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The nature of the hemodynamic response (HDR) is still not fully understood due to

the multifaceted processes involved. Aside from the overall amplitude, the response

may vary across cognitive states, tasks, brain regions, and subjects with respect to

characteristics such as rise and fall speed, peak duration, undershoot shape, and overall

duration. Here we demonstrate that the fixed-shape (FSM) or adjusted-shape (ASM)

methods may fail to detect some shape subtleties (e.g., speed of rise or recovery, or

undershoot). In contrast, the estimated-shape method (ESM) through multiple basis

functions can provide the opportunity to identify some subtle shape differences and

achieve higher statistical power at both individual and group levels. Previously, some

dimension reduction approaches focused on the peak magnitude, or made inferences

based on the area under the curve (AUC) or interaction, which can lead to potential

misidentifications. By adopting a generic framework of multivariate modeling (MVM),

we showcase a hybrid approach that is validated by simulations and real data. With

the whole HDR shape integrity maintained as input at the group level, the approach

allows the investigator to substantiate these more nuanced effects through the unique

HDR shape features. Unlike the few analyses that were limited to main effect, two- or

three-way interactions, we extend the modeling approach to an inclusive platform that

is more adaptable than the conventional GLM. With multiple effect estimates from ESM

for each condition, linear mixed-effects (LME) modeling should be used at the group

level when there is only one group of subjects without any other explanatory variables.

Under other situations, an approximate approach through dimension reduction within the

MVM framework can be adopted to achieve a practical equipoise among representation,

false positive control, statistical power, and modeling flexibility. The associated program

3dMVM is publicly available as part of the AFNI suite.

Keywords: hemodynamic response, basis function, multivariate general linear model, linear mixed-effects model,
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INTRODUCTION

When a region in the brain is activated, oxygen and glucose
demands lead to blood vessel dilation, followed by increased
blood to the tissue (neurons and astrocytes) under stress.
The onset of a neuronal activity triggers a sequence of
physiological events in the blood vessels of the surrounding
area, typically characterized by the changes in cerebral blood
flow as well as concentration fluctuations of deoxyhemoglobin
and oxyhemoglobin. The blood oxygenation level dependent
(BOLD) signal from the FMRI scanning mainly captures the
concentration changes of deoxyhemoglobin; that is, the BOLD
signal is a surrogate and signature of neuronal activations
plus various sources of noise (e.g., physiological and random
fluctuations). As an indirect measure of neuronal activity,
the shape of the BOLD response may hold some crucial
features about brain function. However, the cascade of events
from neural activation to measurable MRI signal is complex
and nonlinear under certain regimes (Friston et al., 1998b;
Birn et al., 2001; Logothetis and Wandell, 2004; Logothetis,
2008; Magri et al., 2012): Even though the BOLD response is
simply interpreted as changes in neuronal processing, the same
neuronal activity may evoke different hemodynamic response
(HDR) shape across trials, regions, conditions/tasks, subjects,
and groups. For example, neurophysiological confounds such as
neurovascular coupling or energy consumption changes could
lead to different BOLD response features, potentially explaining
the HDR variability in magnitude and shape across brain regions,
cognitive conditions and populations (e.g., children with autism
vs. controls, Reynell and Harris, 2013). Nevertheless, meaningful
interpretation as well as detection power in FMRI data analysis
may depend on the accurate modeling of the BOLD response
both at the individual subject and group levels (e.g., Buxton et al.,
2004; Handwerker et al., 2004; Stephen et al., 2007; Barbé et al.,
2012; Badillo et al., 2013).

Under an experimentally-manipulated situation, the subject
typically performs some tasks or is put under certain conditions
in an event-related design, with each trial lasting for 2 s or less,
and the HDR to each trial can be mathematically characterized
by an impulse response function (IRF) that corresponds to a
stimulus with a theoretically instantaneous duration and unit
intensity. The voxel-wise EPI signal is then modeled through
time series regression with explanatory variables (or regressors)
of interest, each of which is constructed through the convolution
between the stimulus timing and the IRF. In a block design, each
task or condition has a duration of more than two seconds. As
each block can be approximately considered as a sequence of
events with an interval of scanning repetition time (TR), the
theoretical HDR is usually hypothesized as the integral or linear
summation of the consecutive IRFs, or the convolution of IRF
over the stimulus duration.

