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In recent years the umbral calculus has emerged from the shadows to provide an elegant
correspondence framework that automatically gives systematic solutions of ubiquitous
difference equations—discretized versions of the differential cornerstones appearing in
most areas of physics and engineering—as maps of well-known continuous functions.
This correspondence deftly sidesteps the use of more traditional methods to solve these
difference equations. The umbral framework is discussed and illustrated here, with special
attention given to umbral counterparts of the Airy, Kummer, and Whittaker equations, and
to umbral maps of solitons for the Sine-Gordon, Korteweg–de Vries, and Toda systems.

Keywords: umbral correspondence, discretization, difference equations, umbral transform, hypergeometric

functions

1. INTRODUCTION
Robust theoretical arguments have established an anticipation
of a fundamental minimum measurable length in Nature, of
order LPlanck ≡ √

h̄GN/c3 = 1.6162 × 10−35 m, the correspond-

ing mass and time being MPlanck ≡ √
h̄c/GN = 2.1765 × 10−8 kg

and LPlanck/c = 5.3911 × 10−44 s. The essence of such arguments
is the following (in relativistic quantum geometrical units,
wherein h̄, c, and MPlanck are all unity).

In a system or process characterized by energy E, no lengths
smaller than L can be measured, where L is the larger of either the
Schwarzschild horizon radius of the system (∼ E) or, for energies
smaller than the Planck mass, the Compton wavelength of the
aggregate process (∼ 1/E). Since the minimum of max(E, 1/E)

lies at the Planck mass (E = 1), the smallest measurable dis-
tance is widely believed to be of order LPlanck . Thus, continuum
laws in Nature are expected to be deformed, in principle, by
modifications at that minimum length scale.

Remarkably, however, if a fundamental spacetime lattice of
spacing a = O(LPLanck) is the structure that underlies conventional
continuum physics, then it turns out that continuous symmetries,
such as Galilei or Lorentz invariance, can actually survive unbro-
ken under such a deformation into discreteness, in a non-local,
umbral realization (10, 11, 18).

Umbral calculus, pioneered by Rota and associates in a com-
binatorial context (4, 16), specifies, in principle, how functions
of discrete variables in infinite domains provide systematic “shad-
ows” of their familiar continuum limit properties. By preserving
Leibniz’s chain rule, and by providing a discrete counterpart of
the Heisenberg algebra, observables built from difference opera-
tors shadow the Lie algebras of the standard differential operators
of continuum physics. [For a review relevant to physics, see (13).]
Nevertheless, while the continuous symmetries and Lie algebras
of umbrally deformed systems might remain identical to their
continuum limit, the functions of observables themselves are
modified, in general, and often drastically so.

Traditionally, the controlling continuum differential equations
of physics are first discretized (2, 5, 18), and then those differ-
ence equations are solved to yield umbral deformations of the
continuum solutions. But quite often, routine methods to solve
such discrete equations become unwieldy, if not intractable. On
the other hand, some technical difficulties may be bypassed by
directly discretizing the continuum solutions. That is, through
appropriate umbral deformation of the continuum solutions, the
corresponding discrete difference equations may be automatically
solved. However, as illustrated below for the simplest cases of
oscillations and wave propagation, the resulting umbral modifi-
cations may present some subtleties when it comes to extracting
the underlying physics.

In (21) the linearity of the umbral deformation functional
was exploited, together with the fact that the umbral image
of an exponential is also an exponential, albeit with interest-
ing modifications, to discretize well-behaved functions occur-
ring in solutions of physical differential equations through their
Fourier expansion. This discrete shadowing of the Fourier
representation functional should thus be of utility in infer-
ring wave disturbance propagation in discrete spacetime lat-
tices. We continue to pursue this idea here with some explicit
examples. We do this in conjunction with the umbral defor-
mation of power series, especially those for hypergeometric
functions. We compare both Fourier and power series meth-
ods in some detail to gain further insight into the umbral
framework.

Overall, we utilize essentially all aspects of the elegant umbral
calculus to provide systematic solutions of discretized corner-
stone differential equations that are ubiquitous in most areas
of physics and engineering. We pay particular attention to
the umbral counterparts of the Airy, Kummer, and Whittaker
equations, and their solutions, and to the umbral maps of
solitons for the Sine-Gordon, Korteweg–de Vries, and Toda
systems.
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2. OVERVIEW OF THE UMBRAL CORRESPONDENCE
For simplicity, consider discrete time, t = 0, a, 2a, . . . , na, . . ..
Without loss of generality, broadly following the summary review
of (13), consider an umbral deformation defined by the forward
difference discretization of ∂t ,

�x(t) ≡ x(t + a) − x(t)

a
, (1)

and whence of the elementary oscillation Equation, ẍ(t) = −x(t),
namely,

�2x(t) = x(t + 2a) − 2x(t + a) + x(t)

a2
= −x(t). (2)

Now consider the solutions of this second-order difference equa-
tion. Of course, (2) can be easily solved directly by the textbook
Fourier-component Ansatz x(t) ∝ rt , (2), to yield (1 ± ia)t/a.
However, to illustrate instead the powerful systematics of umbral
calculus (13, 18), we produce and study the solution in that
framework.

The umbral framework considers associative chains of oper-
ators, generalizing ordinary continuum functions by ultimately
acting on a translationally-invariant “vacuum” 1, after manip-
ulations to move shift operators to the right and have them
absorbed by that vacuum, which we indicate by T · 1 = 1. Using
the standard Lagrange-Boole shift generator

T ≡ ea∂t , so that Tf (t) · 1 = f (t + a)T · 1 = f (t + a), (3)

the umbral deformation is then

∂t �−→ � ≡ T − 1

a
, (4)

t �−→ tT−1, (5)

tn �−→ (tT−1)n = t(t − a)(t − 2a) · · ·
(t − (n − 1)a)T−n ≡ [t]nT−n, (6)

so that [t]0 = 1, and, for n > 0, [0]n = 0. The [t]n are called
“basic polynomials” 1 for positive n (5, 13, 16), and they are
eigenfunctions of tT−1�.

