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What role does domain-general cognitive control play in understanding linguistic input?
Although much evidence has suggested that domain-general cognitive control and working
memory resources are sometimes recruited during language comprehension, many
aspects of this relationship remain elusive. For example, how frequently do cognitive
control mechanisms get engaged when we understand language? And is this engagement
necessary for successful comprehension? I here (a) review recent brain imaging evidence
for the neural separability of the brain regions that support high-level linguistic processing
vs. those that support domain-general cognitive control abilities; (b) define the space of
possibilities for the relationship between these sets of brain regions; and (c) review the
available evidence that constrains these possibilities to some extent. I argue that we
should stop asking whether domain-general cognitive control mechanisms play a role
in language comprehension, and instead focus on characterizing the division of labor
between the cognitive control brain regions and the more functionally specialized language
regions.
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Language is one of few cognitive abilities unique to our species.
However, language has neither evolved nor does it exist in
isolation from other cognitive and neural machinery (e.g.,
Christiansen and Chater, 2008; cf. Fodor, 1983), which may be
largely shared between humans and non-human animals (e.g.,
van Horik and Emery, 2011; Kaas, 2013). This machinery includes
sensory and motor systems, memory and attention mechanisms,
and mechanisms that support social cognition, among others.
This paper examines the relationship between high-level language
processing and domain-general cognitive control, with a focus on
the brain systems that support these cognitive capacities.

Brain regions that support domain-general cognitive control
have been implicated in a wide range of goal-directed behaviors
(see e.g., Duncan, 2010, for a recent review). In the domain of
language, cognitive control has been shown to play an impor-
tant role in language production, based on behavioral evidence
(e.g., Alm and Nilsson, 2001; Roelofs and Piai, 2011; Strijkers
et al., 2011), brain imaging studies (e.g., Müller et al., 1997;
Ojemann et al., 1998; Indefrey and Levelt, 2004; Kerns et al., 2004;
Haller et al., 2005; Shuster and Lemieux, 2005; Alario et al., 2006;
Bohland and Guenther, 2006; Shapiro et al., 2006; Basho et al.,
2007; Harrington et al., 2007; Troiani et al., 2008; den Ouden
et al., 2009; Eickhoff et al., 2009; Wilson et al., 2009; Brendel
et al., 2010; Tremblay and Small, 2011; Adank, 2012; Geranmayeh
et al., 2012; Grande et al., 2012; Heim et al., 2012; Delnooz
et al., 2013) and investigations of patients with brain damage
(e.g., Ziegler et al., 1997; Nestor et al., 2003; Ash et al., 2010;
Wilson et al., 2010; Baldo et al., 2011; Coelho et al., 2012; Endo
et al., 2013). Indeed, planning and producing linguistic utterances
bears intuitive similarity to non-linguistic goal-directed behav-
iors like reaching (e.g., Bernstein, 1996; Culham and Valyear,

2006; Grafton and Hamilton, 2007; Ridderinkhof et al., 2011)
or playing a musical instrument (e.g., Meister et al., 2004). In
contrast, language comprehension (i.e., the process of extracting
meaning from the linguistic signal) is, or at least can be, a more
“passive,” automatic process: just like we can’t help but recog-
nize a face upon seeing a face-like configuration (e.g., Suzuki and
Cavanagh, 1995; see Palermo and Rhodes, 2007 for a review), we
often can’t help but interpret linguistic input if we know the lan-
guage in question (e.g., Fodor, 1983; Pinker, 1994; Shtyrov and
Pulvermüller, 2007; Pulvermüller et al., 2008; Wild et al., 2012).
That said, much behavioral and neuroimaging evidence (to be
reviewed in section Narrowing Down the Hypothesis Space for
the Relationship between Language Processing Mechanisms and
Cognitive Control Mechanisms) suggests that domain-general
cognitive control mechanisms do sometimes get recruited dur-
ing language comprehension. In this position paper, I discuss two
inter-related aspects of the relationship between language pro-
cessing and cognitive control that are not yet well-understood:
(i) when (i.e., under what circumstances) the cognitive control
mechanisms get engaged during language understanding; and (ii)
whether this engagement is necessary for comprehension (i.e.,
whether understanding linguistic input requires domain-general
cognitive control mechanisms, or whether those mechanisms are
helpful but non-essential).

The paper is structured as follows: First, I introduce the brain
regions that support high-level language processing vs. domain-
general cognitive control, and discuss the evidence for the neural
separability of these two sets of brain regions. I then intro-
duce two questions about the relationship between language
comprehension and cognitive control and define the hypothe-
sis space for each. I then proceed to discuss the arguments and
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evidence—from behavioral and brain imaging work in healthy
and brain-damaged populations—that constrain these hypothe-
ses. Finally, I summarize and conclude.

HIGH-LEVEL LANGUAGE PROCESSING BRAIN REGIONS AND
DOMAIN-GENERAL COGNITIVE CONTROL BRAIN REGIONS
HIGH-LEVEL LANGUAGE-PROCESSING BRAIN REGIONS
A number of regions in the human brain robustly respond to lin-
guistic input. These regions include most prominently regions
on the lateral surface of the left frontal, temporal and parietal
cortices, but also a number of other cortical, subcortical and cere-
bellar regions (Figure 1A). Originally discovered in patients with
brain damage (e.g., Broca, 1861; Dax, 1863; Wernicke, 1874/1969;
Geschwind, 1970), these regions have been observed in PET
and fMRI since the earliest days of brain imaging research (e.g.,
Petersen et al., 1988; Petersen and Fiez, 1993; Binder et al., 1997).
These regions are consistent (albeit variable in their exact topog-
raphy; e.g., Fedorenko et al., 2010) across individuals (e.g., Frost
et al., 1999; Allendorfer et al., 2012), languages (e.g., Chee et al.,
1999a,b; Illes et al., 1999; Klein et al., 1999; Hernandez et al.,
2001; Pu et al., 2001; Hasegawa et al., 2002; Chee et al., 2003;
Mahendra et al., 2003; Briellmann et al., 2004; see e.g., van
Heuven and Dijkstra, 2010 and Sebastian et al., 2011 for reviews),
modality of presentation (e.g., Chee et al., 1999c; Pinel et al.,
2007; Buchweitz et al., 2009; Fedorenko et al., 2010; Braze et al.,
2011) and developmental experiences, including complete sen-
sory deprivation in the auditory or visual modality (Neville et al.,
1998; Newman et al., 2010; Bedny et al., 2011). Furthermore,
these regions can be quickly (in ∼10–15 min) and reliably identi-
fied in individual participants (Fedorenko et al., 2010), and they
are stable within an individual over time (Figure 1B; Fedorenko
et al., 2010; Mahowald and Fedorenko, in preparation), as well
as being robust to changes in the materials, modality of presen-
tation, and task (Figure 1C), and language for bilingual speakers
(Figure 1D).