We typically adopt some formative mathematical functions
(usually called HDR functions or HRFs) to approximate the
HDR based on the experimental data with the assumption of
linearity and time-invariance (or stationarity) (Marrelec et al.,
2003), and consider three common approaches to modeling
the average HDR across trials. The first one presumes a fixed

shape IRF (e.g., gamma variate or wave form in AFNI, Cohen,
1997; canonical IRF in SPM, FSL, and NIPY, Friston et al.,
1998a). With this model-based or fixed-shape method (FSM),
the regression coefficient or β associated with each condition in
the individual subject analysis reflects the major HDRmagnitude
(e.g., percent signal change). The second approach makes no
assumption about the IRF’s shape and estimates it with a set of
basis functions. The number of basis functions varies depending
on the kernel set and the duration over which the response is
being modeled. A common approach to this estimated-shape
method (ESM) consists of using a set of equally-spaced TENT
(piecewise linear) functions or linear splines, and each of the
resulting regression coefficient represents an estimate of the
response amplitude at some time after stimulus onset. Regardless
of the kernel set, however, ESM generates the same number of
regressors as the number of basis functions (e.g.,m) per condition
or task, resulting in m regression coefficients which need to be
considered simultaneously at the group level. In addition to the
aforementioned TENT basis set, options for ESM at the voxel
level include cubic splines, Legendre polynomials, sines, or user-
defined functions in AFNI, and finite impulse function (FIR) in
SPM, FSL, and NIPY, inverse logit (Lindquist et al., 2009), and
high-order B-splines (Degras and Lindquist, 2014). In addition,
the python package PyHRF offers an ESM at the parcel level
through the joint detection-estimation framework (Vincent et al.,
2014). It is of note that one significant advantage of adopting
basis functions such as TENT or cubic splines is the flexibility
of creating regressors through piecewise interpolation when the
stimulus onset times are not aligned with the TR grids (e.g.,
the acquisition time is shorter than TR if one wants to present
"silent trials" as a control condition to speech or other auditory
stimulus). The third approach lies between the two extremes of
FSM and ESM, and uses a set of two or three basis functions
(Friston et al., 1998b). In this adjusted-shape method (ASM), the
first basis (canonical IRF) captures the major HDR shape, and the
second basis, the time derivative of the canonical IRF, provides
some flexibility in modeling the delay or time-to-peak, while the
third basis, dispersion curve (derivative relative to the dispersion
parameter in the canonical IRF), allows the peak duration to vary.

With one parameter per condition, FSM is the most efficient1

and statistically powerful among the three, if the presumed shape
is reasonably close to the ground truth, and the group analysis
strategies have been developed to reasonable maturity: The β

values at the individual level are typically brought to the group
level using the Student’s t-test, permutation tests (Nichols and
Holmes, 2002; Dehaene-Lambertz et al., 2006; Mériaux et al.,
2006; Winkler et al., 2014), AN(C)OVA, general linear model
(GLM) (Poline and Brett, 2012), multivariate modeling (MVM)
(Chen et al., 2014), linear mixed-effects (LME) method (Bernal-
Rusiel et al., 2013; Chen et al., 2013), or mixed-effect multilevel
analysis (Worsley et al., 2002; Woolrich et al., 2004; Chen et al.,
2012), with the assumption that each effect estimate is equally
reliable across all subjects. However, deviations of the HDR from
the presumed shape would result in biased estimates of the

1The efficiency in the statistics context measures the optimality of a testingmethod.

A more efficient test requires a smaller sample size to attain a fixed power level.
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amplitude, in addition to failing to capture differences in shape
such as during the undershoot or recovery phase. ESM is themost
flexible among the three methods in terms of providing a more
accurate characterization of the BOLD response and can achieve
higher activation detection power in individuals. In addition, the
estimated HDR curve with a unique signature shape offers much
stronger support for the existence of activation than a single
scaling factor or β value with FSM or ASM. Compared with
FSM, ASM also results in a less biased response amplitude for the
principal kernel, and can account for more variance compared to
FSM; however, the common practice of using only the principal
kernel’s coefficient at the group level will not allow the detection
of shape changes between conditions and or groups when those
exist.

