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In a climate change scenario, successful modeling of the relationships between
plant-soil-meteorology is crucial for a sustainable agricultural production, especially
for perennial crops. Grapevines (Vitis vinifera L. cv Chardonnay) located in eight
experimental plots (Burgundy, France) along a hillslope were monitored weekly for
3 years for leaf water potentials, both at predawn (9pd) and at midday (9stem). The water
stress experienced by grapevine was modeled as a function of meteorological data
(minimum and maximum temperature, rainfall) and soil characteristics (soil texture, gravel
content, slope) by a gradient boosting machine. Model performance was assessed
by comparison with carbon isotope discrimination ( 13δ C) of grape sugars at harvest
and by the use of a test-set. The developed models reached outstanding prediction
performance (RMSE < 0.08 MPa for 9stem and < 0.06 MPa for 9pd), comparable
to measurement accuracy. Model predictions at a daily time step improved correlation
with 13δ C data, respect to the observed trend at a weekly time scale. The role of each
predictor in these models was described in order to understand how temperature,
rainfall, soil texture, gravel content and slope affect the grapevine water status in the
studied context. This work proposes a straight-forward strategy to simulate plant water
stress in field condition, at a local scale; to investigate ecological relationships in the
vineyard and adapt cultural practices to future conditions.

Keywords: water stress, grapevine (Vitis vinifera L.), machine-learning, gradient boosting machine (GBM), water
balance, carbon isotope discrimination δ13C, temperature, plant-soil water relationships

INTRODUCTION

Seventy percent of the available fresh water of the world is used for agricultural purposes (FAO,
2015), and it is therefore in that field that the largest water savings can be made. Water optimization
(i.e., water saving without compromising crop yield and quality) can be achieved through better
infrastructure and through an in-depth understanding of the plant physiological responses to
irrigation and cultural practices.

Abbreviations: 9stem, solar noon stem water potentials; 9pd, predawn leaf water potentials; δ13C, carbon isotopic
discrimination (here of grape sugars at harvest); FTSW, fraction of transpirable soil water; GBM, gradient boosting machine;
LOESS, locally estimated scatterplot smoothing; RMSE, root mean squared error; SWHC, soil water holding capacity (here
the same of TTSW); TTSW, total transpirable soil water; WBM, water balance model.
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Water status is a key component in the terroir effect,
a very important concept in viticulture and enology. It
summarizes the effect of the environment on vine physiology
and grape production as regulated by cultural practices (van
Leeuwen and Seguin, 2006). This concept also states that
origin determines the final characteristics and typicity of wines
because of the peculiarity of interactions in each particular
agroecosystem (OIV, 2010). The concept describes a form
of agricultural management, adaptable to all plants, which
must be considered an interesting alternative to intensive
farming as it respects traditional practices, the products and
the environment, as well as consumer pleasure. All aspects of
the ecosystem play a role and are accounted for (van Leeuwen
and Seguin, 2006). The application of this concept therefore
requires an enhanced knowledge of site-specific ecophysiological
relationships.

The understanding of grapevine water dynamics is therefore
crucial to optimize vineyard management, and models can be
used to summarize the complex relationships between the plant,
the soil, and the climate. Furthermore, model predictions can be
used to predict future trends as well as for daily practical purposes
in production contexts.

Except for pest and disease control, or grapevine phenology,
modeling approaches are not frequently used in viticulture, as
opposed to other trees or field crops (for a review of available
models for grapevine see Moriondo et al., 2015). Frequently,
non-vine specific, multicrop models are used in viticulture to
simulate soil water balance in vineyards, and then grapevine
growth and yield. Examples are the use of SWAP (Bonfante et al.,
2015), STICS (Cola et al., 2014), CropSyst (Pallas et al., 2011),
and HYDRUS (Maxwell et al., 2016) models, or the use of crop
coefficients, Kc (Fandiño et al., 2012).

Few models have been specifically developed for grapevine;
examples are modeling of nitrogen dynamics in vineyards
(NVINE, Nendel and Kersebaum, 2004), grape canopy structure
and light interception (Louarn et al., 2008; Iandolino et al.,
2013), grapevine phenology (Parker et al., 2011). However, to
the best of our knowledge, only one model has been specifically
developed to evaluate water balance in vineyards. This model
goes back to the work of Riou et al. (1989) for the radiation
partitioning and interception module, further extended by Lebon
et al. (2003), to include a soil WBM, then by Celette et al. (2010),
to account for the presence of cover crops. The model was last
updated by Hofmann et al. (2014), who modified the radiation
module and extended the application to sloped vineyards. This
model, referred here as WBM, is widely used in both research
(Pellegrino et al., 2006; Gaudin and Gary, 2012; among others)
and production.