This set of brain regions can be identified with a vari-
ety of contrasts that compare a more language-like stimulus
with a less language-like stimulus1 (e.g., words vs. fixation or
tones—Binder et al., 1997; Diaz and McCarthy, 2009; words
vs. pseudowords—Petersen et al., 1990; sentences vs. fixation—
Kuperberg et al., 2003; sentences vs. false font or consonant
strings—Bavelier et al., 1998; Robertson et al., 2000; Noppeney
and Price, 2004; sentences vs. lists of words or pseudowords—
Snijders et al., 2009; Fedorenko et al., 2010; Fedorenko and
Kanwisher, 2011). Language-like-ness can be operationalized in
terms of the amount of overlap between the stimulus and natural
language. For example, phonotactically legal pseudowords and
words match the sound-level properties of natural language, real
words further match the lexical representations, and phrases
or sentences match both lexical representations as well as

1Stimulus manipulations are not the only way to activate language-responsive
brain regions: a number of studies have used task contrasts (e.g., perform-
ing a semantic task vs. a control perceptual task on sentences; Ferstl and
von Cramon, 2001). Such contrasts presumably force comprehenders to more
deeply process the relevant (linguistic) aspects of the signal in the critical vs.
in the control, perceptual, conditions.

larger structural / meaning units. And the process of language
comprehension can be thought of, at least in part, as finding
matches between the input and the stored language knowledge
representations, with more/better matches leading to greater
responses. In the remainder of the paper I will refer to this set of
brain regions as the “language system”2,3.

The stability of language activations within individuals across
time and their robustness to variation in many properties of the
defining contrast suggest that the language system may constitute
a “natural kind,” i.e., a meaningful and stable subset of the brain.
Two further lines of evidence suggest that these regions constitute
an integrated functional system4. The first comes from studies of
resting-state functional correlations, often referred to as “func-
tional connectivity” (e.g., Fox and Raichle, 2007). In particular,
the entire language system discussed above consistently emerges
in the analyses of low-frequency oscillations across the brain dur-
ing rest (e.g., Turken and Dronkers, 2011; Newman et al., 2013;
Blank et al., submitted; see e.g., Catani et al., 2005, for DTI
data consistent with the idea that these regions form a network).
Although the interpretation of resting-state correlation patterns
is still debated, these correlations appear to capture stable aspects
of the functional organization of the human brain that persists
across different mental states including sleep (e.g., Horovitz et al.,
2008) and anesthesia (e.g., Vincent et al., 2007), and in some cases
goes beyond known anatomical connections (e.g., Honey et al.,
2009).

The second line of evidence comes from investigations of
cortical thinning patterns in primary progressive aphasia, a
neurodegenerative condition that disproportionately, and per-
haps selectively, affects language processing (e.g., Mesulam, 2001;
Grossman and Ash, 2003; Gorno-Tempini et al., 2004). The
pattern of cortical thinning in this disorder—especially in the
semantic variant—is strikingly similar to the functional activa-
tions for the contrasts, like e.g., sentences > pseudoword lists
(e.g., Listerud et al., 2009; Rohrer et al., 2009; Dickerson, 2011;

2It is worth noting that referring to these “high-level” language processing
brain regions as the “language system” does not imply that no other brain
regions are important for language. In fact, we know that sensory regions
(both in the auditory cortices—e.g., Belin et al., 2000; Binder et al., 2000; see
DeWitt and Rauschecker, 2013, for a recent review—and in the ventral visual
cortex—e.g., Nobre et al., 1994; McCandliss et al., 2003; Baker et al., 2007) play
an important role at the early stages of processing auditory/visual language
input. Furthermore, regions of the motor and premotor cortex are engaged
in articulatory processing (e.g., Bohland and Guenther, 2006). However, I
here focus on the higher-level language processing regions and will use the
term “language system” to refer to just the latter subset of the language-
relevant machinery (see Fedorenko and Thompson-Schill, 2014, for further
discussion).
3The term “network” is frequently used to refer to sets of brain regions that
share functional properties (e.g., Sporns, 2010; Power et al., 2011). However,
the available human data do not at present afford strong inferences about
anatomical inter-regional connections. So, the term “system” is more accurate,
since it is consistent with but does not imply anatomical connectivity.
4The notion of a “system” highlights the similarities among a set of brain
regions and the differences between these regions and the rest of the brain, but
it does not imply a lack of differences among these regions. Different com-
ponents of the language system may support somewhat different aspects of
language processing.
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FIGURE 1 | (A) The language system: a set of brain regions that are robustly and
consistently activated by linguistic input (see (Fedorenko and Thompson-Schill,
2014); Fedorenko and Thompson-Schill, for further discussion of how to define
the “language system/network”). A probabilistic activation overlap map for the
contrast between sentences and sequences of pseudowords (adapted from
Fedorenko et al., 2010). Warmer colors indicate greater proportions of subjects
showing a reliable sentences > pseudoword lists effect. (B) Activation maps
for four sample subjects tested on the sentences > pseudoword lists contrast
across two independent scanning sessions, between 1 and 6.5 months apart.
(For subjects 2 and 4, non-overlapping sets of materials were used across the

two sessions). (C) Activation maps for two sample subjects for a contrast
between sentences and pseudoword lists presented visually with a
memory-probe task (participants had to decide after each sentence or
pseudoword sequence whether the probe word/pseudoword appeared in the
preceding stimulus), and a contrast between sentences and pseudoword lists
(with non-overlapping materials) presented auditorily with a passive listening
task. (D) Activation maps for two sample English-Spanish bilingual subjects for
a contrast between sentences and pseudoword lists in the two languages.
(The materials across the two languages were not related to each other in any
way, so the similarity is not likely to be due to similar semantic content).