Difficulties with using ESM (and to a lesser degree ASM)
include the need for a larger number of kernel coefficients that
need to be estimated. They requiresm times more regressors than
FSM in the individual subject analysis, which translates to more
data points and scanning time to reach similar statistical power
in individuals. Secondly, the risk of over-fitting exists when
some confounding effects such as head motion and physiological
noise are stimulus-locked and not fully accounted for. Lastly,
the most challenging step lies at the group level: How to
simultaneously handle those m effect estimates? And how to
summarize and interpret the results? To avoid the complexity
involved in the multiple effect estimates from ESM or ASM, the
popular approach at the group level is dimensional reduction,
condensing the shape information over the multiple values into
one number. For ESM, one method is to sum over all or
a subset of effect estimates (e.g., ignoring a few time points
at the beginning and the end) to obtain the area under the
curve (AUC) (e.g., Beauchamp et al., 2003; Greene et al., 2007;
McGregor et al., 2013). As the BOLD response curve can be
characterized by parameters such as amplitude (or height), delay
(or time-to-peak), duration (or HWFM), another dimensional
reduction proposal is to perform the group analysis on such a
derived parameter from the estimated HDR (Lindquist et al.,
2009; Degras and Lindquist, 2014). With two or three effect
estimates per condition from ASM at the group level, the popular
approach focuses on the β value of the canonical HDR while
ignoring the parameters for the shape adjustments (i.e., the
function of these other parameters is to absorb minor shape
fluctuations that would otherwise be modeled as “noise”). One
alternative is to estimate the HDR height using the Euclidean
or L2-norm distance (L2D) of the two or three effect estimates
(Calhoun et al., 2004; Lindquist et al., 2009; Steffener et al., 2010).
Essentially, these dimensional reduction methods transform the
effect estimates in an k-dimensional spaceR

k to one-dimensional
R
1. As information loss is unavoidable in the process, statistical

power in activation identification would suffer. This raises the
question of whether a more preferable approach to significance
testing might better exploit the information in the HDR shape at
the group level.

A Motivational Example
To demonstrate and compare various modeling approaches at
the group level, we adopt the same experimental data used in

our previous paper (Chen et al., 2014), with a typical group
design that accounts for a confounding effect: varying age across
subjects. Briefly, the experiment involved one between-subjects
factor, group (two levels: 21 children and 29 adults) and one
within-subject factor (two levels: congruent and incongruent
conditions). Stimuli were large letters (either “H” or “S”)
composed of smaller letters (“H” or “S”). For half of the stimuli,
the large letter and the component letters were congruent (e.g.,
“H” composed of “H”s) and for half they were incongruent (e.g.,
“H” composed of “S”s). Parameters for the whole brain BOLD
data on a 3.0 T scanner were: voxel size of 3.75 × 3.75 × 5.0
mm3, 24 contiguously interleaved axial slices, and TR of 1250ms
(TE = 25ms, FOV = 240 mm, flip angle = 35◦). Six runs of
EPI data were acquired from each subject, and each run lasted
for 380 s with 304 data points. The task followed an event-
related design with 96 trials in each run, with three runs of
congruent stimuli interleaved with three runs of incongruent
stimuli (order counterbalanced across subjects). Subjects used a
two button box to identify the large letter during global runs and
the component letter during local runs. Each trial lasted 2500ms:
the stimulus was presented for 200ms, followed by a fixation
point for 2300ms. Inter-trial intervals were jittered with a varying
number of TRs, allowing for a trial-by-trial analysis of how the
subject’s BOLD response varied with changes in reaction time
(RT). The experiment protocol was approved by the Combined
Neuroscience Institutional Review Board at the NIMH, and the
National Clinical Trials Identifier is NCT00006177.

The EPI time series went through the following preprocessing
steps: slice timing and headmotion corrections, spatial alignment
to a Talairach template (TT_N27) at a voxel size of 3.5 × 3.5 ×

3.5 mm3, smoothing with an isotropic FWHM of 6 mm, and
scaling each voxel time series by its mean value. The scaling step
during preprocessing enables one to interpret each regression
coefficient of interest as an approximate estimate of percent
signal change relative to the temporal mean. The six runs of
data were concatenated for the individual regression analysis with
the discontinuities across runs properly handled (Chen et al.,
2012). To capture the subtle HDR shape under a condition, two
modeling approaches were adopted, ESM and ASM, for model
comparison. With ESM, each trial was modeled with 10 tent basis
functions, each of which spanned one TR (or 1.25 s). The subject’s
RT at each trial was incorporated as a per-trial modulation
variable. In other words, two effects per condition were estimated
in the time series regression at the individual level: one revealed
the response curve associated with the average RT while the other
showed the marginal effect of RT (response amplitude change
when RT increases by 1 s) at each time point subsequent to the
stimulus. In addition, the following confounding effects were
included in the model for each subject, for each run: third-order
Legendre polynomials accounting for slow drifts, incorrect trials
(misses), censored time points with extreme head motion, and
the six head motion parameters. The modeling strategy remained
the same with ASM except that the three SPM basis functions
(canonical IRF plus time and dispersion derivatives) were
employed to model the BOLD responses instead of the 10 tents.