In general, models used in viticulture to simulate grapevine
water balance are process-based; they formally describe and try to
link already known physiological and environmental processes.
These models need to be accurately parametrized and tend to
increase in complexity in order to suit all possible real-world
conditions. Specifically, the WBM needs an accurate, on-site
assessment of the SWHC, also called TTSW in viticulture (as
defined by Ritchie, 1981; see Brillante et al., 2015b for review
and comparison with other SWHC estimation methods), which

in turn requires the measurement of grapevine water status.
Furthermore, the WBM does not directly predict grapevine
water status but estimates it indirectly from the simulated
FTSW, which has been found to be related to both stomatal
conductance (Lebon et al., 2003), 9pd (Pellegrino et al., 2005)
and sap flow (Hofmann et al., 2014). A specific calibration is
required for each site in order to improve WBM prediction
performance.

The work presented here is different in that it empirically
starts from grapevine water stress data and uses a cutting
edge machine-learning approach to learn and describe their
pattern as a function of environmental variables. Specifically,
it seeks to directly predict leaf water potentials, commonly
used to evaluate plant water status and to improve irrigation
management, as a function of macroscopic soil properties
and widespread meteorological observations. This work
also takes advantage of the empirical approach, which does
not require a previously defined form to link inputs and
outcomes, to describe relationships between soil, climate and
grapevine water status. Model performances are assessed
by canonical practices (cross-validation, test-set) and by
comparison with carbon isotope discrimination of sugars
at harvest, δ13C (Farquhar et al., 1982, 1989), which is a
continuous integrator of grapevine water status, during the
veraison-harvest period (Gaudillère et al., 2002; de Sousa et al.,
2005).

The aim of this research was (i) to explore the potentialities of a
machine-learning algorithm to develop robust predictive models,
easy to transfer in production contexts, to evaluate past and
future grapevine water stress and (ii) to understand how easy-
to-measure environmental factors affect grapevine water status at
the local scale.

MATERIALS AND METHODS

Experimental Field Site and Plant
Material
This study was carried out over 3 years (2011–2013) in a
commercial vineyard (Domaine Louis Latour, N47.071992,
E4.855993, Aloxe-Corton, Burgundy, France). Eight
experimental plots were selected and labeled in alphabetical
order (A–H) from the top (325 m) to the bottom of the hill
(267 m). Plots were 7 m × 7 m squares containing 49 grapevines
(Vitis vinifera L. cv Chardonnay B.) grafted on SO4 rootstock
(interspecific cross between Vitis riparia, Michx. and Vitis
berlandieri, Planch.). Grapevines were between 20 and 30 years
old and planted at a spacing of 1 m (between plants) × 1 m
(between rows). Vines were Guyot pruned and trained in a
vertical-shoot-position trellis system with the first training wire
at 0.5 m and the fruiting cane trimmed at 1.20 m. Grapevine
rows were oriented north–south.

At the beginning of the study, soil samples were collected
at 0.1-m intervals down to 1-m depth in a trench located in
the middle of each plot and analyzed to determine soil texture
and gravel content. Soil properties averaged over 0–1 m depth
are presented in Table 1; a detailed description including a
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TABLE 1 | Summary of soil properties in the experimental field site.

Plot Slope (%) Gravel (%) Texture
(USDA)

Gravel
(class)

Slope
(class)

A 20.6 24.2 Loam High Steep

B 28.5 36.2 Loam High Steep

C 22.1 14.5 Loam Low Steep

D 6.2 23.9 Clay-loam High Mild

E 9.1 8.2 Clay-loam Low Mild

F 6.2 10.3 Clay-loam Low Mild

G 6.6 22.9 Clay-loam High Mild

H 4.1 26.4 Loam High Mild

Slope was measured with a differential GPS and expressed in percent (change in
elevation over a 100-m distance). Texture and gravel content were computed by
averaging data measured at approximately 0.1-m intervals over a 1-m depth in
each plot. The USDA triangle was used to classify the texture. Gravel content is
expressed in percent per volume. The right side of the table shows the data in the
categorical classes as used in models.

larger set of soil properties can be found in Brillante et al.
(2014).

Meteorological Data
Meteorological data were obtained from an on-site weather
station for 2012 and 2013 and from a commercial station used
by grape growers and located in proximity of the study site
for 2011. Both stations measured minimum and maximum
temperature and rainfall. To model the relationship between
climate data and plant water stress, cumulative rainfall over 7 and
14 consecutive days prior to leaf water potential measurement,
and daily temperatures (minimum, maximum and computed
mean) collected on the same day of measurement were used.
Rainfall and temperature trends in 2012 and 2013 are shown in
Brillante et al. (2016a).