Gorno-Tempini et al., 2011; Rogalski et al., 2011). The precise
mechanisms of degeneration constitute an area of active research,
but one influential proposal that has been put forward argues for
propagation along transsynaptic connections (Seeley et al., 2009).

In summary, a set of regions in the human brain (a) robustly
respond to language input (with responses decreasing as the stim-
ulus becomes less language-like, or when attention is drawn away
from the linguistic properties of the stimulus and toward its
perceptual features); (b) show strong correlations in their time
courses during rest; and (c) are jointly susceptible to neurode-
generation in primary progressive aphasia. Together, these sets of
findings suggest that these regions constitute a functional system.
Given that these brain regions get activated by linguistic input
and given that damage to these regions in mature brains leads
to language deficits (e.g., Damasio, 1992; Bates et al., 2003), it is
natural to assume that they play an important (and causal) role
in interpreting the linguistic signal, although some components
of this system have been argued to not be exclusively engaged by

language but to instead support more abstract semantic process-
ing (e.g., Hagoort et al., 2004; Patterson et al., 2007; Binder et al.,
2009).

DOMAIN-GENERAL COGNITIVE CONTROL BRAIN REGIONS
A number of regions in the human brain have been impli-
cated in a broad range of goal-directed behaviors (e.g., Posner
and Petersen, 1990; Cabeza and Nyberg, 2000; Corbetta and
Shulman, 2002; Cole and Schneider, 2007; Duncan, 2010). These
regions include parts of the dorsolateral prefrontal cortex (along
the inferior frontal sulcus/middle frontal gyrus), parts of the
insular cortex, regions along the precentral gyrus (going inferi-
orly to the posterior aspects of the inferior frontal gyrus, IFG),
pre-supplementary and supplementary motor area, parts of the
anterior cingulate, and regions in and around the intraparietal
sulcus (Figure 2). This set of regions—with sometimes slightly
differing inclusion criteria and/or subdivisions—is referred to in
the literature by many names, including “task-positive network,”
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“cognitive control network,” “fronto-parietal attention network,”
and “multiple-demand (MD) system.” Following Duncan (2006,
2010), I will use the term “multiple-demand (MD) system”
throughout the paper, but none of the arguments in section
Narrowing Down the Hypothesis Space for the Relationship
between Language Processing Mechanisms and Cognitive Control
Mechanisms hinge on the details of any particular proposal about
these regions.

In brain imaging investigations, difficulty contrasts across
many manipulations have been shown to activate the MD system.
For example, Duncan and Owen (2000; also Duncan, 2006) per-
formed a meta-analysis of activation peaks from neuroimaging
studies that manipulated (i) the number of items held in memory
(more vs. fewer items), (ii) the duration of holding information
in memory (long vs. short), (iii) inhibitory demands (high vs.
low), (iv) task novelty (new vs. practiced tasks), and (v) percep-
tual difficulty (difficult to perceive vs. easy to perceive). Across all
of these manipulations, activations were observed in the frontal
and parietal MD regions. More recently, Fedorenko et al. (2012,
2013; see also Wojciulik and Kanwisher, 1999; Stiers et al., 2010)
provided evidence for overlap among diverse demanding tasks at
the single-subject level, ruling out the possibility that the over-
lapping regions that emerged in the earlier meta-analyses were
simply an artifact of spatial averaging across studies (e.g., Nieto-
Castañon and Fedorenko, 2012). Furthermore, a set of brain
regions that very much resembles the MD system also emerges
in the resting-state correlation data (e.g., Power et al., 2011).

Even stronger evidence of domain-generality comes from
single-cell recording studies in non-human primates, which have
shown that many neurons in the frontal lobes exhibit substan-
tial flexibility, varying their response properties according to task
demands ( e.g., Freedman et al., 2001; Miller and Cohen, 2001;
Duncan, 2001; Cromer et al., 2010). For example, Freedman et al.
(2001) trained macaques to categorize visual stimuli according to
one dimension (cats vs. dogs). Following training, a substantial
proportion of frontal neurons responded categorically to the rel-
evant dimension. However, after training on a new task that used
the same stimuli but required attention to a different dimension

FIGURE 2 | From Fedorenko et al. (2013). A group-level representation of
the multiple-demand activity based on average activity in left and right
hemispheres. Following reflection of left hemisphere data to the right, 14 (7
tasks × 2 hemispheres) t-maps were averaged, and the resulting map was
thresholded at t = 1.5. The tasks included: arithmetic addition, spatial
working memory, verbal working memory, multi-source interference task
(MSIT; Bush and Shin, 2006), a verbal version of MSIT, and Stroop (data
from Fedorenko et al., 2013).

of the stimuli, the same neurons that previously categorized stim-
uli into cats and dogs now showed categorical responses to the
new task-relevant dimension (see also Roy et al., 2010). These and
other results suggest that these frontal neurons adapt the informa-
tion they code to fit current goals. Similar “adaptive coding” has
been reported in the parietal cortex (Freedman and Assad, 2006).

How do MD regions support complex behaviors? As of
now, this remains an open question. Some notions that have
been prominent in the literature in the context of this system
include attention (e.g., Posner and Petersen, 1990; Desimone
and Duncan, 1995; Petersen and Posner, 2012), working mem-
ory (e.g., Goldman-Rakic, 1995), cognitive control (e.g., Miller
and Cohen, 2001; Koechlin et al., 2003; Badre and D’Esposito,
2009), structure building/unification (e.g., Hagoort, 2005), tim-
ing and/or sequencing (e.g., Luria, 1966; Janata and Grafton,
2003; Fuster, 2008), attentional episodes in goal-directed behav-
ior (Duncan, 2010), and conscious awareness (e.g., Dehaene and
Changeux, 2011), among others. However, most existing propos-
als are generic enough to be compatible with a wide range of data
patterns. Nonetheless, whatever the precise computations con-
ducted by the MD regions turn out to be (see e.g., Rigotti et al.,
2010, for a proposal), this system is clearly of fundamental impor-
tance to humans, having been causally linked to fluid intelligence
(Woolgar et al., 2010).