At the group level, it is the BOLD effects associated
with the average RT that are of interest here. In addition
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to the estimated HDR profiles, three other explanatory
variables considered are: a) between-subjects factor, Group
(two levels: children and adults), b) within-subject factors,
Condition (two levels: congruent and incongruent), and c)
quantitative covariate, age. The focus is on the interaction
of HDR between Group and Condition: Do the two
groups differ in the HDR profile contrast between the two
conditions?

Preview
This paper is a sequel to our previous exploration (Chen
et al., 2014) of the multivariate modeling (MVM) approach
for FMRI group analysis. The layout is as follows. First, we
explore and review various hypothesis testing strategies at the
group level when the HDR is estimated through multiple basis
functions. Second, simulation data were generated to reveal
how each methodology performs in terms of controllability
for false positives and false negatives, and the performance of
these methods was assessed when they were applied to the
experimental dataset at both individual and group levels. Finally,
we compare all the modeling methodologies for ASM and ESM
as well as with and without dimension reduction. The modeling
strategies and testing methods discussed here are all performed
at the voxel level. Multiple testing correction can be applied
in the conventional fashion by controlling the false positive
rate (Benjamini and Hochberg, 1995) or the family-wise error
through Monte Carlo simulations (3dClustSim in AFNI,
Forman et al., 1995) or random field theory (Worsley et al.,
1992).

Ourmajor contribution here is to demonstrate the importance
of accounting for shape differences and to offer testing
approaches at the group level within an MVM platform with
the modeling flexibility that would not be available under the
conventional GLM. Through our demonstration we propose
that ESM should be adopted whenever appropriate or possible
to identify the nuanced differences in HDR shape that would
be difficult or unlikely to be revealed through FSM or ASM.
Furthermore, we recommend that the investigator report the
effect estimates such as the HDR curves to substantiate
the results in addition to the statistical significance. The
modeling framework and functionality are available in the
program 3dMVM for public use in the AFNI suite (Cox,
1996).

Throughout this article, regular italic letters (e.g., α) stand
for scalars, boldfaced italic letters in lower (a) and upper (X)
cases for column vectors and matrices respectively. The word
multivariate is used here in the sense of treating the effect
estimates from the same subject or from the levels of a within-
subject factor as the instantiations of simultaneous response
(or outcome) variables (e.g., the effect estimates for the HDR).
This usage differs from the popular connotation in the FMRI
field when the spatial structure (multiple voxels) is modeled as
the simultaneous response variables, including such methods
as multivariate pattern analysis (Haxby, 2012), independent
component analysis, and machine learning methods such as
support vector machines. Major acronyms used in the paper are
listed in Appendix A.

METHODS

As shown in Chen et al. (2014), we formulate the group analysis
under a multivariate GLM or MVM platform that is expressed
from a subject-wise perspective, βT

i = x
T
i A+ δTi , or through the

variable-wise pivot, bj = Xaj + dj, or in the following concise
form,

Bn×m = Xn×q Aq×m + Dn×m. (1)

The n rows of the response matrix B = (βij)n×m =

(βT
1 ,βT

2 , ...,βT
n )

T = (b1, b2, ..., bm) represent the data from
the n subjects while the m columns correspond to the levels
of within-subject factor(s). For example, the effect estimates
from the multiple basis functions under ESM or ASM can be
considered the response values associated with the levels of a
within-subject or repeated-measures factor (termed Component
hereafter). When multiple within-subject factors occur, all their
level combinations for each subject are flattened from a multi-
dimensional space onto a one-dimensional row of B. It is
noteworthy that the within-subject factors are expressed as
columns in B on the left-hand side of the model (1), and
only between-subjects variables such as subjects-grouping factors
(e.g., sex, genotypes), subject-specific measures (e.g., age, IQ)
and their interactions are treated as q explanatory variables on
the right-hand side. The same linear system is assumed for all
the m response variables, which share the same design matrix
X = (xih) = (x1, x2, ..., xn)

