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Inhibitors of topoisomerase II (topo II) are clinically effective in the management of
hematological malignancies and solid tumors. The efficacy of anti-tumor drugs targeting
topo II is often limited by resistance and studies with in vitro cell culture models have
provided several insights on potential mechanisms. Multidrug transporters that are involved
in the efflux and consequently reduced cytotoxicity of diverse anti-tumor agents suggest
that they play an important role in resistance to clinically active drugs. However, in clinical
trials, modulating the multidrug-resistant phenotype with agents that inhibit the efflux
pump has not had an impact. Since reduced drug accumulation per se is insufficient
to explain tumor cell resistance to topo II inhibitors several studies have focused on
characterizing mechanisms that impact on DNA damage mediated by drugs that target the
enzyme. Mammalian topo IIα and topo IIβ isozymes exhibit similar catalytic, but different
biologic, activities. Whereas topo IIα is associated with cell division, topo IIβ is involved in
differentiation. In addition to site specific mutations that can affect drug-induced topo II-
mediated DNA damage, post-translation modification of topo II primarily by phosphorylation
can potentially affect enzyme-mediated DNA damage and the downstream cytotoxic
response of drugs targeting topo II. Signaling pathways that can affect phosphorylation
and changes in intracellular calcium levels/calcium dependent signaling that can regulate
site-specific phosphorylation of topoisomerase have an impact on downstream cytotoxic
effects of topo II inhibitors. Overall, tumor cell resistance to inhibitors of topo II is a complex
process that is orchestrated not only by cellular pharmacokinetics but more importantly by
enzymatic alterations that govern the intrinsic drug sensitivity.
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INTRODUCTION
The emergence of drug-resistant tumor cells continues to be a
major problem confronting advances in cancer chemotherapy.
Resistance to the various classes of anti-tumor agents (Curt et al.,
1984) has been suggested to involve reduced drug accumulation
and/or retention, conformational changes and/or over production
of the target enzyme, and reduced activation and/or increased
catabolism of drug. Doxorubicin (DOX) is a clinically effective
anti-tumor agent against a spectrum of neoplastic diseases (Carter,
1975; Myers and Chabner, 1990). Although DOX is an inhibitor of
topoisomerase II (topo II), multifactorial mechanisms are involved
in the cytotoxic response (Siegfried et al., 1985; Louie et al., 1986;
Bhushan et al., 1989; Doroshow et al., 1990). Pioneering studies
of Kessel et al. (1968) and Biedler and Riehm (1980) established
that reduced drug accumulation in tumor cells is a major mech-
anism involved in resistance to clinically important anti-tumor
agents, e.g., anthracyclines and vinca-alkaloids. The overexpres-
sion of P-glycoprotein (PGP) in resistant cells, which mediates
energy dependent drug efflux across a concentration gradient
and is responsible for reduced drug accumulation, was originally
described by Ling and Thompson (1974). The cross-resistance to
anti-tumor drugs of diverse structure and/or mechanism of action
(Endicott and Ling, 1989; Chin et al., 1993) mediated by PGP is
now termed multidrug resistance (MDR). MDR in the absence of

overexpression of PGP has been demonstrated to be due to the
MDR related protein (MRP), which like PGP also belongs to the
ATP-binding cassette (ABC) superfamily of membrane proteins
(Center, 1993; Cole et al., 1994).

MODULATION OF DRUG RESISTANCE BY
CHEMOSENSITIZERS
Reduced drug accumulation to anti-tumor drugs of diverse struc-
ture and mechanism of action has led to the identification of
agents that can potentially sensitize tumor cells with the MDR
phenotype. The original reports on modulation of MDR by cal-
cium blockers, e.g., verapamil (Slater et al., 1982; Tsuruo et al.,
1982) or calmodulin inhibitors, e.g., trifluoperazine (TFP; Tsuruo
et al., 1982; Ganapathi and Grabowski, 1983) has been confirmed
subsequently by other laboratories in a variety of model sys-
tems (Ford and Hait, 1990). Excellent reviews on compounds
modulating the MDR phenotype has been published, and sen-
sitization of drug-resistant pre-clinical tumor models in vivo has
been observed (Tsuruo et al., 1982; Ganapathi et al., 1988; Ford and
Hait, 1990). The mechanism of action of the “chemosensitizers” in
MDR cells is suggested to involve binding to PGP which results
in increased drug accumulation and consequently cytotoxicity.
While these chemosensitizers do indeed increase drug accumula-
tion, concentrations of the anti-tumor agent required in resistant
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cells are significantly higher than those required by the wild-
type (sensitive) cells to achieve equivalent cell kill. Based on the
promise from pre-clinical studies, clinical trials have evaluated
these agents to sensitize drug refractory tumors (Ganapathi et al.,
1993a; Lum et al., 1993) but results with a potent inhibitor of
PGP indicate that modulation of drug resistance or enhanced
clinical activity is not realized (Carlson et al., 2006; Kolitz et al.,
2010).