Given the spatial extent of the MD system and the cytoar-
chitectonic and connectomic diversity of its regions, many
researchers have attempted to divide the MD system into sub-
systems (e.g., Botvinick et al., 2001, 2004; Koechlin et al., 2003;
Dosenbach et al., 2007; Badre and D’Esposito, 2009), and/or to
map specific components of the system onto particular men-
tal functions [e.g., Aron et al. (2004) argued that the right IFG
plays a critical role in cognitive control; Novick et al. (2005)
made a similar argument for the left IFG]. Claims of dissocia-
tions among different executive functions have also been made
based on behavioral work in healthy participants (individual dif-
ferences and dual-task paradigms; e.g., Engle et al., 1999; Miyake
et al., 2000) and in brain-damaged individuals (e.g., Vallar and
Shallice, 1990; Hamilton and Martin, 2005). Correlations across
regions in resting functional data have also been taken to argue
for a fractionation of this system (Power et al., 2011). However,
the broad similarity in functional responses among the MD brain
regions is striking. As a result, for the purposes of this paper
I consider the MD system as a whole, while allowing for the
possibility that only a subset of this system may end up being
important for language (see section The Hypotheses Space for
the Relationship Between Language Processing Mechanisms and
Cognitive Control Mechanisms).

NEURAL SEPARABILITY OF HIGH-LEVEL LANGUAGE PROCESSING
BRAIN REGIONS AND DOMAIN-GENERAL COGNITIVE CONTROL BRAIN
REGIONS
In recent work we investigated the relationship between high-level
language processing brain regions and domain-general cogni-
tive control brain regions (Fedorenko et al., 2011): we defined
the regions of the language system using the sentences > pseu-
doword lists contrast and then examined the responses of those
functionally-defined regions of interest (fROIs) to a number of
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non-linguistic cognitive tasks that have been previously argued
to share machinery with language processing. With the excep-
tion of one region (the LMFG fROI), language-responsive regions
showed no response to arithmetic processing (see also Monti
et al., 2012), working memory, or cognitive control tasks, like
Stroop. However, the latter set of tasks robustly activated the
MD system, whose subsets are located in close proximity to
language-responsive regions, especially in the left frontal lobe
(Fedorenko et al., 2012). Based on these results, we argued that
language-responsive regions are functionally specialized for lin-
guistic processing and require language input to drive them.

There are at least three possible objections to these results and
their interpretation, and I attempt to briefly address them here.
The first objection is as follows: perhaps some regions of the MD
system do respond to sentences more than pseudoword lists—just
like the language regions do—but the response is weaker and/or
more variable across individuals. This would lead us to miss some
language-responsive regions and thus to potentially miss overlap
between responses to language and demanding cognitive tasks.
In Fedorenko et al. (2011) we tried to ameliorate this concern
by performing a whole-brain search—at liberal thresholds—for
overlap between the responses to the language contrast (sen-
tences > pseudoword lists) and the hard > easy contrast in each
of the non-linguistic demanding tasks. This search did not reveal
much beyond what the basic analysis of the language-responsive
fROIs had already shown: (i) language and verbal working mem-
ory showed overlap in the LMFG fROI; and (ii) there was a small
region of overlap between language and two of the tasks (verbal
working memory and Stroop) in posterior and dorsal-most part
of the LIFG fROI, possibly due to the fact that MD regions abut
the language-responsive parts of LIFG dorsally and posteriorly
(see also Fedorenko et al., 2012), with spatial smoothing lead-
ing to the appearance of overlap (this possibility remains to be
tested empirically using high-resolution scanning of the frontal
cortex; cf. Schwarzlose et al., 2005). In Fedorenko et al. (2013; see
also Supplementary Material), we report an analysis that shows
that MD regions in fact respond to sentences and pseudowords
in the opposite way from the language regions: they respond more
strongly to linguistically degraded stimuli (pseudoword lists) than
to linguistically meaningful and structured stimuli (sentences),
suggesting that the language and the MD systems are spatially and
functionally distinct.

The second objection is that perhaps the sentences we use in
our “language localizer” task (Fedorenko et al., 2010) are too
simple and don’t contain a sufficient number of features that
have been shown to cause comprehension difficulty, such as non-
local dependencies (e.g., Gibson, 1998; Grodner and Gibson,
2005), lexical and/or structural ambiguity (e.g., Frazier, 1987;
MacDonald et al., 1994), or low-frequency words or construc-
tions (Preston, 1935; Forster and Chambers, 1973; Jurafsky, 1996;
Levy, 2008). Maybe if more such features were present in the
sentences, we would observe greater overlap between language
and MD activations, which would manifest as (a) a greater
response to MD tasks in the language regions, and/or (b) a greater
response to sentences than pseudoword lists in the MD regions.
In Supplementary Material, we show that even when we use nat-
uralistic language materials (from the Brown corpus; Kucera and

Francis, 1967) that are representative of the kind of input that our
language comprehension system receives, we find similar non-
overlap between the activations for the language localizer contrast
and demanding cognitive tasks.

Finally, the third objection is as follows: given that (a) we typ-
ically use a memory probe task in our language localizer (where
after each sentence or sequence of pseudowords participants have
to decide whether a probe word/pseudoword appeared in the pre-
ceding stimulus; Fedorenko et al., 2010), and (b) the memory
probe task is more difficult in the control condition (pseudoword
lists) than in the sentences condition, we may be biasing our-
selves against finding overlap with demanding tasks because, by
design, we are excluding regions that respond to general cogni-
tive effort. To investigate this possibility, we compared responses
to a demanding task (spatial working memory) in fROIs defined
by two different versions of the language localizer (with vs. with-
out the memory probe task; see Supplementary Material). Across
both versions of the localizer, we found little or no response to the
conditions of the spatial working memory task in the language
fROIs, similar to what we originally reported in Fedorenko et al.
(2011). This result is not surprising given the similarity in the
topographies of activations for different versions of the language
localizer (see Figure 1).

In summary, regions of the language system are spatially and
functionally distinct from the domain-general MD system. In
contrast to the language regions, the MD regions respond at
least as much, or more, during the processing of unconnected
meaningless elements (pseudowords) as during the processing of
sentences, including naturally occurring ones. The most impor-
tant implication of the spatial segregation between the language
system and the MD system is that we need to distinguish between
the two in characterizing their roles in language comprehen-
sion/production, because the computations they perform are
likely to be different given their different response profiles. This is
especially important in the left frontal lobe, where subsets of each
system reside side-by-side within Broca’s area (Fedorenko et al.,
2012).