A linear combination of monomials (a power series represen-
tation of a function) will thus transform umbrally to the same
linear combination of basic polynomials, with the same series
coefficients, f (t) �−→ f (tT−1). All observables in the discretized
world are thus such deformation maps of the continuum observ-
ables, and evaluation of their direct functional form is in order.
Below, we will be concluding the correspondence by casually
eliminating translation operators at the very end, first through
operating on the vacuum and then leaving it implicit, so that
F(t) ≡ f (tT−1) · 1.

The umbral deformation relies on the respective umbral enti-
ties obeying operator combinatorics identical to their continuum

1We stress that the notation [t]n is shorthand for the product t(t − a) . . . (t −
(n − 1)a). It is not just the nth power of [t] = t.

limit (a → 0), by virtue of obeying the same Heisenberg commu-
tation relation (18),

[∂t, t] = 1 = [�, tT−1]. (7)

Thus, e.g., by shift invariance, T�T−1 = �,

[∂t, tn] = ntn − 1 �−→ [�, [t]nT−n] = n[t]n − 1T1 − n, (8)

so that, ultimately, �[t]n = n[t]n − 1. For commutators of asso-
ciative operators, the umbrally deformed Leibniz rule holds
(10, 11),

[�, f (tT−1)g(tT−1)] = [�, f (tT−1)]g(tT−1)

+ f (tT−1)[�, g(tT−1)], (9)

ultimately to be dotted onto 1. Formally, the umbral deformation
reflects (unitary) equivalences of the unitary irreducible repre-
sentation of the Heisenberg-Weyl group, provided for by the
Stone-von Neumann theorem. Here, these equivalences reflect the
alternate consistent realizations of all continuum physics struc-
tures through systematic maps such as the one we have chosen. It
is worth stressing that the representations of this algebraic rela-
tion on the real or complex number fields can only be infinite
dimensional, that is, the lattices covered must be infinite.

Now note that, in this case the basic polynomials [t]n are just
scaled falling factorials, for n ≥ 0, i.e., generalized Pochhammer
symbols, which may be expressed in various ways:

[t]n ≡ (
tT−1)n · 1 = t(t − a) · · · (t − (n − 1) a) = an (t/a)!

(t/a − n)!

= an �
( t

a + 1
)

�
( t

a − n + 1
) = (−a)n �

(
n − t

a

)
�
(− t

a

) . (10)

Thus [−t]n = (−)n[t + a(n − 1)]n. Furthermore, [an]n = ann! ;
[t]m[t − am]n − m = [t]n for 0 ≤ m ≤ n ; and for integers 0 ≤
m < n, [am]n = 0. Thus, �m[t]n = [an]m[t]n − m/am.

Negative umbral powers, by contrast, are the inverse of rising
factorials, instead:

[
1

t

]n

=
(

T
1

t

)n

· 1 = 1

(t + a)(t + 2a) · · · (t + na)

= a−n (t/a)!
(t/a + n)!

= a−n �
( t

a + 1
)

�
( t

a + n + 1
) = (−a)−n �

(− t
a − n

)
�
(− t

a

) . (11)

These correspond to the negative eigenvalues of tT−1�.
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The standard umbral exponential is then natural to define as
(6, 11, 16)2

E(λt,λa) ≡ eλ[t] ≡ eλtT−1 · 1 =
∞∑

n = 0

λn

n! [t]n

=
∞∑

n = 0

(λa)n
(

t/a

n

)
= (1 + λa)t/a, (12)

the compound interest formula, with the proper continuum limit
(a → 0). N.B. There is always a 0 at λ = −1/a.

Evidently, since � · 1 = 0,

�eλ[t] = λeλ[t], (13)

and, as already indicated, one could have solved this equation
directly3 to produce the above E(λt,λa).

Serviceably, the umbral exponential E happens to be an ordi-
nary exponential,

eλ[t] = e
ln(1+λa)

a t, (14)

and it actually serves as the generating function of the umbral
basic polynomials,

∂n

∂λn
(1 + λa)t/a

∣∣∣∣
λ = 0

= [t]n. (15)

Conversely, then, this construction may be reversed, by first
solving directly for the umbral eigenfunction of �, and effec-
tively defining the umbral basic polynomials through the above
parametric derivatives, in situations where these might be more
involved, as in the next section.

As a consequence of linearity, the umbral deformation of a
power series representation of a function is given formally by

f (t) �−→ F(t) ≡ f (tT−1) · 1 = f

(
∂

∂λ

)
(1 + λa)t/a

∣∣∣∣
λ = 0

.(16)

This may not always be easy to evaluate, but, in fact, the same
argument may be applied to linear combinations of exponentials,
and hence the entire Fourier representation functional, to obtain

F(t) =
∫ ∞

−∞
dτ f (τ)

∫ ∞

−∞
dω

2π
e−iωτ(1 + iωa)t/a

=
(

1 + a
∂

∂τ

)t/a

f (τ)

∣∣∣∣∣
τ = 0

. (17)

2Again we stress that eλ[t] is a short-hand notation, and not just the usual
exponential of λ[t] = λt.
3N.B. There is an infinity of “non-umbral” extensions of the E (λt,λa) solu-
tion (12): Multiplying the umbral exponential by an arbitrary periodic func-
tion g(t + a) = g(t) will pass undetected through �, and thus will also yield
an eigenfunction of �. Often, such extra solutions have either a vanishing
continuum limit, or else an ill-defined one.

The rightmost equation follows by converting iω into ∂τ deriva-
tives and integrating by parts away from the resulting delta func-
tion. Naturally, it identifies with Equation (16) by the (Fourier)
identity f (∂x)g(x)|x = 0 = g(∂x)f (x)|x = 0. It is up to individual
ingenuity to utilize the form best suited to the particular appli-
cation at hand.

It is also straightforward to check that this umbral transform
functional yields

∂t f �−→ �F , (18)

and to evaluate the umbral transform of the Dirac delta function,
which amounts to a cardinal sine or sampling function,

δ(t) �−→ sin(π
2 (1 + t/a))

(π(a + t))
, (19)

or to evaluate umbral transforms of rational functions, such as

f = 1

(1 − t)
�−→ F = e1/aat/a�(t/a + 1, 1/a), (20)

to obtain an incomplete Gamma function (1), and so on. Note
how the last of these is distinctly, if subtly, different from the
umbral transform of negative powers, as given in (11).