Plant Physiological Measurements
Leaf Water Potentials
Predawn (9pd; Scholander et al., 1965) and 9stem (Begg and
Turner, 1970, and Choné et al., 2001 for grapevine) were
monitored weekly in 2012–2013 and every 10 days in 2011,
with a pressure chamber (PMS Instruments Inc., Albany,
OR, USA), from bunch closure to harvest in 2012–2013 and
from veraison to harvest in 2011. Eight leaves were randomly
sampled in the fruit area of different grapevines (one leaf per
plant) for 9pd and twelve for 9stem; for 9stem, leaves were
placed inside plastic bags covered with aluminum foil before
measurement. The sampled grapevines were selected randomly
and varied at each measurement. The order of testing between
the eight experimental plots was randomized to avoid bias from
measurement time. Both leaf water potentials were performed the
same day (time lag <24 h). Values are expressed in MPa. More
than 2000 9stem and more than 1500 9pd measurements were
performed. 9stem integrals were computed to allow comparison
with δ13C, 9stem being discrete in time while δ13C is continuous.
This method has been proposed first by Meyers (1988), and
compared first to δ13C by de Sousa et al. (2005). A value of 0 MPa

was used as baseline in integral computation; real values were
used (not absolute values).

Carbon Isotope Composition of Sugars, δ13C
Photosynthetic δ13C was measured on sugars in mature grapes,
following the protocol described in Gaudillère et al. (2002)
and van Leeuwen et al. (2010). Three 100-berry composite
samples were collected from 16 randomly selected grapevines
(3 samples × 8 blocks × 2 years) and isotopic analyses were
performed in triplicate on a Vario Micro Cube elemental analyzer
coupled in a continuous flow mode to an isotope ratio mass
spectrometer (IsoPrime, Elementar). USGS40 (IAEA, Vienna)
was used as an internal standard (δ13CPDB = −26.2 ± 0.1h).
δ13C values are reported in parts per thousand (h) relative to the
Vienna Pee Dee Belemnite (VPDB) international reference.

Statistical Analysis
A GBM (Friedman, 2001) with trees as base learners was used
for modeling (see Brillante et al., 2015a for further details in a
grapevine case study; Hastie et al., 2009 as reference text for a
good introduction; and Elith et al., 2008 for a primer in ecology).
The model was tuned by using 25 repetitions of ten-fold cross-
validation, which were also used to assess model performance.
The model was fitted on the data obtained in 2012 and 2013, while
the dataset from 2011 was used as “real life” test-set, with less
reliable commercial meteorological data locally used by farmers,
obtained from a station in proximity (1 km), but not on-site.
Multicollinearity was tested and stayed low among predictors
(the higher between 7 and 14-day cumulative rainfall stays at
0.47, Kendall correlation). Meteorological data entered the model
once computed in the way described in Section “Meteorological
Data” above, while the soil data (slope, texture and gravel content)
entered the model as categorical data, according to the groups
described in Table 1. The statistical analysis was run in R using
the GBM package (Ridgeway, 2013).

RESULTS

Soil Properties
Soil sample analysis showed that plots A, B, and C had a steeper
slope (higher than 20%), while plots D, E, F, G, and H had a milder
slope (lower than 10%) (Table 1). Texture differences between
plots were small, once averaged over the 1-m soil depth, and
corresponded to loam (A, B, C, and H) or clay-loam (D, E, F, and
G) classes. Gravel content showed a large range of variation (from
8 to 36% in volume), with plots A, B, D, G, and H >20% and plots
C, E, and F <15%.

Modeling of Plant Water Stress as a
Function of Climate, Topography and
Soil Properties
Solar Noon Stem Water Potential
Grapevine water stress ranged from low to moderate with
considerable variation in measured 9stem, which ranged from
−1.05 MPa to −0.24 MPa (Table 2). 9stem was modeled
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TABLE 2 | Descriptive statistics for grapevine water status and
meteorological data.

Variable Minimum Maximum Mean Median

9stem (MPa) −1.05 −0.24 −0.58 −0.54

9pd (MPa) −0.62 −0.03 −0.19 0.17

δ13C (h) −27.95 −26.33 −27.18 −27.24

Max temperature (◦C) 16.50 32.60 26.14 26.60

Cumulative rainfall in
the 7 previous days
(mm)

0.00 47.40 14.43 8.40

Cumulative rainfall in
the 14 previous days
(mm)

4.60 96.40 29.82 17.80

as described in M&Ms, including as predictors maximum
temperature, cumulative rainfall in the previous 7 and 14 days,
slope, gravel content and soil texture (Table 1). Descriptive
statistics for predictors and outcomes are presented in Table 2.