T . Without loss of generality, X
is assumed to have full column-rank q. Each column of the
regression coefficient matrixA = (αhj) corresponds to a response
variable, and each row is associated with an explanatory variable.
Lastly, the error matrix D = (δij)n×m = (δ1, δ2, ..., δn)

T =

(d1, d2, ..., dm) is assumed nm-dimensional Gaussian: vec(D) ∼

N(0, In ⊗ 6), where vec and ⊗ are column stacking and direct
(or Kronecker) product operators respectively. As in univariate
modeling (UVM), the assumptions for model (1) are linearity,
Gaussianity and homogeneity of variance-covariance structure
(same 6 across all the between-subjects effects). When only one
group of subjects is involved (q = 1), the parameter matrix A

becomes a row vector (α1, α2, ..., αm) that is associated with the
m levels of a within-subject factor.

As demonstrated in Chen et al. (2014), MVM has a few
advantages over its univariate counterpart. When the data are
essentially multidimensional like the multiple effect estimates
from ESM or ASM, MVM has a crucial role in formulating
hypothesis testing. In addition, it characterizes and quantifies the
intercorrelations among the variables based on the data rather
than a presumed variance-covariance structure as in UVM.
Furthermore, MVM in general provides a better control for false
positives than UVM. Lastly, the conventional univariate testing
(UVT) under GLM can be easily performed under the MVM
framework with a few extra advantages. Here we discuss one
aspect by which the group analysis of neuroimaging data will
benefit from theMVM facility when the HDR profile is estimated
frommultiple basis functions instead of being presumed to have a
fixed shape. Then in the section Simulations and Real Experiment
Results, we elaborate and compare a few testing alternatives in
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terms of power and false positives, using simulations and in terms
of performance with real data.

Different Testing Strategies
Here we exemplify two simple and prototypical cases with the
HDR profile modeled by m basis functions at the individual
subject level: a) one group of subjects with the associated effects
at the group level expressed as α1, α2, ..., αm under (1), and b)
either two groups or two conditions and the two sets of effect
estimates for HDR are α1j and α2j respectively, j = 1, 2, ...,m.
To simplify geometric representations, we assume equal number
of subjects across groups in the case of group comparison, but
the assumption is not required from the modeling perspective.
The various modeling strategies discussed below for these two
cases can be easily extended to situations with more explanatory
variables, including factors and quantitative covariates.

Multivariate Testing (MVT)
As the analogs of one- and two-sample or paired t-tests under
UVT, the two prototypes can be expressed with the following null
hypotheses,

HMVT
01 : α1 = 0, α2 = 0, ..., αm = 0, (2a)

HMVT
02 : α11 = α21, α12 = α22, ..., α1m = α2m. (2b)

In other words, the m regression coefficients associated with the
m basis functions from each subject are brought to the group level
and treated as the instantiated values ofm simultaneous variables.
When the effect estimates associated with the basis functions
of ESM or ASM are treated as the values of m simultaneous
response variables, the hypothesis (2a) or (2b) can be analyzed
through MVT under the model (1). Geometrically, the data
for HMVT

01 represent the group centroid (α1, α2, ..., αm) in the
m-dimensional real coordinate space R

m (Table 1), and the
associated one-sample Hotelling T2-test is performed to reveal
whether the group centroid lies in the rejection region (outside
of an m-dimensional ellipse centering around the origin in the
case ofHMVT

01 ). Similarly, the data forHMVT
02 are expressed as two

group centroids, (α11, α12, ..., α1m) and (α21, α22, ..., α2m), and
the corresponding two-sample Hotelling T2-test is conducted to
see if the hypothesis (2b) about the two centroids can be rejected.
The hypothesis (2b) can be easily generalized to the situation
with more than two groups of subjects (e.g., three genotypes)
as well as more than one subject-grouping variable (e.g., sex,
genotypes, and handedness) through the formulation of general
linear testing (Chen et al., 2014). One noteworthy feature ofMVT
is that it allows those simultaneous effects to have different scales
or units, unlike the traditional AN(C)OVA or univariate GLM in
which all the levels of a factor are usually of the same dimension.