Most studies on modulation of MDR have relied on tumor
models with high levels of resistance making it difficult to ascertain
whether the resistance to anthracyclines and vinca alkaloids was
exclusively due to overexpression of PGP. In addition, the obser-
vation that resistance to lipophilic anthracyclines was observed
without apparent differences in drug accumulation between sen-
sitive and resistant cells suggested a role for alternate mechanisms
of resistance (Ganapathi et al., 1984, 1989). To assess the cen-
tral role for PGP and probe mechanisms of resistance to DOX
we developed progressively DOX-resistant (5- to 40-fold) cell
lines of L1210 mouse leukemia and B16-BL6 mouse melanoma
(Ganapathi et al., 1987; Ganapathi and Grabowski, 1988). Stud-
ies with these progressively resistant tumor models revealed that
while the IC50 for DOX alone was higher with increasing resis-
tance (0.25–5 μM), significantly lower concentrations of DOX
(0.08–0.7 μM) were required in the presence of a non-cytotoxic
concentration (5 μM) of the calmodulin inhibitor TFP to achieve
equivalent cell kill (Ganapathi and Grabowski, 1988; Ganapathi
et al., 1988). In the progressively DOX-resistant L1210 cells expres-
sion of the MDR phenotype was observed only at >10-fold but
not at fivefold resistance to DOX and role of PGP in these pro-
gressively DOX-resistant cells revealed that: (a) effects of PGP on
drug accumulation were correlative with vincristine (VCR) rather
than DOX resistance (Ganapathi et al., 1991b, 1993a); and (b) the
modulation by TFP of VCR but not DOX cytotoxicity was due to
effects on drug accumulation (Ganapathi et al., 1991a,b). Based on
the lack of correlation between cellular DOX levels and cytotoxic
response, using the progressively DOX-resistant L1210 model sys-
tem, nuclear levels of DOX were determined following treatment
with the IC50 of DOX in the absence or presence of 5 μM TFP
(Ganapathi et al., 1991a). Results revealed that significantly higher
nuclear levels of DOX were required in the resistant compared to
the parental sensitive cells to achieve equivalent cytotoxicity, sug-
gesting that alterations in topo II, a putative target of DOX may be
involved (Ganapathi et al., 1991a).

TOPOISOMERASE II AND DRUG RESISTANCE
The topoisomerases alter DNA topology for the efficient pro-
cessing of genetic material (Chen and Liu, 1994; Pommier et al.,
1994; Watt and Hickson, 1994; Froelich-Ammon and Osheroff,
1995). The two well characterized topoisomerases, topoisomerase
I (topo I) and topo II, which are essential for DNA metabolism are
also the targets for the clinically effective anti-tumor agents, e.g.,
analogs of camptothecin (topotecan, irinotecan), DOX, daunoru-
bicin, etoposide (VP-16), or teniposide (Chen and Liu, 1994;
Pommier et al., 1994; Watt and Hickson, 1994; Froelich-Ammon
and Osheroff, 1995). Eukaryotic topo I catalyzes DNA relax-
ation via a transient single stranded DNA break while topo II
will produce a transient double stranded break for the passage