Before proceeding to the next section, two conceptual issues
that sometimes get conflated in the literature are important to
clarify. First, functionally specialized circuits (e.g., brain regions
that selectively respond to linguistic input) need not be encap-
sulated (see e.g., Coltheart, 1999; Barrett and Kurzban, 2006
for discussion). Our brain is highly interconnected, although
some brain regions have been argued to be more globally con-
nected than others, serving as “hubs” (e.g., Achard et al., 2006;
Sporns et al., 2007; Hagmann et al., 2008; Heuvel et al., 2008;
Buckner et al., 2009; Cole et al., 2010). Given this interconnectiv-
ity, the notion of encapsulation is a priori not plausible as applied
to language-responsive or any other brain regions. Moreover,
apart from perhaps quite obvious interactions between high-level
language processing regions and sensory (visual and auditory)
regions as well as motor regions that support articulation or con-
trol eye-movements during reading, abundant evidence shows
that the language system interacts with many higher-level cog-
nitive systems, including the visual system (e.g., Myachykov and
Posner, 2005; Ferreira and Tanenhaus, 2007), the system that sup-
ports social cognition (e.g., Brennan et al., 2010; Fitch et al.,
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2010), and the domain-general working memory/cognitive con-
trol mechanisms (as will be discussed in section Narrowing Down
the Hypothesis Space for the Relationship between Language
Processing Mechanisms and Cognitive Control Mechanisms). So,
although lack of encapsulation of the language system has some-
times been offered as an argument against domain-specificity of
language (e.g., Blumstein and Amso, 2013), this argument does
not hold because functional specialization is perfectly compatible
with interactions between specialized mechanisms and the rest of
the mind and brain (see also Fedorenko and Thompson-Schill,
2014).

And second, specialized circuits need not be innate (see
e.g., Karmiloff-Smith, 1992; Elman et al., 1996 for discussion).
Functional specialization can develop via extensive experience
with particular stimuli. One notable example is the visual word-
form area, vWFA, a visual region that responds selectively to
letters in one’s native script (e.g., Baker et al., 2007). Recent work
with non-human primates also suggests that specialized circuits
can develop via an experiential route (e.g., Srihasam et al., 2011).
Given that language is one of the most frequent and salient stimuli
in our environment from birth (or even before) and throughout
our lifetimes, it is computationally efficient to develop machinery
that is specialized for processing linguistic stimuli.

THE HYPOTHESES SPACE FOR THE RELATIONSHIP
BETWEEN LANGUAGE PROCESSING MECHANISMS AND
COGNITIVE CONTROL MECHANISMS
I focus on two inter-related aspects of the relationship
between language processing mechanisms and cognitive control
mechanisms.

First, how frequently do cognitive control mechanisms get
engaged when we understand language? The logical possibili-
ties here range from never to always. Previous evidence (to be
discussed in section Narrowing Down the Hypothesis Space for
the Relationship between Language Processing Mechanisms and
Cognitive Control Mechanisms) has established that cognitive
control mechanisms are sometimes engaged when we understand
language, thus ruling out the “never” possibility. However, this
still leaves us with a large space of possibilities, from engagement
only in rare circumstances, to continual engagement whenever we
understand language.

And second, is the engagement of cognitive control
mechanisms necessary for understanding language? The at
least occasional engagement of domain-general cognitive control
mechanisms in language comprehension is compatible with, but
does not entail, their necessity for comprehension.

My working definition of “necessary” is as follows: A brain
region is necessary for a mental process x, if and only if x cannot
proceed (or proceeds with substantially reduced speed or accu-
racy) once the relevant brain region is damaged or removed5. So,

5I here have in mind mature adult brains. It is well-known that removal of
extensive portions of the brain, including whole hemispheres, in early child-
hood has few, if any, consequences for cognitive functioning (e.g., Mariotti
et al., 1998; Van Lancker-Sidtis, 2004). Similarly, gradual brain deformation
due to early-onset disorders like hydrocephalus also often leaves the person
largely cognitively intact. These kinds of evidence suggest a high degree of
brain plasticity early in development.

a brain region is necessary for language comprehension if and
only if linguistic input cannot be interpreted without this region.
(Note that the necessary role of a brain region in a mental process
is orthogonal to its functional specialization for that mental pro-
cess. A brain region may be necessary for processing a particular
class of stimuli and yet be engaged in processing a wide range of
stimuli. For example, primary visual cortex is critical for face per-
ception and yet it is engaged during the processing of any visual
stimulus).

At least four possibilities exist with respect to the question
of whether cognitive control mechanisms—that I assume to be
implemented in the MD system, as discussed above—are critical
for understanding language:

(1) Every component of the MD system is necessary for language
comprehension.
If this were the case, then disrupting any part of the MD
system would lead to severe difficulties in understanding
language.

(2) Only some components of the MD system (e.g., perhaps only the
MD regions in the left hemisphere; Duncan, 2001) are necessary
for language comprehension.
According to this possibility, disrupting some but not other
parts of the MD system would lead to severe comprehension
problems.

(3) The MD system as a whole is necessary for language com-
prehension, but no individual component is critical (i.e., the
“responsibilities” are distributed across the system).
This possibility is inspired by the findings of Woolgar et al.
(2010), who demonstrated a linear relationship between the
amount of damage to the MD system and the intelligence
quotient (IQ), such that the more extensive the damage the
lower the IQ. A similar relationship may hold between the
MD system and language comprehension: disrupting any
individual component may only slightly affect comprehen-
sion abilities, but disrupting increasingly larger portions of
the MD system would eventually lead to one’s inability to
comprehend linguistic input. This general idea is reminiscent
of Lashley’s (1929) notion of equipotentiality, which may to
some degree characterize the MD system.

(4) No part of the MD system is critical for language
comprehension.
If this were the case, then disrupting any or all of the
MD system would have little or no effect on language
comprehension.