Model performances are presented in Figure 1. 9stem was
predicted with a RMSE of 0.085 ± 0.015 MPa and a coefficient
of determination (R2) of 0.783 ± 0.086 on simulated new data as
evaluated by cross-validation. The regularization process gave the
best results with 1000 trees having eight splits, a shrinkage equal
to 0.03, bag fraction set to 0.5, and minimum 10 data points in
final tree nodes.

All eight predictors included in the model had non-null
influence (i.e., each predictor contributed to the prediction of
the outcome), and maximum temperature was the one with the
highest relative contribution (Table 3).

To understand the nature of the dependence between outcome
and predictors, it is valuable to look at the partial dependence
plots (Figure 2). These plots give a graphical summary of
the relationship between predictors and the outcome (9stem),
in average conditions of all variables (set constant to their
mean) except the predictor variable in question. Attention
has to be paid to rainfall, because two model parameters are
derived from this variable. Therefore, the effect of rainfall
in 7 days takes into account 30 mm of rain in 14 days
(which is the recorded mean); conversely, the effect of rainfall
in 14 days takes into account 14 mm in the week before
measurement. When maximum temperature ranges between
approximately 22 and 28◦C, the effect on 9stem is null; when
maximum temperature decreases below 22◦C, 9stem increases;
conversely, when maximum temperature increases over 28◦C,
9stem decreases steeply (Figure 2A). Cumulative rainfall in
the previous 7 (Figure 2B) and 14 (Figure 2C) days both
affect 9stem predictions in a similar manner, but obviously with
different absolute values: 9stem decreases when rainfall is below
10 mm (25 mm) in the 7 (14) days before leaf water potential
measurement. From 10 to 15 mm, cumulative rainfall during the
7 previous days induces a rise in 9stem, then this positive effect
gradually decreases until it no longer positively affects 9stem
prediction with respect to the mean. Over 25 mm, cumulative
rainfall 14 days before measurements does not affect substantially
9stem estimates with respect to the mean within the model. The
soil characteristics included in the model suggest that when the

FIGURE 1 | Relationships between observed and predicted 9stem data
(training dataset is shown). The solid line is a line with slope 1 and intercept
0, while the dashed line is a loess fitted to the data.

TABLE 3 | Relative influence of predictors in the solar noon stem leaf
water potential (9stem) model (scaled so that the sum of all relative
contributions is 100).

Predictors in 9stem model Relative influence (%)

Maximum temperature 28.21 ± 0.82

Cumulative rainfall in the 7 previous days 25.77 ± 1.06

Cumulative rainfall in the 14 previous days 24.16 ± 0.97

Slope 12.92 ± 0.55

Gravel content 6.42 ± 0.46

Soil texture 2.54 ± 0.17

slope is steeper, the gravel content is higher and the soil texture is
richer in clay, 9stem decreases, while it increases when the slope
is mild, the gravel content is lower and the soil is loamy.

Figure 3 simulates the 9stem trend in 2012 and 2013 (the
training vintages) for the two most extreme cases in the dataset:
steep slope and high gravel content (loam texture), and mild
slope and low gravel content (clay-loam texture). As shown in
Figure 2F, the loam texture indicates a higher 9stem than the
clay-loam texture, but a combination of all factors inducing water
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FIGURE 2 | Partial dependence plots for each predictor in the 9stem model. Only simple relationships (no interactions) are shown. They have been obtained
by predicting 9stem while fixing all predictors to their mean value except the one in question, which was allowed to finely vary across the range of observed data. On
the y axis there is the marginal effect on 9stem, i.e., when it has a 0 value, 9stem is estimated to its mean by the predictor in question, when it has a value different
from 0, 9stem is estimated higher or lower than its mean by the corresponding value. On the x axis there is the range of observed data for the predictor in question.
The essential relationships between predictor and outcome are captured in a smoothed fashion by the red line which is a loess applied to the partial prediction data.
The gray lines are original functions as based on the trees used in the models. When the predictor is discrete (as for soil properties), the function shown in the partial
dependence plots is also discrete and has a single value for each level of the predictor (soil properties are binary here, then two values). See text for detailed
description. Plot (A–F) shows partial dependence plots between predictor and outcome: (A) for temperature, (B) for cumulative rainfall in 7 previous days, (C) for
cumulative rainfall in 14 previous days, (D) for slope, (E) for gravel, (F) for texture.

stress was not present in the experimental site (Table 1) and most
important were retained. The model always predicts 9stem within
the standard deviation, which is also summarized in Table 4, and
can be compared to the cross-validated RMSE error of the model:
0.085± 0.015 (Figure 1).