In practical applications, evaluation of umbral transforms of
arbitrary functions of observables may be more direct, at the
level of solutions, through this deforming functional, Equation
(17). For example, one may evaluate in this way the umbral
correspondents of trigonometric functions,

Sin[t] ≡ ei[t] − e−i[t]

2i
, Cos[t] ≡ ei[t] + e−i[t]

2
, (21)

so that

� Sin[t] = Cos[t], � Cos[t] = − Sin[t]. (22)

As an illustration, consider phase-space rotations of the oscil-
lator. The umbral deformation of phase-space rotations,

ẋ = p, ṗ = −x �−→ �X(t) = P(t), �P(t) = −X(t),
(23)

readily yields, by directly deforming continuum solutions, the
oscillatory solutions,

X(t) = X(0) Cos[t] + P(0) Sin[t],
P(t) = P(0) Cos[t] − X(0) Sin[t]. (24)

In view of (14), and also

(1 + ia) =
√

1 + a2ei arctan(a), (25)

the umbral sines and cosines in (24) are seen to amount to discrete
phase-space spirals,

X(t) = (1 + a2)
t

2a (X(0) cos(ωt) + P(0) sin(ωt)),

P(t) = (1 + a2)
t

2a (P(0) cos(ωt) − X(0) sin(ωt)), (26)
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with a frequency decreased from the continuum value (i.e., 1) to

ω = arctan(a)/a ≤ 1. (27)

So the frequency has become, effectively, the inverse of the
cardinal tangent function.4 Note that the umbrally conserved
quantity is,

2E = X(0)2 + P(0)2 = (1 + a2)
−t
a (X(t)2 + P(t)2), (28)

such that �E = 0, with the proper energy as the continuum limit.

3. REDUCTION FROM SECOND-ORDER DIFFERENCES TO
SINGLE TERM RECURSIONS

In this section and the following, to conform to prevalent con-
ventions, the umbral variable will be denoted by x, instead
of t. In this case there is a natural way to think of the umbral
correspondence that draws on familiar quantum mechanics lan-
guage (16): The discrete difference equations begin as operator
statements, for operator xs and Ts, but are then reduced to
equations involving classical-valued functions just by taking the
matrix element 〈x| · · · |vac〉 where |vac〉 is translationally invari-
ant. The overall x-independent non-zero constant 〈x|vac〉 is then
ignored.

To be specific, consider Whittaker’s equation (1) for μ = 1/2,

(
∂2

x + κ

x
− 1

4

)
y(x) = 0. (29)

This umbrally maps to the operator statement

(
�2 + T

κ

x
− 1

4

)
y(xT−1) = 0. (30)

Considering either y(xT−1) · 1 ≡ Y(x), or else 〈x| y(xT−1) |vac〉
= Y(x) 〈x|vac〉, this operator statement reduces to a classical
difference equation,

Y(x + 2a) − 2Y(x + a) + Y(x) + κa2

x + a
Y(x + a) − a2

4
Y(x) = 0.

(31)

Before using umbral mapping to convert continuous solutions
of (29) into discrete solutions (14, 15) of (31), here we note a
simplification of the latter equation upon choosing a = 2, which
amounts to setting the scale of x. With this choice (31) collapses
to a mere one-term recursion. Shifting x → x − 2 this is

Y(x + 2) = 2

(
x − 2κ

x

)
Y(x). (32)

4That is, for � ≡ arctan(a), the spacing of the zeros, period, etc, are scaled up
by a factor of tanc(�) ≡ tan(�)

�
≥ 1. For complete periodicity on the time

lattice, one further needs return to the origin in an integral number of N
steps, thus a solution of N = 2πn/ arctan a. Example: For a = 1, the solutions’
radius spirals out as 2t/2, while ω = π/4, and the period is τ = 8.

Despite being a first-order difference equation, however, the solu-
tions of this equation still involve two independent “constants of
summation”even for x restricted to only integer values, because
the choice a = 2 has decoupled adjacent vertical strips of unit
width on the complex x plane. To be explicit, for integer x > 0,
forward iteration gives (2)

Y(2k + 1) = 2k

⎛
⎝ k∏

j = 1

j − 2κ

j

⎞
⎠Y(1) and

Y(2k + 2) = 2k

⎛
⎝ k∏

j = 1

j − κ

j

⎞
⎠Y(2), for integer k ≥ 0, (33)

with Y(1) and Y(2) the two independent constants that determine
values of Y for all larger odd and even integer points, respectively.

Or, if generic x is contemplated, the Equation (32) has
elementary solutions, for arbitrary complex constants C1 and C2,
given by

Y(x) = 2x/2�
( x

2 − κ
)

�
( x

2

) C1 + (−2)x/2

�
( x

2

)
�
(
1 − x

2 + κ
) C2 (34)

= 2x/2�
( x

2 − κ
)

�
( x

2

) (
C1 + 1

π
(−1)x/2 C2 sin π

(x

2
− κ

))
.

(35)

In the second expression, we have used � (z) � (1 − z) =
π/ sin πz. Note the C2 part of this elementary solution dif-
fers from the C1 part just through multiplication by a par-
ticular complex function with period 2. This is typical of
solutions to difference equations since any such periodic
factors are transparent to �, as mentioned in an earlier
footnote (12).

As expected, even for generic x the constants C1 and C2

may be determined given Y(x) at two judiciously chosen
points, not necessarily differing by an integer. For example,
if 0 < κ < 1,

C1 = �(1 + κ)

21+κ
Y(2 + 2κ) , C2 = π

sin πκ
C1 − 1

2
� (κ) Y(2).