of double stranded DNA segments (Chen and Liu, 1994; Pom-
mier et al., 1994; Watt and Hickson, 1994; Froelich-Ammon and
Osheroff, 1995). Anti-cancer drugs which interact with topoiso-
merases and produce DNA strand breaks, involves the stabilization
of a ternary complex with DNA. The single or double stranded
break induced by topo II, involves linkage to the 5′-phosphoryl
end of the broken DNA, with the 5′ broken end protruding pre-
cisely four bases with a double strand break (Chen and Liu, 1994;
Pommier et al., 1994; Watt and Hickson, 1994; Froelich-Ammon
and Osheroff, 1995). The mechanism of DNA strand breakage
induced by topo II inhibitors is based on the stabilization of a
cleavable complex which is normally a transient reaction interme-
diate (Chen and Liu, 1994; Froelich-Ammon and Osheroff, 1995).
The cleaved intermediate can be either a single strand or dou-
ble strand break. Drugs which are topo II inhibitors exert their
effects possibly by inhibiting the rejoining step in the breakage-
rejoining cycle, thus shifting the equilibrium toward a cleavable
complex (Chen and Liu, 1994; Froelich-Ammon and Osheroff,
1995). The agents which inhibit topo II and stabilize cleavable
complex formation can be intercalative, e.g., DOX, amsacrine
(m-AMSA), mitoxantrone, or non-intercalative, e.g., VP-16, teni-
poside (VM-26), and isoflavone derivative genistein (Chen and
Liu, 1994; Pommier et al., 1994; Watt and Hickson, 1994; Froelich-
Ammon and Osheroff, 1995). Mammalian topo IIα (170 kDa)
and topo IIβ (180 kDa) isozymes exhibit similar catalytic, but
different biologic, activities. Whereas topo IIα is associated with
cell division, topo IIβ is involved in differentiation (Chung et al.,
1989; Drake et al., 1989; Woessner et al., 1989, 1990). The 170 kDa
topo II isoform is encoded on chromosome 17q21-22 while the
180 kDa topo II isoform is encoded on chromosome 3p24 (Chen
and Liu, 1994; Watt and Hickson, 1994). As a target for anti-
cancer agents, there is more information on the interaction with
the 170 kDa topo IIα protein, although a possible role for alter-
ations in the 180 kDa topo IIβ isoform in mitoxantrone-resistant
and m-AMSA-resistant HL-60 cells has been reported (Harker
et al., 1991; Chen and Liu, 1994; Froelich-Ammon and Osheroff,
1995; Herzog et al., 1998). A number of in vitro studies using
purified or recombinant topo II enzyme have addressed deter-
minants of drug interaction with topo II (Fry et al., 1991; Chen
and Liu, 1994; Pommier et al., 1994; Watt and Hickson, 1994;
Froelich-Ammon and Osheroff, 1995), and in cell systems the
focus has been on enzyme levels as the determinant of drug action
(Fry et al., 1991; Chen and Liu, 1994; Pommier et al., 1994; Watt
and Hickson, 1994; Froelich-Ammon and Osheroff, 1995). The
proliferative state of tumor cells is also an important determi-
nant of sensitivity to inhibitors of topo II, and a correlation exists
between proliferation, cell cycle stage and cytotoxicity (Nelson
et al., 1986; Sullivan et al., 1986; Estey et al., 1987; D’Arpa et al.,
1990).

Resistance to inhibitors of topo II reported in a number of
tumor model systems is also prevalent in clinically refractory
tumors (Chen and Liu, 1994; Froelich-Ammon and Osheroff,
1995). Based on the evaluation of tumor models with intrinsic
or acquired resistance to the topo II inhibitors, as well as cell
lines selected for resistance which express decreased levels of topo
II (Chen and Liu, 1994; Froelich-Ammon and Osheroff, 1995)
it has been proposed that levels of topo II are an important
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determinant of drug sensitivity. Although the levels of enzyme
are obviously critical, there are several examples wherein drug
sensitivity is not correlative with the 170 kDa topo IIα pro-
tein level (Ganapathi et al., 1991a, 1996; Chen and Liu, 1994;
Pommier et al., 1994; Watt and Hickson, 1994; Froelich-Ammon
and Osheroff, 1995). Alternatively, altered sub-cellular distribu-
tion of the 170 and 180 kDa isoforms may also be involved with
insensitivity to topo II inhibitors (Fernandes et al., 1990; Juenke
and Holden, 1993; Mirski et al., 1993; Danks et al., 1994; Feld-
hoff et al., 1994; Zini et al., 1994). While the identification of a
mutant enzyme associated with drug resistance has been reported
(Takano et al., 1992; Pommier et al., 1994) an analysis of leukemic
cells from patients who have relapsed from etoposide or tenipo-
side therapy revealed that resistance does not have to be associated
with mutations in the topo II gene (Danks et al., 1993). Also muta-
tions identified in cultured cell lines were not found in the patient
samples (Danks et al., 1993). Point mutations similar to those
observed with topo IIα in m-AMSA-resistant cell lines (Hinds
et al., 1991) has been reported in patients with small cell lung
cancer treated with etoposide (Kubo et al., 1996). In addition to
these mutations that have possible relevance to patient tumors
refractory to therapy, several other mutations in topo IIα and
β (induced or observed in drug-resistant tumor models) have
been described that can confer resistance to drugs that target the
enzyme (Chikamori et al., 2010). While studies with these mutant
forms of topo II are informative, their functional role remains
controversial, since they are generally not observed in patients
with tumors that are clinically resistant to drugs that target the
enzyme.