Linear Mixed-effects Modeling (LME)
As demonstrated in Chen et al. (2013), linear mixed-effects
modeling (LME) can be adopted for group analysis when the
HDR is estimated through multiple basis functions. Specifically,
the m regression coefficients from each subject associated with
the m basis functions are modeled as values corresponding to m
levels of a within-subject factor under the LME framework.When

no other explanatory variables are present in the model, the LME
methodology can be formulated by (2a) with an intercept of 0.
That is, the m effects are coded by m indicator variables instead
of any conventional contrast coding. Suppose that the m effect
estimates associated with the m basis functions from the ith
subject are βi1, βi2, ..., βim, the LME model can be specified as,

βij = αjxij + δi + ǫij, i = 1, 2, ..., n, j = 1, 2, ...,m.

where the random effect δi characterizes the deviation or shift of
the ith subject’s HDR from the overall group HDR, the residual
term ǫij indicates the deviation of each effect estimate βij from
the ith subject’s HDR, and the indicator variables xij take the cell
mean coding,

xij =

{

1,
0,

if ith subject is at jth level,
otherwise.

so that the parameters αj, j = 1, 2, ...,m capture the overall group
HDR. The significance of the overall HDR at the group level can
be tested through LME on the same hypothesis as (2a),

HLME
0 : α1 = 0, α2 = 0, ..., αm = 0. (3)

It is of note that the LME approach does not work when
other explanatory variables (multiple groups, conditions, or
quantitative covariates) are involved because (2a) or (2b) cannot
be formulated due to the parameterization constraint through
dummy coding. For instance, when there are two groups
involved, the typical contrast coding for the two groups renders
one dummy variable (e.g., the contrast of one group vs. the other
when effect coding is adopted); however, such a coding strategy
relies on the existence of an intercept in the model. If the two
groups are coded by two indicator variables, the model matrix
would become overparameterized.

Area-under-the-Curve (AUC)
The multiple estimates associated with the multiple basis
functions can be reduced to a single value, which is the area
under the curve of the estimated response function. The AUC
hypotheses for the two prototypes (2a) and (2b) become

HAUC
01 :

m
∑

j= 1

αj = 0, (4a)

HAUC
02 :

m
∑

j= 1

α1j =

m
∑

j= 1

α2j. (4b)

That is, the sum of the m coefficients (or area under the HDR
curve) is used to summarize the overall response amplitude per
subject in one- or two-sample t-test at the group level. The AUC
hypotheses (4a) and (4b) are essentially a zero-way interaction
(or intercept) and a one-way interaction (or the main effect of
Group or Condition) respectively and can be performed under
the AN(C)OVA, GLM, or MVM framework. Their geometrical
interpretations are as follows (cf. Table 1). The data for HAUC

01 lie
on an R

m−1 isosurface (or hyperplane) α1+ ...+αm = c, and the
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TABLE 1 | Schematic comparisons among various testing methods.

One-sample

Methoda MVT/LME AUC L2D EXC (XUV and XMV)

H0 α1 = ... = αm = 0 α1 + ...+ αm = 0 (α21 + ...+ α2m )1/2 = 0 α1 = ... = αm

Dimensions in R
m 0 m− 1 m− 1 1

DFs for F-statisticb m, n−m− q+ 1 1, n− q 1, n− q m− 1, (m− 1)(n− q)

Geometric

representationc of

H0 and H1 (m = 2)

Geometric representationd of

HDR when detection

failure occurs due to

improper H0 formulation
no no

Two-sample or paired

Method MVT AUC L2D EXC (XUV and XMV)

H0 α11 = α21, ..., α1m = α2m
∑m

j=1 α1j =
∑m

j=1 α2j (
∑m

j=1 α21j )
1/2 = (

∑m
j=1 α22j )

1/2 α11 − α21 = ... = α1m − α2m

Dimensions in R
m 0 m− 1 m− 1 1

DFs for F-statistic m, n−m− q+ 1 1, n− q 1, n− q m− 1, (m− 1)(n− q)

Geometric representatione

of H0 and H1

Geometric representationf of HDR

when detection failure occurs

due to improper H0 formulation no

aThe table is meant to show the dimensions of each null hypothesis and an instantiation in the rejection domain while the whole rejection domain is not represented here. For example,

the reject region of one-sample Hotelling T2-test for MVT (2a) is outside of an m-dimensional ellipse.
bAn interesting fact is that the numerator degrees of freedom for the F-statistic under MVT and UVT are the dimensions of the complementary space to the associated null hypothesis