(36)

Moreover, poles and zeros of the solution are manifest either from
the � functions in (34), or else from continued product represen-
tations such as (33). For the latter, either forward or backward
iterations of the first-order difference Equation (32) may be used.
Schematically,

Y(x) = (2x − 4 − 4κ) (2x − 8 − 4κ) (2x − 12 − 4κ) · · ·
(x − 2) (x − 4) (x − 6) · · · , (37)

or alternatively,

Y(x) = x(x + 2)(x + 4) · · ·
(2x − 4κ)(2x + 4(1 − κ))(2x + 4(2 − κ)) · · · . (38)
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Although both terms in (34) have zeroes, the C1 term also
has poles while the C2 term has none—it is an entire func-
tion of x—and it is complex for any nonzero choice of
C2. Of course, since the Equation (32) is linear, real and
imaginary parts may be taken as separate real solutions. All
this is evident in the following plots for various selected
integer κ.

-2 -1 1 2 3 4 5 6 7 8

-30

-20

-10

10

20

30

x

2x/2�
( 1

2 x − κ
)

�
( 1

2 x
) for κ = 1, 2, and 3 in red, blue, and green.

-2 -1 1 2 3 4 5 6 7 8

-4

-3

-2

-1

1

2

3

4

x

2x/2 cos π
( 1

2 x
)

�
( 1

2 x
)
�
(
1 − 1

2 x + κ
) for κ = 1, 2, and 3 in red, blue, and green.

-2 -1 1 2 3 4 5 6 7 8

-3

-2

-1

1

2

3

4

x

2x/2 sin π
( 1

2 x
)

�
( 1

2 x
)
�
(
1 − 1

2 x + κ
) for κ = 1, 2, and 3 in red, blue, and green.

Collapse to a mere one-term recursion also occurs for an
inverse-square potential,

(
∂2

x + κ

x2
− μ

)
y(x) = 0. (39)

For μa2 = 1, which amounts to setting the scale of the energy of
the solution, the umbral version of this equation reduces to

Y(x) = 1

2

(
1 + κa2

x(x + a)

)
Y(x + a)

= 1

2

(
1 + aκ

x
− aκ

a + x

)
Y(x + a). (40)

That is to say,

Y(x + a) = 2
(
1 + x

a

) x
a(

x
a + 1+√

1−4κ
2

) (
x
a + 1−√

1−4κ
2

)Y(x) . (41)

Elementary solutions for generic x, for arbitrary complex con-
stants C1 and C2, are given by

Y(x) = 2x/a

�
(

x
a + 1+√

1−4κ
2

)
�
(

x
a + 1−√

1−4κ
2

)
(

�
(

1 + x

a

)
�
(x

a

)
C1 + 1

�
(− x

a

)
�
(
1 − x

a

)C2

)
(42)

= 2x/a�
(
1 + x

a

)
�
( x

a

)
�
(

x
a + 1+√

1−4κ
2

)
�
(

x
a + 1−√

1−4κ
2

)
(

C1 − 1

π2
C2 sin2

(πx

a

))
. (43)

Again, the C2 part of this elementary solution differs from the C1

part just through multiplication by a particular complex function
with period a. And again, poles and zeros of these and other solu-
tions are manifest either from those of the � functions, or else
from a continued product form, e.g.

Y(x) = (x2 + xa + κa2)((x + a)2 + (x + a)a + κa2) · · ·
(2x(x + a))(2(x + a)(x + 2a)) · · · . (44)

It is not surprising that (29) and (39) share the privilege to
become only first-order difference equations for specific choices
of a, as in (32) and (41), because they are both special cases of
Whittaker’s differential equation, as discussed in the next section.
No other linear second-order ODEs lead to umbral equations
with this property.

4. DISCRETIZATION THROUGH HYPERGEOMETRIC
RECURSION

In this section we discuss several examples using umbral trans-
form methods to convert solutions of continuum differential
equations directly into solutions of the corresponding discretized
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equations. We use both Fourier and power series umbral trans-
forms.

As an explicit illustration of the umbral transform functional
(17), inserting the Fourier representation of the Airy function (1)
yields

AiryAi(x) �−→ UmAiryAi(x, a)

≡ Re

(
1

π

∫ +∞

0
e

1
3 ik3

(1 + ika)
x
a dk

)
. (45)

This integral is expressed in terms of hypergeometric functions
and evaluated numerically in Appendix A.

Likewise, gaussians also map to hypergeometric functions, as
may be obtained by formal series manipulations:

e−x2 �−→ G(x, a)

≡
∞∑

n = 0

(−)n[x]2n

n!

=
∞∑

n = 0

1

n! (−1)na2n �
( x

a + 1
)

�
( x

a − 2n + 1
) (46)

=
∞∑

n = 0

�
(
n − 1

2
x
a

)
�
(− 1

2
x
a

) �
(
n + 1

2 − 1
2

x
a

)
�
( 1

2 − 1
2

x
a

)
(−4a2

)n

n! (47)

≡ 2F0

(
−1

2

x

a
,

1

2

(
1 − x

a

)
;−4a2

)
, (48)

where the reflection and duplication formulas were used to write

�
( x

a + 1
)

�
( x

a − 2n + 1
) = 4n�

(
n − 1

2
x
a

)
�
(
n + 1

2 − 1
2

x
a

)
�
(− 1

2
x
a

)
�
( 1

2 − 1
2

x
a

) . (49)

While the series (47) actually has zero radius of convergence, it
is Borel summable, and the resulting regularized hypergeomet-
ric function is well-defined. See Appendix B for some related
numerics.

For another example drawn from the familiar repertoire of
continuum physics, consider the confluent hypergeometric equa-
tion of Kummer (A&S 13.1.1):

x y′′ + (β − x) y′ − α y = 0, (50)

whose regular solution at x = 0, expressed in various dialects, is

y = 1F1 (α; β; x) = M (α, β, x) = KummerM (α, β, x) , (51)

with series and integral representations

1F1 (α; β; x) =
∞∑

n = 0

� (α + n)

� (α)

� (β)

� (β + n)

xn

n! (52)

= � (β)

� (α) � (β − α)

∫ 1

0
exssα−1 (1 − s)β−α−1 ds

= 1 + α

β
x + 1

2

α (α + 1)

β (β + 1)
x2

+ 1

6

α (α + 1) (α + 2)

β (β + 1) (β + 2)
x3 + O

(
x4) .