ANTHRACYCLINES, TOPOISOMERASE IIα, AND BREAST
CANCER
The recognition that topo IIα is a putative target of DOX, a clini-
cally active anthracycline in the treatment of breast cancer, has led
to several reports correlating anthracycline sensitivity with topo
IIα expression. Major focus has been on human epidermal growth
factor receptor 2 (HER2) and topo IIα expression based on their
localization in chromosome 17 as well as determinants of sensitiv-
ity to trastuzumab and anthracyclines, respectively. Indeed several
reports have established expression of topo IIα in predicting sen-
sitivity to adjuvant anthracycline therapy (Oakman et al., 2009;
Brase et al., 2010; Kawachi et al., 2010; Di Leo et al., 2011; Du et al.,
2011; Nikolényi et al., 2011; O’Malley et al., 2011). The evaluation
of tissue inhibitor of metalloproteinase (TIMP-1) with HER2 or
topo IIα has also suggested that a HT profile (HER2 amplified
and/or TIMP-1 negative) or 2T profile (topo IIα aberrant and/or
TIMP-1 negative) with substantial reduction in mortality but not
relapse free survival events following adjuvant anthracycline con-
taining therapy (Ejlertsen et al., 2010; Hertel et al., 2012). Overall,
while topo IIα expression is possibly a determinant of response to
anthracycline containing therapy, robust assay methodology for
topo IIα and well defined prospective clinical trials will establish
the predictive value.

PHOSPHORYLATION OF TOPOISOMERASE II
The proliferation and cell cycle phase dependent post-translational
modification by phosphorylation of the 170 and 180 kDa topo

II protein (Heck et al., 1989; Kroll and Rowe, 1991; Saijo et al.,
1992; Burden et al., 1993; Burden and Sullivan, 1994; Kimura
et al., 1994a,b), is also linked to increased enzyme activity and
DNA cleavable complex formation (Heck et al., 1989; Kroll and
Rowe, 1991; Saijo et al., 1992; Burden et al., 1993; Burden and Sul-
livan, 1994; Kimura et al., 1994a,b). Since phosphorylation of topo
II during the cell cycle regulates activity of the enzyme (Ackerman
et al., 1985; Sahyoun et al., 1986; Saijo et al., 1990; Cardenas et al.,
1992, 1993; Cardenas and Gasser, 1993; Wells et al., 1994), the role
of altered topo II phosphorylation in drug resistance has been stud-
ied. Takano et al. (1991) reported hyperphosphorylation of topo
II in etoposide-resistant cells based on phosphorylation normal-
ized for a 10-fold reduced enzyme level in the etoposide-resistant
subline compared to parent cells. Since the phosphorylation of
topo II is essential for catalytic events of unknotting and decate-
nation during cell replication, the observed hyperphosphorylation
could represent a compensatory event for the reduced protein level.
The topo IIα in these etoposide-resistant cells has a Ser861-Phe
mutation, suggesting that these cells which hyperphosphorylate
topo IIα, also express mutant serine residue (Kohno et al., 1995).
Hypophosphorylation of topo IIα in the teniposide-resistant cells
was >twofold compared to the parental cells, with serine being
the primary phosphorylated amino acid in the sensitive or resis-
tant cells (Chen and Beck, 1995). Subsequent studies by Ritke
et al. (1994a, 1995) in etoposide-resistant K562 human leukemia
cells have suggested that hypophosphorylation of topo IIα in these
cells is due to decreased levels of the protein kinase C isoform ßII.
Studies in vitro using Drosophila melanogaster topo II have demon-
strated that phosphorylation of topo II by casein kinase (CK) II
and protein kinase C can decrease drug stabilized DNA cleavable
complex and increase DNA religation, suggesting that phospho-
rylation can confer relative drug resistance (DeVore et al., 1992).
While this effect may be due to the simultaneous use of two dif-
ferent kinases, a role for site specific phosphorylation differences
was not discussed. Phosphorylation of topo IIα by CKII has also
been reported to not affect the DNA relaxing or DNA unknotting
activity (Kimura et al., 1996). In contrast to these reports we have
demonstrated, following metabolic labeling of cells with [32P]-
orthophosphoric acid, the hypophosphorylation of 170 kDa topo
II in the absence of any decrease in steady state topo II protein lev-
els in three different model systems resistant to topo II inhibitors
(Ganapathi et al., 1991a, 1993b, 1996).