These possibilities are difficult to tease apart, and at present we
can only rule out the first possibility and some versions of the
third possibility. In particular, suppressing the activity of the
non-language-dominant hemisphere, including of course the MD
regions in that hemisphere, during the intracarotid sodium amo-
barbital procedure (i.e., the “Wada test”; Wada, 1949), does not
appear to greatly affect linguistic abilities (e.g., Rasmussen and
Milner, 1977). Of course, it is important to keep in mind that
the kinds of language tasks used during the Wada procedure vary
substantially across labs and perhaps do not include the most
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sophisticated tasks currently available for assessing linguistic abil-
ities. Nevertheless, the fact that patients with an anesthetized
non-language-dominant (typically, right) hemisphere can under-
stand spoken commands, name pictures, read sentences and
repeat phrases, suggests that the core linguistic abilities are pre-
served. Similarly, removal of the right hemisphere in adulthood
impairs many cognitive abilities (e.g., visuo-spatial functions)
but leaves linguistic processing largely intact (e.g., Basser, 1962;
Searleman, 1977). These results therefore suggest that the MD
regions in the non-language-dominant hemisphere are not nec-
essary for linguistic processing. They further constrain the third
possibility such that only the language-dominant-hemisphere MD
regions can be part of the system that is critical for language com-
prehension. Below I discuss the evidence for why they may or may
not be.

NARROWING DOWN THE HYPOTHESIS SPACE FOR THE
RELATIONSHIP BETWEEN LANGUAGE PROCESSING
MECHANISMS AND COGNITIVE CONTROL MECHANISMS
That domain-general cognitive control mechanisms are some-
times engaged during language comprehension is not under
debate (see e.g., Novick et al., 2010, for a recent review of the lit-
erature). Over the years, abundant evidence has been provided
for the connection between working memory and cognitive con-
trol resources on the one hand, and language comprehension,
on the other hand. This evidence comes from both (a) behav-
ioral studies in healthy and brain-damaged individuals, and (b)
brain imaging investigations. For example, in behavioral work,
super-additive processing difficulty has been observed in dual-
task paradigms that include a language comprehension task and
a secondary demanding non-linguistic task (e.g., Wanner and
Maratsos, 1978; Waters et al., 1987; Just and Carpenter, 1992;
Waters and Caplan, 1996; Gordon et al., 2002; Fedorenko et al.,
2006, 2007); associations between language comprehension and
executive function abilities have been reported in individual-
differences investigations (e.g., Baddeley et al., 1985; King and
Just, 1991; Gernsbacher, 1993; Daneman and Merikle, 1996;
De Beni and Palladino, 2000; Seigneuric et al., 2000; Burton
and Daneman, 2007; Carretti et al., 2009; Novick et al., 2009;
Cragg and Nation, 2010; Khanna and Boland, 2010; Gibson and
Fedorenko, 2011; McVay and Kane, 2012; Astheimer et al., 2014;
cf. Caplan and Waters, 1999); and the depth of linguistic process-
ing has been shown to be affected by top–down reader goals (e.g.,
Wotschack, 2009). Furthermore, one prominent class of syntac-
tic complexity accounts explains across-construction variability
in processing complexity in terms of differential working memory
demands (e.g., Wanner and Maratsos, 1978; Gibson, 1998, 2000;
Gordon et al., 2002; McElree et al., 2003; Lewis et al., 2006).

Similarly, numerous fMRI studies have reported activations
during language comprehension tasks in the domain-general
brain regions of the MD system, i.e., in the same brain regions
that get modulated by working memory and cognitive control
demands (e.g., Duncan and Owen, 2000). A wide range of lan-
guage phenomena have been shown to produce such activations
(often in addition to also activating the language regions). These
include: non-local syntactic dependencies, especially in older
populations (e.g., Peelle et al., 2010; see Kaan and Swaab, 2002;

Rogalsky and Hickok, 2011 for a discussion of syntactic complex-
ity manipulations in terms of domain-general factors), ambigu-
ous words or constructions (e.g., Rodd et al., 2005; Novais-Santos
et al., 2007; January et al., 2009; McMillan et al., 2013), pronouns
whose referents may not be clear from the context (e.g., McMillan
et al., 2012), sentences that contain grammatical errors (e.g.,
Kuperberg et al., 2003; Nieuwland et al., 2012), speech presented
under noisy conditions (e.g., Wild et al., 2012), etc.

One possible generalization—based on both behavioral and
brain imaging evidence—is that domain-general mechanisms
are recruited when difficulties arise in language comprehension,
which can of course happen for many reasons. Given that diffi-
culty manipulations across a wide range of cognitive tasks have
been shown to produce activity in the regions of the MD system,
perhaps the engagement of these circuits during comprehension
difficulties in language is not too surprising. Nevertheless, this
body of literature is important in that it convincingly estab-
lishes that the language interpretation system is not encapsu-
lated (cf. Fodor, 1983) but rather can interact in a flexible way
with domain-general working memory and cognitive control
mechanisms.

Now, on to the two questions whose answers would help us
better understand the precise nature of the relationship between
language understanding and domain-general cognitive control
mechanisms.

HOW FREQUENTLY DO COGNITIVE CONTROL MECHANISMS GET
ENGAGED WHEN WE UNDERSTAND LANGUAGE?
Given that most evidence for the engagement of cognitive control
mechanisms in language comprehension comes from cases where
language processing is effortful, let us consider how often com-
prehension difficulties arise in naturalistic linguistic exchanges.
For example, how frequently do we encounter ambiguous words
whose meaning is not fully constrained by the preceding context?
What about non-local dependencies between words? Or cases
where we have to rely on a single cue (e.g., word order) to inter-
pret the propositional content of an utterance? Although it is
difficult to quantify the proportion of such phenomena in typical
linguistic exchanges, corpus analyses suggest that linguistic phe-
nomena that many studies in the field of sentence processing have
focused on may not be very common. For example, Piantadosi
et al. (2012) demonstrated that ambiguous words are typically
used in contexts that strongly favor the relevant meaning. Collins
(1996; also Temperley, 2007) has shown that most linguistic
dependencies are between adjacent elements (see also Frank et al.,
2012). And Roland et al. (2007) showed that object-extracted
relative clauses with two full animate noun phrases (e.g., “The
senator that the reporter attacked was tall”)—perhaps the most
frequently investigated construction in the study of syntactic
processing—rarely occur.

Indeed, typical linguistic input abounds with cues to meaning,
including lexical information, syntactic information, plausibil-
ity/world knowledge information, linguistic and non-linguistic
(e.g., visual, social) context, and prosodic/punctuation cues.
During the last 30 years, research in the field of sentence pro-
cessing has established that comprehenders rationally use all
the information sources available in the input to derive an
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interpretation of an input string (e.g., Trueswell and Tanenhaus,
1994; Gibson and Pearlmutter, 1998). It is therefore possible that
the focus on controlled manipulations that alter the statistics
of the human language has led us to overestimate the impor-
tance of domain-general working memory and cognitive control
mechanisms in understanding language.