Observed data points were measured weekly, while model
predictions are shown at a daily time step (Figure 3). Departures
from the observed trends are present in the simulation,
and generally the model predicts low potential values more
frequently. As an example, see around 2012-15-08 for the steep
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FIGURE 3 | Model simulations for 9stem in 2012 and 2013 between bunch closure and harvest. Veraison was approximately 15–16 August in both years.
Two extreme scenarios are presented: (1) mild slope and low gravel content (clay-loam texture): lower water stress; and (2) steep slope and high gravel content (loam
texture): higher water stress. For observed data the standard deviation of measurements is the shaded area in lower panel trends, and error bars for green and blue
points in the upper panel. For predicted trends, the shaded area is equal to 0.1 MPa, the maximum estimated RMSE error in cross-validation (upper panel).

slope scenario, or compare the beginning of September 2012 for
the mild slope scenario. Are those daily simulations correct? An
answer could be obtained from the comparison of the 9stem
integral computed on model simulations from all eight sites
with the δ13C measured on must at harvest. The δ13C integrates
grapevine water stress over the veraison-harvest period and
is therefore a continuous estimator of grapevine water stress
(Gaudillère et al., 2002; de Sousa et al., 2005), as is also the 9stem
integral (Meyers, 1988; de Sousa et al., 2005). Figure 4 shows

TABLE 4 | Descriptive statistics of standard deviation for measured
(observed) 9stem.

Whole dataset
(n = 168)

Steep and
high gravel

Mild and
low gravel

Mean (MPa) 0.078 ± 0.033 0.082 ± 0.027 0.090 ± 0.03

Min (MPa) 0.019 0.019 0.033

Max (MPa) 0.23 0.15 0.23

Mean, minimum and maximum are shown and computed on data grouped by
date of measurement (12 leaves per site per date; 21 dates; whole dataset: 8
sites; steep and high gravel content: 2 sites; mild and low gravel content: 2 sites).
Cross-validated error of the model is 0.085 ± 0.015.

that the refinement of the trend at a daily time step (modeled)
greatly improves the correlation (r = −0.83, p < 0.0001) with
respect to the observed weekly time step (r = −0.38, p < 0.01).
Daily simulations are therefore coherent. Furthermore, the model
predicts 9stem within standard deviation of measurements even
in the 2011 vintage (test-set, not used to build the model and
using a different meteorological source) (Figure 5). The model
predicted 9stem in 2011 with an RMSE error of 0.11 MPa.

Predawn Leaf Water Potential
Absolute 9pd varied less than 9stem, ranging from −0.62 MPa
to −0.03 MPa, indicating a null to moderate-severe water deficit.
Therefore, 9pd indicated a lower water deficit for grapevine than
9stem. The correlation with 9stem was significant (p < 0.001,
df = 142) but was also greatly scattered (r = 0.29). Using an
approach similar to the one previously used for 9stem, a model
for 9pd was also developed. All the predictors used to develop
the 9stem model were also used for the 9pd model (Tables 1
and 2), but minimum temperature was used instead of maximum
temperature, because 9pd is measured at the end of the night
when minimum temperatures are generally recorded. However,
mean and maximum temperatures were also tested as predictors

Frontiers in Plant Science | www.frontiersin.org 6 June 2016 | Volume 7 | Article 796

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00796 June 3, 2016 Time: 13:36 # 7

Brillante et al. Machine-Learning Modeling of Grapevine Water Stress

in the model but minimum temperature gave better results in the
cross-validation procedure. Minimum temperature varied less
than maximum temperature (∼60% less) and ranged from 9.3◦C
to 19.3◦C.

Model performances are shown in Figure 6. The model
predicts 9pd with a RMSE of 0.06 ± 0.012 MPa and a R2 of
0.741 ± 0.094, as evaluated by cross-validation. Measurement
standard deviation (observed) was 0.049 ± 0.026 MPa. The
regularization process gave the best results with 1650 trees having
two splits, a shrinkage equal to 0.035, a bag fraction set to 0.5, and
10 data points in final tree nodes. All eight predictors included
in the model had non-null influence, and minimum temperature
was the one with the highest relative contribution, although very
similar to cumulative rainfall in the 14 previous days (Table 5).
Cumulative rainfall in the 7 previous days had a lower importance
in the model than rainfall in the 14 previous days; this was also a
significant difference with respect to the 9stem model, where both
rainfall predictors had similar importance. As for 9stem, the soil
properties had a lower influence in the model than the climate,
and their rank was the same as for 9stem. The relative values of
predictor contribution were also very similar in both models.