FUNCTIONAL ROLE FOR INTRACELLULAR CALCIUM AND
SITE-SPECIFIC PHOSPHORYLATION OF TOPOISOMERASE IIα
Potential mechanisms affecting reversibility of the drug-induced
DNA cleavable complex (Hsiang and Liu, 1989) have been
reported, and in resistant sublines a specific role for cleav-
able complex instability has been suggested (de Jong et al.,
1993; Ritke et al., 1994b). The incubation of Chinese hamster
DC3F cells in calcium-free medium or chelation of extracellu-
lar calcium with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid
(EGTA) has been reported to protect against the cytotoxicity of
VP-16 (Bertrand et al., 1991). However, under these same con-
ditions, VP-16-induced DNA single strand break frequency in
calcium-depleted cells was reported to be comparable to control
cells (Bertrand et al., 1991). The amount of phosphorylated topo
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IIα in cells is obviously a balance between kinase and phos-
phatase activity, and our data on hypophosphorylated topo IIα
in etoposide-resistant cells may be linked to enhanced phos-
phatase activity. We have previously reported that okadaic acid
an inhibitor of protein phosphatases 1 and 2A does not affect
the cytotoxicity of the topo II inhibitor DOX (Kawamura et al.,
1996b). The activity of protein phosphatase 2B (calcineurin) is
enhanced following phosphorylation by calcium-calmodulin pro-
tein kinase II (Hashimoto and Soderling, 1989; Sacks et al., 1995)
or suppressed by calmodulin inhibitors (Klee et al., 1988). Thus,
enhanced phosphorylation of topo IIα (Kawamura et al., 1996a)
in the presence of the inhibitors of calcium-calmodulin regulated
processes, e.g., TFP or 1-[N,O-bis(1,5-isoquinolinesulfonyl)-N-
methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) possibly involves
inhibition of calcineurin activity, which leads to potentiation of
DNA cleavable complex formation and cytotoxicity of topo II
inhibitors.

Based on the potentiation of DOX cytotoxicity and DNA
damage by TFP and other inhibitors of calcium-calmodulin
regulated cellular events we sought to determine whether intra-
cellular calcium could be involved in affecting DNA damage
induced by drugs that target topo II. Manipulating intracel-
lular “free” calcium was achieved with the chelator (Gana-
pathi et al., 1996) 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′,-
tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM). In wild-
type cells pre-treatment with BAPTA-AM followed by the topo
II inhibitor etoposide (VP-16) led to significant reductions in
drug stabilized DNA cleavable complex formation and cytotox-
icity (Ganapathi et al., 1996). These results on reduced DNA
cleavable complex formation following buffering of intracellular
calcium, in general support the original observation of Osheroff
and Zechiedrich who reported that in experiments with the puri-
fied enzyme in vitro, calcium was able to promote high levels of
D. melanogaster topo II-mediated DNA cleavage (Osheroff, 1987;
Osheroff and Zechiedrich, 1987). Also, pre-treatment of wild-
type cells with BAPTA-AM led to hypophosphorylation of topo
IIα (Ganapathi et al., 1996). In order to determine whether the
hypophosphorylation of topo IIα was site-specific, we carried out
2D mapping with tryptic digests of immunoprecipitated topo IIα
from in DOX-resistant or wild-type cells pre-treated with BAPTA-
AM (Ganapathi et al., 1996; Chikamori et al., 2003). Interestingly,
we found that site specific hypophosphorylation of topo IIα in
DOX-resistant or wild-type cells pre-treated with BAPTA-AM was
comparable (Ganapathi et al., 1996; Chikamori et al., 2003). Using
liquid chromatography-tandem mass spectrometry, we identified
the hypophosphorylated site as serine 1106 in topo IIα (Chikamori
et al., 2003).