The second, independent solution of (50), with branch point at
x = 0, is given by Tricomi’s confluent hypergeometric function
(1), sometimes known as HypergeometricU:

U (α, β, x) = π

sin πβ
(53)

(
M (α, β, x)

� (1 + α − β) � (β)
− x1−β M (1 + α − β, 2 − β, x)

� (α) � (2 − β)

)
.

Invoking the umbral calculus for x, either of these confluent
hypergeometric functions can be mapped onto their umbral
counterparts using

1F1 (α; β; x) �−→ 2F1

(
α, −x

a
; β; −a

)
, (54)

where 2F1 is the well-known Gauss hypergeometric function (1).
This map from 1F1 to 2F1 follows from the basic monomial
umbral map,

xn �−→ [x]n ≡ (
xT−1)n · 1 = an �

( x
a + 1

)
�
( x

a − n + 1
)

= (−a)n �
(
n − x

a

)
�
(− x

a

) , (55)

and from the series (52). When combined, these give the well-
known series representation of 2F1 .

Next, reconsider the one-dimensional Coulomb problem
defined by Whittaker’s equation for general μ (1):

y′′ +
(

−1

4
+ κ

x
+
( 1

4 − μ2
)

x2

)
y = 0. (56)

Since κ and μ are both arbitrary, this also encompasses the
inverse-square potential, (39). Exact solutions of this differential
equation are

y(x) = C1 whittakerM (κ, μ, x) + C2 whittakerW (κ,μ, x) , (57)

whittakerM (κ,μ, x) = xμ+1/2e−x/2
1F1

(
μ− κ + 1

2
; 2μ + 1; x

)
,

(58)
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whittakerW (κ,μ, x) = xμ+1/2e−x/2⎛
⎜⎜⎝

�(−2μ)

�
(
−μ−κ+ 1

2

) 1F1
(
μ − κ + 1

2 ; 2μ + 1; x
)

+ �(2μ)

�
(
μ−κ+ 1

2

)x−2μ
1F1

(−μ − κ + 1
2 ; −2μ + 1; x

)
⎞
⎟⎟⎠. (59)

Umbral versions of these solutions are complicated by the expo-
nential and overall power factors in the classical relations between
the 1F1 ’s and the Whittaker functions, but this complication is
manageable. (In part this is because in the umbral calculus there
are no ordering ambiguities (20).)

To obtain the umbral version of the Whittaker functions, we
begin by evaluating

e− 1
2 xT−1

1F1
(
α; β; xT−1) · 1 =

∞∑
m = 0

∞∑
n = 0

(
− 1

2

)m �(α+n)
�(α)

�(β+n)
�(β)

[x]m+n

m!n!

=
(

1 − a

2

) x
a

2F1

(
α,− x

a
; β; 2a

a − 2

)
, (60)

where we have performed the sum over m first, to obtain

∞∑
m = 0

(
− 1

2

)m 1

�
( x

a − n − m + 1
) am

m! = 1

�
( x

a − n + 1
) (1 − a

2

) x−na
a

. (61)

The sum over n then gives the Gauss hypergeometric function in
(60).

Next, to deal with the umbral deformations of the Whittaker
functions, we need to use the continuation of (10) and (11) to an
arbitrary power of xT−1, namely,

(
xT−1)γ = aγ

�
( x

a + 1
)

�
( x

a − γ + 1
)T−γ. (62)

This continuation leads to the following:

(
xT−1)γ e− 1

2 xT−1

1F1
(
α; β; xT−1) · 1

= aγ
�
( x

a + 1
)

�
( x

a − γ + 1
)T−γe− 1

2 xT−1

1F1
(
α; β; xT−1) · 1

= aγ
�
( x

a + 1
)

�
( x

a − γ + 1
) e− 1

2 (x−γa)T−1

1F1
(
α; β; (x − γa) T−1) · 1.

(63)

Thus we obtain the umbral map

xγe− 1
2 x

1F1 (α; β; x) �−→ �
( x

a + 1
)

�
( x

a − γ + 1
) aγ

(
1 − a

2

) x
a −γ

2F1

(
α, γ − x

a
; β; 2a

a − 2

)
. (64)

Finally then, specializing to the relevant α, β, and γ, we find the
umbral Whittaker functions. In particular,

whittakerM (κ,μ, x) �−→ �
( x

a + 1
)

�
( x

a − μ + 1
2

)aμ+1/2
(

1 − a

2

) x
a −μ− 1

2

2F1

(
μ + 1

2
− κ, μ + 1

2
− x

a
; 2μ + 1; 2a

a − 2

)
. (65)

This result for general a exhibits what is special about the choice
a = 2, as exploited in the previous section. To realize that choice
from (65) requires taking a limit a ↗ 2, hence it requires the
asymptotic behavior of the Gauss hypergeometric function (1):

2F1 (α, β; γ; z) ∼
z→−∞

� (γ)

� (β)

� (β − α)

� (γ − α)
(−z)−α + � (γ)

� (α)

� (α − β)

� (γ − β)
(−z)−β .

(66)

Now with sufficient care, a = 2 solutions can be coaxed from the
umbral version of whittakerM in (65), and/or the correspond-
ing umbral counterpart of whittakerW, upon taking lima↗2 and
making use of (66). Moreover, in principle the umbral correspon-
dents of both Whittaker functions could be used to obtain from
this limit a solution with two arbitrary constants.

On the other hand, for a = 2, the umbral equation corre-
sponding to (56) again reduces to a one-term recursion, namely,

Y(x + 2) = 2 (x + 2) (x − 2κ)

(x + 1 + 2μ) (x + 1 − 2μ)
Y(x). (67)

For generic x, solutions for arbitrary complex constants C1 and
C2 are then given by

Y(x) = 2x/2

�
( x

2 + 1
2 + μ

)
�
( x

2 + 1
2 − μ

)
(

�
(

1 + x

2

)
�
( x

2
− κ

)
C1 + 1

�
(− x

2

)
�
(
1 + κ − x

2

)C2

)
(68)

= 2x/2�
(
1 + x

2

)
�
( x

2 − κ
)

�
( x

2 + 1
2 + μ

)
�
( x

2 + 1
2 − μ

)
(

C1 + 1

π2
C2 sin

(πx

2

)
sin π

( x

2
− κ

))
, (69)

which agrees with (34) when μ = 1/2, of course. As in that pre-
vious special case, the C2 part of (68) differs from the C1 part
just through multiplication by a particular complex function with
period 2 (12).