Partial dependence plots for the 9pd model are shown in
Figure 7. The relation between temperature and 9pd did not
have a clear structure as the one observed for 9stem (Figure 7A).
A general decrease in 9pd with increasing temperature is
observed, but is gentle and also noisy. The noise can be related
to the error in the model predictions, in anomalous data points
with high leverage, but also to variations of other parameters
(e.g., the vapor pressure deficit, VPD) to which air temperature
is more or less related and which are not taken into account by
the model. Considering rainfall (Figures 7B,C), if the amount
of rain in the last 7 (14) days is lower than 5 mm (10 mm),
9pd decreases, while if the amount of rain in the last 7 (14)
days is between 5 and 10 mm (25–50 mm), 9pd increases. When
precipitations in the 7 previous days are more abundant than
10 mm, the effect within 9pd prediction is null. 9pd increases
only when heavy rains were observed (more than 30 mm in
a week). Surprisingly and conversely, when cumulative rainfall
2 weeks before leaf water potential measurement increases over
50 mm, a slight decrease in 9pd is observable. The effect of soil
properties on 9pd (Figures 7D–F) was similar to that for 9stem;
they acted in the same directions in both models.

DISCUSSION

The study of the relationship between plants and their
environment, especially in relation to biotic and abiotic stresses,
has acquired a renewed importance in recent years because of the
increased awareness about climate change. Accurately modeling
and predicting physiological responses of plants to these stresses,
such as water stress, has a strategic importance to increase
producer awareness in a rapid and cost effective way, and to allow
adaptation of agronomic practices to future conditions.

As opposed to previous works on the WBM of vineyards
(Lebon et al., 2003; Celette et al., 2010; Hofmann et al., 2014),
this work did not have the aim to build a framework extensible to

FIGURE 4 | Correlation between 9stem integrals and δ13C (h). 9stem

integrals were measured on all eight sites in 2012 and 2013 between veraison
(2012-08-17; 2013-08-15) and harvest (2012-09-20; 2013-09-13). Upper
panel: 9stem integrals measured on the daily 9stem trend as estimated by the
model; lower panel: 9stem integrals measured on the measured trend
(observed), at weekly time scale. Error bars are standard deviation of δ13C
biological replicates. The blue line is the best fit (OLS regression); the shaded
area shows the confidence intervals for this line.

all vineyards. This work instead proposed a strategy to modeling
leaf water potentials from macroscopic soil and climate data,
which are easily available to both scientists and grape growers.
It is a straight-forward approach to predict plant water status at
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FIGURE 5 | Observed and predicted 9stem trends in 2011 (test-set and different meteorological data). Error bars are mapped to standard deviation for
observed data points (blue: steep slope and high gravel content; green: mild slope and low gravel content). For predicted values, error bars are equal to 0.11 MPa,
i.e., the RMSE evaluated on the test-set. F indicates missing data for plot A and B on 2011-08-16 (both steep slope and high gravel content, Table 1); missing data
were replaced by the mean of the whole dataset for this date.

a daily time step and can therefore be used to simulate future
and past local scenarios as well increase the time resolution of
this traditional measurement. By modeling highly non-linear
relationships as those shown in Figures 2 and 4, as well non-
linear interactions between predictors (not shown), the used
machine-learning approach allowed to obtain very low errors in
the direct estimation of leaf water potentials, probably the most
widespread measurements of plant water stress in commercial
vineyards. The reported errors are comparable to measurement
standard deviation (Table 4). This is the first time that grapevine
leaf water potentials are directly modeled by a machine-learning
approach, and the first time for 9stem itself. Here a GBM was
used, but other non-linear methods such as neural networks,
random forests, etc. could probably be effective as well.

The proposed strategy suffers from the typical problems
related to empirical approaches, as summarized by Adams et al.
(2013). The main problem is that it depends on the learned
data, and estimation of leaf water potentials cannot be made
outside the range of values observed for each predictor (i.e.,
extrapolation). For the same reason the spatial scale of prediction
is reduced to the scale of calibration. This problem limits the
suitability to large scale simulation of climate change for which
process-based models are probably more effective (Cuddington
et al., 2013; Moriondo et al., 2015). A solution to this limit
could be the acquisition of datasets including a great variation
in predictor values, and extending the calibration area. Large
datasets are also mandatory to accurately fit and interpret
machine-learning methods.