However, comprehension difficulty is of course not categori-
cal. Instead, it varies continuously as we perceive linguistic input
and is determined by some combination of (i) how expected the
input is from the preceding context, and (ii) how much memory
is required for integrating the incoming element into the evolv-
ing structure/meaning representation (e.g., Demberg and Keller,
2008; Levy, 2008; Gibson et al., 2014; Levy et al., 2014). The ques-
tion then becomes: What does it take for the domain-general
mechanisms to “kick in” during language understanding? In par-
ticular, is the MD system (or some subset of it) always active when
we perceive language? Does this system get engaged only when
we pay attention to the linguistic input, i.e., when the informa-
tion in the linguistic signal is somehow relevant to us, or maybe
only when some threshold of comprehension difficulty has been
reached? Or perhaps we turn to the domain-general mechanisms
only in rare cases, as a last resort, when the language system “gives
up” on interpretation? Now that we have ample evidence that
domain-general mechanisms do sometimes get engaged during
language comprehension tasks, we can perhaps focus on under-
standing the precise conditions under which these mechanisms
are recruited, to narrow down these various possibilities.

ARE COGNITIVE CONTROL MECHANISMS NECESSARY FOR
UNDERSTANDING LANGUAGE?
What does the engagement of cognitive control brain regions
reflect? Is this engagement functionally important, so that with-
out a properly functioning MD system (or some subset thereof)
language interpretation would be severely hampered or impossi-
ble? Or is the activation of the MD system simply an “echo” of the
effort experienced by the “core” language interpretation system?

To tackle these questions, we need methods that would allow
us to examine the effects on language comprehension of inac-
cessibility of domain-general cognitive control mechanisms. As
a result, most evidence from brain imaging investigations does
not directly inform these questions. This is also true of much
of behavioral evidence, although super-additive processing dif-
ficulty observed in dual-task paradigms discussed above does
afford some degree of causal interpretation and suggests that
taxing domain-general working memory resources can interfere
with the processing of (at least syntactically complex) sentences
(e.g., Gordon et al., 2002; Fedorenko et al., 2006, 2007). Most
direct evidence, however, comes from investigations of individ-
uals with impaired cognitive control abilities. Below I review
some of this evidence in light of two alternative positions: cog-
nitive control mechanisms are vs. are not necessary for language
comprehension.

Evidence for the necessity of cognitive control mechanisms for
language comprehension
A few studies have provided evidence of associations between
difficulties with some aspects of language comprehension and

non-linguistic working memory/cognitive control tasks in indi-
viduals with brain damage (e.g., Novick et al., 2009; Vuong and
Martin, 2011), or with developmental disorders like specific lan-
guage impairment (e.g., Montgomery, 2003). However, evidence
from associations in neuropsychology is notoriously difficult to
interpret (e.g., Whitehouse et al., 1978; Caramazza et al., 1982),
especially given that domain-general MD regions often lie in close
proximity to the regions of the language system (e.g., Fedorenko
et al., 2012).

Although I have focused here on cognitive control/working
memory, it is important to also consider the role of attention
in language comprehension, given that attention is tightly linked
to the MD system (e.g., Corbetta and Shulman, 2002; Duncan,
2006). The classic studies of speech perception in the unattended
channel (e.g., Cherry, 1953; Broadbent, 1958; Treisman, 1964)
showed—across many variations of a similar paradigm—that
when presented with two auditory streams and asked to attend
to one of the streams listeners are only able to extract mini-
mal information from the unattended stream. Indeed, from mere
introspection, we know that when we are not paying attention—
whether due to some external stimulus or an internally generated
thought—we can “zone out” and miss, for example, a part of a
lecture, or a paragraph in a book (see Reichle et al., 2010, for evi-
dence that our eye movement patterns differentiate between the
text fragments where we are reading for meaning vs. reading while
thinking about something else; also Kaakinen and Hyönä, 2014).
These early experimental findings and introspective observations
suggest that some minimal amount of attention is necessary to
understand language. So to the extent that attention is imple-
mented in the MD system, some minimal MD activity may be
required for language comprehension. (Whether this activity is
linked to a particular component of the MD system remains to be
determined).

Evidence against the necessity of cognitive control mechanisms for
language comprehension
Perhaps the most compelling evidence comes from the develop-
mental and aging literatures. In particular, the lifetime trajectories
of executive and language abilities are different: our cognitive
control abilities are slow-developing in childhood, not reach-
ing full maturity until early adulthood (e.g., Kail, 1991a,b,c; Kail
and Salthouse, 1994; Harnishfeger and Pope, 1996; Fischer et al.,
1997; Munoz et al., 1998; Diamond, 2002; Luciana and Nelson,
2002; De Luca et al., 2003; Luna et al., 2004; Lyons-Warren
et al., 2004; Zelazo et al., 2004; Luciana et al., 2005), and yet
already at age 5 children can understand impressive amounts of
linguistic input (e.g., Kuhl, 2004; Hoff, 2009). In fact, some have
argued that the lack of mature cognitive control mechanisms is
actually helpful for some aspects of language acquisition (e.g.,
Newport, 1990; cf. Rohde and Plaut, 1999; Chrysikou et al., 2011).
Similarly, although our executive functions decay as we age, our
language comprehension abilities remain intact (e.g., Wingfield
and Grossman, 2006; Burke and Shafto, 2008), and some abilities
(e.g., vocabulary knowledge) keep improving with age (e.g., Field
and Gueldner, 2001; Park et al., 2002; Uttl, 2002; Verhaeghen,
2003; Ronnlund et al., 2005). On the extreme end are cases of age-
related dementia where some language comprehension abilities
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remain intact in spite of the steep decline in cognitive control and
working memory (Schwartz et al., 1979; cf. Grossman et al., 1996;
MacDonald et al., 2001).