We graph some examples to show the differences between the
Whittaker functions and their umbral counterparts, for a = 1.
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-2 -1 1 2 3 4 5 6 7 8

-1

1

x

y

whittakerM (κ, 1/2, x) for κ = 1, 2, and 3 in red, blue, and green.

2 2 4 6 8

2

1

1

2

Umbral whittakerM (κ, 1/2, x) for a = 1, and for κ = 1, 2, and 3
in red, blue, and green.

The examples above are specific illustrations of combinatorics
that may be summarized in a few umbral hypergeometric mapping
lemmata, the simplest being

Lemma 1:

pFq (α1, . . . , αp; β1, . . . , βq; x) �−→
p+1Fq (α1, . . . , αp, −x/a; β1, . . . , βq; −a) , (70)

where the series representation of the generalized hypergeometric
function pFq is5

pFq
(
α1, . . . , αp; β1, . . . , βq; x

)
= � (β1) · · ·� (βq

)
� (α1) · · ·� (αp

) ∞∑
n=0

� (α1 + n) · · · � (αp + n
)

� (β1 + n) · · · � (βq + n
) xn

n! . (71)

5Recall results from using the ratio test to determine the radius of convergence
for the pFq

(
α1, . . . , αp; β1, · · · , βq; x

)
series:

If p < q + 1 then the ratio of coefficients tends to zero. This implies that the
series converges for any finite value of x.
If p = q + 1 then the ratio of coefficients tends to one, hence the series con-
verges for |x| < 1 and diverges for |x| > 1.
If p > q + 1 then the ratio of coefficients grows without bound. The series is
then divergent or asymptotic, and is a symbolic shorthand for the solution to
a differential equation.

A proof of (70) follows from formal manipulations of these series.
The umbral version of a more general class of functions is

obtained by replacing x → xT−1 in functions of xk for some fixed
positive integer k. Thus, again for hypergeometric functions, we
have

Lemma 2:

pFq

(
α1, . . . , αp; β1, . . . , βq; xk

)
�−→ (72)

p+kFq

(
α1, . . . , αp,

1

k

(
−x

a

)
,

1

k

(
1 − x

a

)
, . . . ,

1

k

(
k − 1 − x

a

)
; β1, . . . , βq; (−ak)k

)
.

And again, a proof follows from formal series expansions.
Multiplication by exponentials produces only minor modifica-

tions of these general results, as was discussed above in the context
of Whittaker functions, namely,

Lemma 3:

eλx
pFq

(
α1, . . . , αp; β1, . . . , βq; xk

)
�−→ (73)

(1 + aλ)
x
a p + kFq

(
α1, . . . , αp,

1

k

(
−x

a

)
,

1

k

(
1 − x

a

)
, . . . ,

1

k

(
k − 1 − x

a

)
; β1, . . . , βq;

( −ak

1 + aλ

)k
)

.

In addition, multiplication by an overall power of x gives

Lemma 4:

xγeλx
pFq

(
α1, . . . , αp; β1, . . . , βq; xk

)
�−→ (74)

�
( x

a + 1
)

aγ (1 + aλ)
x
a −γ

�
( x

a − γ + 1
) p + kFq

(
α1, . . . , αp,

γ − x
a

k
,

1 + γ − x
a

k
, . . . ,

k − 1 + γ − x
a

k
;

β1, . . . , βq;
( −ak

1 + aλ

)k
)

.

5. WAVE PROPAGATION
Given the umbral features of discrete time and space equa-
tions discussed above, separately, it is natural to combine
the two.

For example, the umbral version of simple plane waves in 1+1
spacetime would obey an equation of the type (6, 11, 12),

(�2
x − �2

t ) F = 0 , (75)

on a time-lattice with spacing a and a space-lattice with spacing
b, not necessarily such that b = a in all spacetime regions. For
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generic frequency, wavenumber and velocity, the basic solutions
are

f = ei(ωt−kx) �−→ F = (1 + iωa)t/a (1 − ikb)x/b . (76)

For right-moving waves, say, these have phase velocity

v(ω, k) = ω

k

a arcsin(b)

b arcsin(a)
. (77)

Thus, the effective index of refraction in the discrete medium is
(b arcsin(a))/(a arcsin(b)), i.e., modified from 1. Small inhomo-
geneities of a and b in the fabric of spacetime over large regions
could therefore yield interesting effects.

Technically, a more challenging application of umbral methods
involves nonlinear, solitonic phenomena (21), such as the one-
soliton solution of the continuum Sine-Gordon equation,

(∂2
x − ∂2

t )f (x, t) = sin(f (x, t)) , fSG(x, t) = 4 arctan

(
me

x−vt√
1−v2

)
.

(78)

The corresponding umbral deformation of the PDE itself would
now also involve a deformed potential sin(f (xT−1

x , tT−1
t )) · 1. But

rather than tackling this difficult nonlinear difference equation,
one may instead use the umbral transform (17) to infer that
fSG (x, t) maps to

FSG (a, b; x, t) =
∫ ∞

−∞
dχdτdωdk

(2π)2
4 arctan

(
me

χ−vτ√
1−v2

)
eikχ−iωτ

(1 + iωa)t/a (1 − ikb)x/b . (79)

The continuum Korteweg–de Vries soliton is likewise mapped:

fKdV(x, t) = v

2
sech2

(√
v

2
(x − vt)

)
�−→ (80)

FKdV (a, b; x, t) =
∫ ∞

−∞
dχdτdωdk

(2π)2

v

2
sech2

(√
v

2
(χ − vτ)

)

eikχ−iωτ (1 + iωa)t/a (1 − ikb)x/b .