Models were assessed using cross-validation, a test-set and
correlation with δ13C. The used test-set is not very large, and
can therefore be considered more as an application of the model

on unseen data, than as a method to accurately assess model
performances, to which cross-validation is very effective and best
suited in this, and other similar cases (Hastie et al., 2009). For this
reason commercial meteorological data from a different station
were used. The correlation with δ13C, was used to evaluate the
ability of the model to daily predictions of plant water status,
being data used to build the model collected at a weekly time-
scale. Carbon isotopic discrimination has already been proposed
as a method to test models of optimal stomatal conductance
in response to environmental gradients (Farquhar et al., 2002;
Wright et al., 2003; Medlyn et al., 2011). Measured on grape
sugar at harvest it has been proposed as an integral estimator of
grapevine water status between veraison and harvest (Gaudillère
et al., 2002; de Sousa et al., 2005). However, it is also related to
genotype differences, nitrogen, and other environmental factors
(see Cernusak et al., 2013, for a review). Because of the use made
here of this measurement, those nuisance factors did not affect
results: two correlations, obtained with the same δ13C data are
compared, the scale of the study site is small, plant genotype is
very similar.

Compared to the WBM, the use of raw soil and climate data to
directly predict plant water stress has two advantages: (i) it allows
to avoid SWHC measurements, or TTSW as commonly referred
to in viticulture (here the two terms are interchangeable), which
is the basis of the WBM; and (ii) it allows to directly express plant
water status as a function of both soil and climate data.

More specifically:

(i) An accurate measurement of the TTSW is problematic,
expensive and time consuming. TTSW needs an accurate
field assessment of volumetric soil water. It cannot be
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FIGURE 6 | Relationships between observed and predicted 9pd data
(training dataset is shown). The solid line is a line with slope 1 and intercept
0, while the dashed line is a local polynomial regression (loess) fitted to the
data.

inferred by a laboratory analysis of soil properties, being
dependent from root uptake, and at the same time it also
demands estimation of the plant water stress (Ritchie,
1981; Pellegrino et al., 2005; Brillante et al., 2015b). The
accuracy of measuring devices for the estimation of soil
volumetric content also causes problems. As an example,
time-domain reflectometry (TDR), which is among the
most used devices for this scope, commonly has an error

TABLE 5 | Relative influence of predictors in predawn leaf water potential
(9pd) model (scaled so that the sum of all relative contributions is 100).

Predictors in 9pd model Relative influence (%)

Minimum temperature 31.02 ± 0.97

Cumulative rainfall in the 14 previous days 29.99 ± 0.90

Cumulative rainfall in the 7 previous days 19.1 ± 0.81

Slope 12.13 ± 0.42

Gravel content 5.28 ± 0.31

Soil texture 2.48 ± 0.22

in estimation of ±2% vol. (manufacturer values, in perfect
operating conditions). The error can accumulates when
estimating low and high limits of TTSW (up to ± 4%
vol.), and in the worst cases finally brings to a ± 15–40%
biased estimation of TTSW, which approximately ranges
for grapevine between 10 and 30% vol. (Brillante et al.,
2016b).

(ii) The WBM does not directly predict plant water stress
but correlates it in a second step to the simulated
FTSW through a bilinear function (Lebon et al., 2003),
which was empirically found (Trambouze and Voltz,
2001) where the correlation between the two variables no
longer exists for FTSW values higher than 0.4 (FTSW is
scaled between 0 and 1). This reduces the accuracy when
FTSW is above the threshold, but has allowed stomatal
conductance (Lebon et al., 2003) or sap flow (Hofmann
et al., 2014) to be simulated. The 0.4 value is used as
a threshold of water stress, i.e., at higher FTSW values
plant transpiration is not limited by soil water. However,
this threshold does not correspond to a fixed transpiration
value, which instead varies between sites as shown in
Hofmann et al. (2014), and therefore a site specific
calibration is requested. Furthermore, even if the effect
of climate factors (evapotranspiration) is included in the
model to simulate soil-water consumption, a direct effect
on plant water status is not included. Plant water status
can be affected by the climate independently from soil
water, as shown in Figure 2A for temperature on 9stem,
which can down-regulate (Greer and Weedon, 2012) or
up-regulate (Greer and Weedon, 2013) gas exchanges, or
as shown by Poni et al. (2009) for VPD. This can also
limit the WBM in simulating climate change scenarios,
especially in regions where temperature is expected to rise
but rainfall evolution remains strongly uncertain (IPCC,
2014). Results in Figure 2A show that 9stem appears
strongly dependent on maximum temperature, which can
also act here as a proxy for VPD. This merits to be verified
in future studies.