Secondly, a number of developmental disorders are character-
ized by impairments in executive functions with a relative, though
almost never complete, sparing of language comprehension abil-
ities, including Turner syndrome (e.g., Money, 1964; Money and
Alexander, 1966; Garron, 1970; Murphy, 2009), and select cases
of Williams syndrome (e.g., Von Arnim and Engel, 1964; Bellugi
et al., 1988, 2000; cf. Karmiloff-Smith, 2006; Mervis and Becerra,
2007) and Down’s syndrome (e.g., Evans and Hampson, 1968;
Ryan, 1975; Bloom and Lahey, 1978; Rosenberg, 1982; Yamada,
1990; Rondal, 1994, 1995; Anderson et al., 2001; De Luca and
Leventer, 2008; cf. Graham and Graham, 1971; Wisniewski et al.,
1988). These cases are complemented by rare cases of language
savants, individuals with highly impaired general intelligence and
allegedly superior linguistic abilities (e.g., Smith and Tsimpli,
1995; cf. Bates, 1997).

Finally, one other line of evidence is worth a brief mention
even though it is at present highly controversial (e.g., Laureys
et al., 2005). Several reports have suggested that some degree of
high-level linguistic processing (e.g., semantic processing) can
take place even in patients with severe disorders of conscious-
ness (e.g., Kotchoubey et al., 2002, 2003, 2005; Neumann and
Kotchoubey, 2004; Schiff et al., 2005). Given that conscious
awareness has been linked to the brain regions of the MD sys-
tem (e.g., Dehaene and Changeux, 2011), this evidence—if it
withstands further evaluation—may be able to provide a strong
argument against the need for domain-general cognitive control
in at least some aspects of language understanding.

In summary, the evidence for whether cognitive control mech-
anisms are necessary for us to understand language is at present
complex, and more work is clearly needed to answer this ques-
tion conclusively. The ability to define MD regions functionally at
the individual subject level (e.g., Fedorenko et al., 2013) opens to
the door to TMS investigations targeting those regions and exam-
ining the effects of transient disruption on different aspects of
language processing. Furthermore, methods like that pioneered
by Woolgar et al. (2010)—where the amount of MD system dam-
age is related to behavioral performance—might prove useful,
although such investigations are complicated by the proximity of
the MD system to the language system, and thus high probabil-
ity of damage affecting both systems. In light of the discussion in
section How Frequently do Cognitive Control Mechanisms Get
Engaged When We Understand Language?, I hope that we—as
a field—can expand the scope of the linguistic phenomena we
consider when thinking about the role of cognitive control in
language. In particular, instead of focusing on language in highly
atypical circumstances (e.g., doubly-center-embedded structures
or cases where a referent is non-existent), we may want to tackle
the more basic question of whether cognitive control is necessary
for successful comprehension in typical linguistic exchanges.

SUMMARY AND CONCLUSIONS
In this paper I have discussed the role of domain-general cogni-
tive control in language comprehension. In recent work we have
shown that brain regions that respond robustly to linguistic input

are spatially distinct from brain regions that have been linked to
working memory and cognitive control (Fedorenko et al., 2011,
2012). These findings suggest that the computations performed
by these two sets of brain regions are likely distinct. However, this
neural separability of language processing and domain-general
cognitive control is compatible with some form of interaction
between them, and even with the domain-general circuits being
necessary for understanding linguistic input.

Although much evidence suggests that domain-general MD
regions are sometimes engaged during language comprehension,
it is at present unclear how often this happens, and thus how
theoretically significant this engagement is. Moreover, previously
reported dissociations between language comprehension abili-
ties and working memory/cognitive control abilities suggest that
domain-general mechanisms may not need to function properly
for successful language comprehension to occur. However, more
evidence is needed to conclusively answer the question of the
necessity of cognitive control in language understanding.

The fact that domain-general cognitive control mechanisms
may not be necessary for understanding language should not
make these mechanisms uninteresting to language researchers,
especially given that these mechanisms (a) are important in lan-
guage production as discussed at the beginning of the paper, and
(b) have been implicated in preventing language loss in aging
(e.g., Wingfield and Grossman, 2006) as well as in recovery from
aphasia (e.g., Sharp et al., 2010). Understanding when and how
cognitive control resources are deployed during language com-
prehension in mature or developing healthy brains may provide
important constraints on theories of language acquisition and
processing, as well as shed light onto the potential functions of
the multiple demand system. For example, even if the MD sys-
tem is not necessary for language comprehension, it may still turn
out to be useful, by for example, making language comprehension
faster and/or more efficient. A possible analogy is that of a bicy-
cle: although we can get places without one, having one helps us
get there faster. According to this view, the MD system is a flexible
resource that may get allocated to a wide range of cognitive pro-
cesses, including those supported by specialized machinery (like
face perception or language), and has a beneficial effect on all
of those processes. How exactly this facilitation may be imple-
mented is important. For example, do the MD regions simply
speed up the processing in the specialized regions by providing
extra computational resources of a generic nature (a “workspace”;
e.g., Dehaene and Changeux, 2011), or do they provide alterna-
tive routes for solving the problem at hand, be it recognizing a
face or understanding a sentence?

One intriguing possibility with respect to language—and per-
haps other domains—is that the MD system is used for predictive
processing. In line with this idea, diminished predictive process-
ing in language has been reported in both children (e.g., Garvey
and Berninger, 1981), and aging individuals (e.g., Federmeier
et al., 2002, 2010), i.e., groups with underdeveloped and dete-
riorating cognitive control mechanisms, respectively. There is
no question that predictive processing is useful and can speed
up the processing of incoming information (e.g., Levy, 2008;
Smith and Levy, 2013). However, it is not required: language
comprehension can proceed in a bottom-up way, as evidenced
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by the comprehension abilities of children, elderly individuals,
and individuals with otherwise impaired cognitive control mech-
anisms. This idea—that language regions support a bottom-up
language interpretation strategy and MD regions provide a top–
down, predictive, strategy for language comprehension—deserves
further evaluation.

To conclude, future work should (a) acknowledge that the
“core” fronto-temporal language brain regions are spatially and
functionally distinct from the domain-general fronto-parietal
multiple demand system, and (b) focus on characterizing the cir-
cumstances under which domain-general cognitive control mech-
anisms get engaged during language comprehension, and the
precise role of this engagement. Regardless of what the answers to
these questions turn out to be, investigations of the relationship
between the two systems—including the dynamics of their inter-
action (see also Fedorenko and Thompson-Schill, 2014)—are
likely to inform both, theories of language and of domain-general
cognition.
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