Closed-form evaluations of these Fourier integrals are not avail-
able, but the physical effects of the discretization could be inves-
tigated numerically, and compared to the Lax pair integrability
machinery of (13), or to the results on a variety of discrete KdVs
in (17), or to other studies (8, 9).

However, a more accessible example of umbral effects on soli-
tons may be found in the original Toda lattice model (19). For this
model the spatial variable is already discrete, usually with spacing
b = 1 so x = n is an integer, while the time t is continuous. The
equations of motion in that case are

∂q (n, t)

∂t
= p (n, t) ,

∂p (n, t)

∂t
= −

(
e−(q(n+1,t)−q(n,t)) − e−(q(n,t)−q(n−1,t))

)
, (81)

for integer n. Though x = n is discrete, nevertheless there are
exact multi-soliton solutions valid for all continuous t, as is
well-known.

Specific one-soliton Toda solutions are given for constant α, β,
γ, and q0 by

q (n, t) = q0 + log

(
1 + α exp (−βn + γt)

1 + α exp (−β (n + 1) + γt)

)
, (82)

p (n, t) = αγ

(
e−nβ+γt

αe−nβ+γt + 1
− e−(n+1)β+γt

αe−(n+1)β+γt + 1

)
, (83)

provided that

γ = ±2 sinh

(
β

2

)
. (84)

So the soliton’s velocity is just v = ± 2
β

sinh
(

β
2

)
.

While obtained only for discrete x = n, for plotting purposes
q (n, t) may be interpolated for any x (see graph below). To carry
out the complete umbral deformation of this system, it is then
only necessary to discretize t in the equations of motion (81).
Consider what effects this approach to discrete time has on the
specified one-soliton solutions.

To that end, expand the exact solutions in (82) as series,

q (n, t) = q0 +
∞∑

k = 1

(−αe−βn
)k

k

(
e−kβ − 1

)
exp (γkt) . (85)

Upon umbralizing t, the one-soliton solutions then map as

q (n, t) �−→ Q (n, t) ≡ q0+
∞∑

k=1

(−αe−βn
)k

k

(
e−kβ − 1

)
(1 + γka)t/a,

(86)

and these are guaranteed to give solutions to the umbral operator
equations of motion,

�q
(
n, tT−1) ≡ 1

a
(T − 1) q

(
n, tT−1) = p

(
n, tT−1) , (87)

�p
(
n, tT−1) ≡ 1

a
(T − 1) p

(
n, tT−1)

= −
(

e−(q(n+1,tT−1)−q(n,tT−1)) − e−(q(n,tT−1)−q(n−1,tT−1))
)

,

(88)

upon projecting onto a translationally invariant “vacuum” (i.e.,
Q (n, t) ≡ q

(
n, tT−1

) · 1).
Now, for integer time steps, t/a = m, consider the series at

hand:

S (m, c, z) =
∞∑

k = 1

zk

k

(
e−kβ − 1

)
(1 + ck)m

= ln

(
1 − z

1 − ze−β

)
+

m∑
j = 1

cj
(

m

j

)
R
(
j, z
)
, (89)
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where c = γa, z = −αe−βn, and where for j > 0,

R
(
j, z
) =

∞∑
k = 0

(
e−kβ − 1

)
zkkj − 1

≡ �
(

e−βz, 1 − j, 0
)

− �
(
z, 1 − j, 0

)
. (90)

Fortunately, for positive integer t/a, we only need the Lerch
transcendent function,

� (z, s, r) =
∞∑

k = 0

zk

(r + k)s , (91)

for those cases where the sums are expressible as elementary
functions. For example,

∞∑
k = 0

zk = 1

1 − z
,

∞∑
k = 0

zkk = z

(1 − z)2
,

∞∑
k = 0

zkk2 = z + z2

(1 − z)3
,

∞∑
k = 0

zkk3 = z + 4z2 + z3

(1 − z)4
. (92)

The ln (· · · ) term on the RHS of (89) then reproduces the spec-
ified classical one-soliton solutions at t = 0, while the remaining
terms give umbral modifications for t �= 0.

Altogether then, we have

Q (n, t = ma) = q (n, 0) +
m∑

j = 1

(γa)j
(

m

j

)
(
�
(
−αe−β(n+1), 1 − j, 0

)
− �

(
−αe−βn, 1 − j, 0

))
. (93)

These umbral results are compared to some time-continuum soli-
ton profiles for t/a = 0, 1, 2, 3, and 4 in the following Figure
(with q0 = 0, α = 1 = β, and γ = 2 sinh (1/2) = 1.042 ).

1.0
0

1.5

2.0

q and Q

-5

2.5

t
2

0

x

4 5

Toda soliton profiles q interpolated for all x ∈ [−5, 5] at integer
time slices superimposed with their time umbral maps Q (thicker
curves) for a = 1.

Thus, the umbral-mapped solutions no longer evolve just by
translating the profile shape. Rather, they develop oscillations

about the classical fronts that dramatically increase with time, that
evince not only dispersion but also generation of harmonics, and
that, strictly speaking, disqualify use of the term soliton for their
description. Be that as it may, this model is referred to in some
studies as integrable (8, 9).

These umbral effects on wave propagation evoke scattering
and diffraction by crystals. But here the “crystal” is spacetime
itself. It is tempting to speculate based on this analogy. In
particular, were a well-formed wave packet to pass through a
localized region of crystalline spacetime, with sufficiently large
lattice spacings, the packet could undergo dramatic deforma-
tions in shape, wavelength, and frequency—far greater than and
very different from what would be expected just from the dis-
persion of a free packet propagating through continuous space
and time.

6. CONCLUDING REMARKS
We have emphasized how the umbral calculus has visibly emerged
to provide an elegant correspondence framework that automati-
cally gives solutions of ubiquitous difference equations as maps
of well-known continuous functions. This correspondence sys-
tematically sidesteps the use of more traditional methods to solve
these difference equations.

We have used the umbral calculus framework to provide solu-
tions to discretized versions of several differential equations that
are widespread building-blocks in many if not all areas of physics
and engineering, thereby avoiding the rather unwieldy frontal
assaults often engaged to solve such discrete equations directly.