It is interesting to observe differences in the effect of the
rainfall in the 7 previous days on 9stem and 9pd, as shown in
the respective partial dependence plots (Figures 2B,C), or the
respective tables for the relative influence of predictors (Tables 3
and 5). The 9stem response to rainfall is clearly stronger than that
of 9pd, the latter appearing as a more conservative evaluation
of plant water stress. As proposed in Brillante et al. (2016a),
the faster response of 9stem to re-watering could be due to
the plants’ large sensitivity during the day to water refill in the
shallow layers. Indeed, lower leaf/stem water potential allows
water extraction in layers where water is stored at higher tensions,
among which the shallower layers, which rapidly dried because of
both plant transpiration and soil evaporation. During the night,
the lower tensions in plants reduce the possibilities of using the
dry shallower layers and plants principally equilibrate with deeper
horizons.

Slope was the main soil factor influencing grapevine
water stress (Tables 3 and 5; Figures 2D and 7D), probably
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FIGURE 7 | Partial dependence plots for each predictor in the 9pd model. Only simple relationships (no interactions) are shown. They have been obtained by
predicting 9pd while fixing all predictors to their mean value except the one in question, which was allowed to finely vary across the range of observed data. On the y
axis there is the marginal effect on 9pd, i.e., when it has a 0 value, 9pd is estimated to its mean by the predictor in question, when it has a value different from 0, 9pd

is estimated higher or lower than its mean by the corresponding value. On the x axis there is the range of observed data for the predictor in question. The essential
relationships between predictor and outcome are captured in a smoothed fashion by the red line which is a loess applied to the partial prediction data. The gray lines
are original functions as based on the trees used in the models. When the predictor is discrete (as for soil properties), the function shown in the partial dependence
plots is also discrete and has a single value for each level of the predictor (soil properties are binary here, then two values). See text for detailed description. Plot
(A–F) shows partial dependence plots between predictor and outcome: (A) for temperature, (B) for cumulative rainfall in 7 previous days, (C) for cumulative rainfall in
14 previous days, (D) for slope, (E) for gravel, (F) for texture.

because of surface runoff occurring in this condition,
which depends on the rainfall intensity at a daily rate,
and the soil tillage. In vineyards, a runoff threshold has
been estimated at 6 mm of daily rain for bare soil and

25 mm for a cover crop (Celette et al., 2008). Soil sites in
this study were both tilled and crop covered. The effect
of steep slope shown in this study confirms the results
by Hofmann et al. (2014) where steep sloped vineyards
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were reported to decrease their relative transpiration rate with
increasing evaporation demand, while the effect was reduced for
mild sloped vineyards.

The role of soil texture and gravel content on plant water
stress has already been investigated in many studies (Gaudillère
et al., 2002; van Leeuwen et al., 2004, 2009; des Gachons et al.,
2005; Tramontini et al., 2013a; Bonfante et al., 2015). A recent
ecophysiological review can be found in Lovisolo et al. (2016).
The use of soil properties by the models presented in this study
is coherent with previously cited research. The water stress
experienced by grapevines in gravelly soils is predicted to be
more severe than in soils with low gravel content (Figures 2E
and 7E), because gravel directly reduces TTSW. Models predict
a higher water stress for soil with a finer texture with respect
to soils with a coarser texture. This effect is related to the
reduction in matrix potential of soil with increasing clay. It has
also been shown that leaf ABA concentration is higher in clay
rich soils, therefore determining stomatal closure and lowering
transpiration (Tramontini et al., 2014). It has been proposed
that anisohydric (or drought-resistant) cultivars, such as the
Chardonnay (Vandeleur et al., 2009), could be more sensitive to
soil characteristics, than to climate (Lovisolo et al., 2016). This
could probably be true when compared to isohydric cultivars,
but in this study the climate had a greater effect respect to the
soil. Rootstock also plays a significant role in the adaptation of
the scion to the environment (Tramontini et al., 2013b), and the
SO4, being low-medium tolerant to drought (Lovisolo et al., 2016)
presents an opposite behavior respect to Chardonnay. However,
the effect of texture was reduced in this study, compared to these
cited works, because differences between experimental sites were
not very strong: texture averaged over the first meter ranged from
loamy to clay-loamy, sandy soils were absent.

CONCLUSION

Empirical models able to predict 9stem and 9pd with high
accuracy were developed for grapevine using a machine-learning

approach. Temperature appeared as a very important predictor in
determining the water stress experienced by grapevine, especially
at midday. In the presented models it directly affected 9stem,
independently from rainfall, and then soil water. In predictive
models, it can also act as a proxy for evaporation demand. The
response to re-watering appeared different when considering the
water stress measured at night and during the day, and close in
time rainfall had more effect in the alleviation of water stress
experienced at midday than at night.

To build empirical predictive models as in this study to
evaluate the water stress experienced by grapevine allows
reaching very good performance. It can be considered a useful
strategy to simulate past and future plant water stress in field
condition, at a local scale. It can also be useful to investigate
ecological relationships in the vineyard and adapt cultural
practices to future conditions.
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