To establish the functional role for serine 1106 in topo
IIα, mutation of serine 1106 to alanine (S1106A) was carried
out and found to abrogate phosphorylation of the phospho-
peptides that were found either in the DOX-resistant cells or
wild-type cells treated with BAPTA-AM. Using purified wild-
type or mutant (S1106A) topo IIα expressed in BJ201 cells, we
observed decreased decatenation activity as well as etoposide
stabilized DNA cleavable complex formation with the mutant
enzyme (Chikamori et al., 2003). A functional role in vivo
for serine 1106 in resistance to inhibitors of topo II was

also established using the yeast system wherein resistance to
the cytotoxic effects of etoposide and m-AMSA was observed
(Chikamori et al., 2003).

Since serine 1106 is flanked by CKI consensus sequences, and
phosphorylation of this site is regulated by calcium, we probed
the effect of inhibitors of CKI (Grozav et al., 2009). Treatment
with CKI-7 or IC261 that inhibit CKI activity, both hypophos-
phorylation of serine 1106 and decreased etoposide stabilized
DNA cleavable complex formation was observed, suggesting a
potential role for CKI phosphorylation of topo IIα (Grozav et al.,
2009). In the CKI family, a functional role for calcium regulatable
CKIδ and/or CKIε in phosphorylating serine 1106 and affecting
drug stabilized topo II DNA cleavable complex formation was
established using small interfering RNA (siRNA) that target these
isozymes of CKI (Grozav et al., 2009). Although a precise role for
site specific hypophosphorylation of topo IIα and resistance to
inhibitors of topo II in patient tumors has not been established,
in our preliminary studies with early passage cultures of acute
myeloid leukemia and non-small cell lung cancer from patients,
we have observed a correlation of site specific hypophosphory-
lation of topo IIα and decreased drug stabilized DNA cleavable
complex formation and/or cytotoxicity with inhibitors that target
topo II.

In addition to phosphorylation, other post-translational mod-
ifications of topo II include sumoylation and ubiquitination
(Chikamori et al., 2010). Sumoylation of topo II that is induced by
inhibitors targeting the enzyme also affects cellular localization
(Chikamori et al., 2010). A role for ubiquitination-proteasome
pathway in regulating enzyme function has also been reported
(Chikamori et al., 2010). Interestingly, in human non-small cell
lung carcinoma cells, proteasome inhibition with, e.g., MG-132
following treatment with etoposide leads to enhanced apoptosis
and decreased arrest of cells in the G2+M boundary, without
apparent alteration in degradation of topo II (Tabata et al., 2001).
In contrast, pre-treatment with the proteasome inhibitor followed
by etoposide leads to decreased apoptosis, possibly due effects on
apoptotic signaling (Tabata et al., 2001). Neither, pre- or post-
treatment with the proteasome inhibitor affected DNA damage
induced by etoposide, suggesting that downstream events, e.g.,
apoptotic response may be another strategy to enhance anti-tumor
activity of topo II inhibitors.

FUTURE DIRECTIONS
In summary, it is apparent that multifactorial mechanisms gov-
ern the sensitivity of tumor cells to the DNA damaging and
cytotoxic effects of clinically useful inhibitors of topo II. Much
progress has been made in identifying agents and developing
strategies for enhancing cellular accumulation of topo II inhibitors
in tumors with the MDR phenotype. However, differences between
“acquired” and “intrinsic” resistance as well as insights on mech-
anisms that lead to reduced activity of topo II or compromised
activation of cell death pathways in tumors from patients resis-
tant to clinically active topo II inhibitors is an underexplored area.
Thus, development of targeted drugs that can activate topo II activ-
ity and cell death pathways without enhancing treatment-induced
toxicity, have considerable potential in combination therapy for
clinically improving the anti-tumor efficacy of topo II inhibitors.
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