We have paid special attention to the Airy, Kummer, and
Whittaker equations, and illustrated several basic principles that
transform their continuum solutions to umbral versions through
the use of hypergeometric function maps. The continuum limits
thereof are then manifest.

Finally, we have applied the solution-mapping technique to
single solitons of the Sine-Gordon, Korteweg–de Vries, and Toda
systems, and we have noted how their umbral counterparts—
particular solutions of corresponding discretized equations—
evince dispersion and other non-solitonic behavior, in general.
Such corrections to the continuum result may end up revealing
discrete spacetime structure in astrophysical wave propagation
settings.

We expect to witness several applications of the framework
discussed and illustrated here.
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APPENDIX A: UMBRAL AIRY FUNCTIONS
Formally, these can be obtained by expressing the Airy functions in terms of hypergeometric functions and then umbral mapping the
series. The continuum problem is given by

y′′ − xy = 0, y (x) = C1 AiryAi (x) + C2 AiryBi (x), (94)

where

AiryAi (x) = 1

32/3� (2/3)
0F1

(
; 2

3
; 1

9
x3
)

− 1

31/3� (1/3)
0F1

(
; 4

3
; 1

9
x3
)

, (95)

AiryBi (x) = 1

31/6� (2/3)
0F1

(
; 2

3
; 1

9
x3
)

+ 31/6z

� (1/3)
0F1

(
; 4

3
; 1

9
x3
)

. (96)

The y �−→ Y umbral images of these, solving the umbral discrete difference equation (3, 12)

Y(x + 2a) − 2Y(x + a) + Y(x) − a2xY(x + a) = 0, (97)

are then given by (72) for k = 3. In particular,

UmAiryAi (x, a) = 1

32/3� (2/3)
3F1

(
−1

3

x

a
,

1

3

(
1 − x

a

)
,

1

3

(
2 − x

a

)
; 2

3
; −3a3

)

− 1

31/3� (1/3)
3F1

(
−1

3

x

a
,

1

3

(
1 − x

a

)
,

1

3

(
2 − x

a

)
; 4

3
;−3a3

)
. (98)

Since the number of “numerator parameters”in the hypergeometric function 3F1 exceeds the number of “denominator parameters”
by 2, the series expansion is at best asymptotic. However, the series is Borel summable. In this respect, the situation is the same as for
the umbral gaussian (see Appendix B).

Alternatively, as previously mentioned in the text, using the familiar integral representation of AiryAi (x), the umbral map devolves
to that of an exponential. That is to say,

AiryAi
(
xT−1) = 1

2π

∫ +∞

−∞
exp

(
1

3
is3 + isxT−1

)
ds (99)

�−→
UmAiryAi (x, a) = 1

2π

∫ +∞

−∞
e

1
3 is3

(1 + isa)
x
a ds. (100)

Just as AiryAi (x) is a real function for real x, UmAiryAi (x, a) is a real function for real x and a,

UmAiryAi (x, a) = Re

(
1

π

∫ +∞

0
e

1
3 is3

(1 + isa)
x
a ds

)
. (101)

After some hand-crafting, the final result may be expressed in terms of just three 2F2 generalized hypergeometric functions. To wit,

Re

(
1

π

∫ +∞

0
e

1
3 is3

(1 + isw)−z ds

)
= C0 (w, z) ×

(
8w2 sin (πz/3) C1 (w, z) H1 (w, z) − 12w (1 + 2 cos (2πz/3)) C2 (w, z) H2 (w, z)

+ 3C3 (w, z) H3 (w, z)

)
, (102)

where the hypergeometric functions 2F2 (a, b; c, d; z) appear in the expression as

H1 (w, z) = �

(
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3
z

)
�
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+ 1
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)
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, (103)

H2 (w, z) = �

(
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+ 1

3
z
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�

(
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, (104)

H3 (w, z) = �

(
2

3
+ 1

3
z
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1 + 1
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and where the coefficients in (102) are

C0 (w, z) = 1

96w2

e
−
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1
3 ln 3+ 1
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)
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3 πz
)
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. (109)

While the coefficient functions C0−3 are not pretty, they are comprised of elementary functions, and they are nonsingular functions
of z. On the other hand, the hypergeometric functions do have singularities and discontinuities for negative z. However, the net result
for UmAiryAi is reasonably well-behaved.

We plot UmAiryAi (x, a) for a = 0, ± 1
4 , ± 1

2 , and ±1.
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UmAiryAi (x, a) for a = ±1, ±1/2, and ±1/4 (red, blue, & green dashed/solid curves, resp.) compared to AiryAi (x) =
UmAiryAi (x, 0) (black curve).
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APPENDIX B: UMBRAL GAUSSIANS
As discussed in the text, straightforward discretization of the series yields the umbral gaussian map:

e−x2 �−→ G (x, a) =
∞∑

n = 0

(−)n[x]2n

n! =
∞∑

n = 0

(−)n

n! x(x − a) · · · (x − (2n − 1) a) (110)

= 2F0

(
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2

x

a
,

1

2

(
1 − x

a

)
; −4a2

)
. (111)

(NB G (x, a) �= G (−x, a).) Now, it is clear that term by term the series (110) reduces back to the continuum gaussian as a → 0.
Nonetheless, since the series is asymptotic and not convergent for |a| > 0, it is interesting to see how this limit is obtained from other
representations of the hypergeometric function in (111), in particular from using readily available numerical routines to evaluate 2F0

for specific small values of a. Some examples are shown here.
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G (x, 1/2n) vs. x ∈ [−3, 2], for n = 1, 2, and 3, in red, blue, and green, respectively, compared to G (x, 0) = exp
(−x2

)
, in black.

Mathematicaő code is available online to produce similar graphs, for those interested. It is amusing that Mathematica manipulates
the Borel regularized sum to render the 2F0 in question in terms of Tricomi’s confluent hypergeometric function U , as discussed above
in the context of Kummer’s Equation, cf. (53). Thus G can also be expressed in terms of 1F1 s. The relevant identities are:
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