent of the isolates had a MIC of 2µg/ml, the sensitivity-borderline for

V. cholerae.

fluoroquinolone drugs for treatment of cholera, TE was the
drug of choice, except for young children and pregnant women
(Greenough et al., 1964; Sack et al., 2004). However, tetracycline
was limited as a drug of choice because of the emergence of
resistant V. cholerae O1 to AMP, KN, S, and SXT, as well as
TE, in Asia and Africa (Mhalu et al., 1979; Glass et al., 1980).
In this study, 93% of the V. cholerae O1 strains tested proved
to be multidrug resistant, mostly resistant to S, NA, TE, and
SXT. Despite having spatio-temporal variation in the resistance
profile, the multidrug resistant V. cholerae O1 was consistently
identified as the etiological agent of cholera epidemics in Asia
and Africa, and most recently in Haiti (Mhalu et al., 1979; Glass
et al., 1980; Dalsgaard et al., 2001; Jain et al., 2011; Sjölund-
Karlsson et al., 2011; Rashed et al., 2012; Tran et al., 2012).

A recent study from China reported that the prevalence of
multidrug resistant V. cholerae O1 strains has been increased
rapidly since 1993, showing resistance to AMP, NA, TE, and
SXT (Wang et al., 2012). The same study also revealed relatively
low number of V. cholerae O1 has reduced susceptibility to
azithromycin in China that were isolated only in 1965, 1998,
and 2006 (Wang et al., 2012). Drug resistant markers, such as
SXT ICE, class 1 integrons, and low molecular weight plasmids
are commonly found in multidrug resistant V. cholerae O1
(Kitaoka et al., 2011). Interestingly, a recent study reported the
presence of a transmissible multidrug resistant plasmid (IncA/C)
in Haitian V. cholerae isolates possessing several multidrug
resistance determinants, i.e., aac(3)-IIa, blaCMY−2, blaCTX−M−2,
bla-TEM−1, dfrA15,mphA, sul1, tetA, floR, strAB, and sul2 (Folster
et al., 2014).

Among the fluoroquinolone antibiotics, only CIP has been
recommended by the Pan American Health Organization
and International Centre for Diarrhoeal Disease Research,
Bangladesh for treatment of cholera. Although, V. cholerae
O1 has not shown complete resistance to CIP, current
epidemiological data confirm a gradual increase in the MIC of
CIP has been occurring (Khan et al., 2015). V. cholerae O1 with
reduced susceptibility to CIP has been reported in different parts
of the world and appears to be disseminating globally (Islam et al.,
2009; Quilici et al., 2010; Sjölund-Karlsson et al., 2011; Tran et al.,
2012; Khan et al., 2015). A recent study showed that the MIC of
CIP for V. cholerae O1 has increased 45-fold in a 19 year time-
span in Bangladesh. That is, the MIC was 0.010µg/ml in 1994
and has increased dramatically to 0.475µg/ml in 2012 (Khan
et al., 2015). In our study, 95% of the V. cholerae O1 isolated
in Mathbaria, Bangladesh, showed reduced susceptibility to CIP
during 2010 and 2014. Notably, the CIP MIC50 and MIC90 did
not show rapid change in the 5 year of our study period and the
MIC remained below the susceptibility breakpoint (≤1µg/ml)
according to CLSI guidelines (CLSI, 2010a). It is important to
note that all V. cholerae O1 atypical ET isolates were resistant
to NA, another drug in the quinolone group. V. cholerae O1
showing resistance to NA is an indicator of reduced susceptibility
to CIP (Khan et al., 2015). The genetic basis of quinolone drug
resistance in V. cholerae is the accumulation of mutations in
gyrA (83Ser → Ile) and parC (85Ser → Leu) (Kitaoka et al., 2011).
These pointmutations have been detected in currently circulating
V. cholerae O1 associated with cholera epidemics in Bangladesh,
India, Nepal, Nigeria, Cameroon, and Haiti (Quilici et al., 2010;
Sjölund-Karlsson et al., 2011; Hasan et al., 2012; Dixit et al., 2014).
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Frequent use of a specific group of antibiotics for treatment
of cholera over a prolonged period will increase the likelihood
of bacterial resistance. Global dissemination of V. cholerae
O1 with reduced CIP sensitivity raises a serious concern for
clinical management of cholera in countries where the disease
is endemic. Results of a recent study showed that single-dose
CIP used to treat cholera was not as effective as it was in the
past because of the emergence of V. cholerae O1 less susceptible
to CIP and NA (Khan et al., 2015). Single dose AZ has been
introduced as an alternative treatment for cholera in India and
Bangladesh. However, the sensitivity breakpoint guidelines for
the AZ disc diffusion assay has not yet been published by the
CLSI for V. cholerae (CLSI, 2010a). In this study, all V. cholerae
O1 isolates showed a reduced susceptibility to AZ and the
MIC for 1% of the isolates was at the sensitivity breakpoint
borderline (≤2µg/ml). Interestingly, none of the V. cholerae
O1 (AZ MIC ≥ 0.5µg/ml) possessed macrolide resistance
genes that have been reported for the Enterobacteriaceae (Phuc
Nguyen et al., 2009). Although at a relatively low incidence,
E and AZ resistant V. cholerae O1 have been reported in
Bangladesh and India (Faruque et al., 2007; Bhattacharya et al.,
2012).

Reduced susceptibility to CIP and AZ is alarming for
cholera-endemic countries of Asia and Africa. Environmental
factors trigger seasonal cholera in endemic countries including
Bangladesh, but cholera cases have occurred in other countries
immediately after a devastating natural calamity, e.g., floods,
earthquakes, typhoons, and cyclones. The morbidity and
mortality rates of cholera, which were under control for
several decades, can be expected to increase if V. cholerae O1
acquires full resistance to currently used drugs. Considering the
global burden of cholera, it is important that the appropriate
antibiotic and appropriate concentration be used to treat cholera.

Indiscriminate use of antibiotics, for example in agriculture and
animal husbandry for disease management should be controlled
to assure continued success of antibiotic for the treatment
of disease in humans, including cholera. Therefore, global
monitoring of antimicrobial sensitivity of V. cholerae O1 is
essential to assess clinical efficacy of drugs worldwide.
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