H0, or the dimensions of the alternative hypothesis H1.
cThe two axes represent the two weights associated with the two basis functions. The whole rejection regions are not shown here, and the shaded (gray) and solid (black) areas

correspond respectively to the null hypothesis H0 space and an instantiation (and its dimension) in the alternative hypothesis H1 space. Detection failure occurs when the group centroid

falls on the diagonal line other than the origin under AUC and EXC.
dThe horizontal and vertical axes represent time and the amplitude of HDR curve (dashed line).
eThe two axes represent the two weights associated with the two basis functions. The whole rejection regions are not shown here, and the shaded and sold areas correspond respectively

to the null hypothesis H0 space and an instantiation (and its dimension) in the alternative hypothesis H1 space. The two types of line thickness (or dot size) differentiate the two groups

(or conditions).
fThe horizontal and vertical axes represent time and the amplitude of HDR curves. The two line types, dashed and dotted, differentiate the two groups or conditions.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2015 | Volume 9 | Article 375

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Chen et al. Detecting HDR shape differences

associated test for AUC (4a) is executed on the distance between
the data isosurface and the null isosurface α1+...+αm = 0. As the
correct null hypothesis forMVT (2a) is only a subset of AUC (4a),
the rejection domain of AUC (4a) is only a subset of the rejection
domain for MVT (2a), leading to a misrepresentation in (4a) and
a detection failure when a data point lies on α1 + ... + αm = 0
but not at the origin (i.e., the HDR curve has roughly equal area
below and above the x-axis, e.g., a large undershoot). Similarly for
HAUC
02 .

Euclidean Distance (L2D)
As an alternate dimension reduction approach, the null
hypotheses associated with the Euclidean or L2 distance (L2D)
for ESM can be formulated respectively as

HL2D
01 : (

m
∑

j=1

α2
j )

1/2
= 0, (5a)

HL2D
02 : (

m
∑

j=1

α2
1j)

1/2
= (

m
∑

j=1

α2
2j)

1/2. (5b)

In other words, one captures the overall magnitude for each
subject using the L2-distance of them regression coefficients from
no response, and then performs one- or two-sample t-test on the
distances.

For ASM, the null hypotheses with the focus on the canonical
basis are

HCAN
0 : α1 = 0, (6a)

HCAN
0 : α11 = α21. (6b)

And the null hypotheses for L2D (Calhoun et al., 2004; Steffener
et al., 2010) are tested with the first two bases,

HL2D
0 : sgn(α1)(α

2
1 + α2

2)
1/2

= 0, (7a)

HL2D
0 : sgn(α11)(α

2
11 + α2

12)
1/2

= sgn(α21)(α
2
21 + α2

22)
1/2 (7b)

or with all the three bases,

HL2D
0 : sgn(α1)(α

2
1 + α2

2 + α2
3)

1/2
= 0, (8a)

HL2D
0 : sgn(α11)(α

2
11 + α2

12 + α2
13)

1/2
= sgn(α21)

(α2
21 + α2

22 + α2
23)

1/2, (8b)

where sgn is the sign function. That is, the L2D for ASM is similar
to the L2D for ESM, but using the two or three weights associated
with the two or three basis functions in ASM and assigning the
sign of the canonical response to the resultant L2-distance.

Their geometrical interpretations are as follows (Table 1). The
data for HL2D

01 lie on an R
m−1 iso-sphere, and the associated

test for (5a) is executed on the radius of the R
m−1 iso-sphere,

leading to no geometrical distortion (but not necessarily true
statistically). On the other hand, the data for HL2D

02 are on two
R
m−1 iso-sphere surfaces, and the associated test for (5b) acts on

the radius difference between the twoR
m−1 iso-spheres, resulting

a detection failure when the two HDR curves have roughly the
same radius.

Effect-by-Component Interaction (EXC: XUV and

XMV)
By treating the m effect estimates from ESM as m levels of a
within-subject factor Component, one can test the hypothesis
for the effect-by-component interaction (EXC); that is, the m
regression coefficients associated the m basis functions are taken
to the group level without any condensation:

HEXC
01 : α1 = α2 = ... = αm, (9a)

HEXC
02 : α11 − α21 = α12 − α22 = ... = α1m − α2m. (9b)

As discussed in Chen et al. (2014), EXC (9) can be tested
through two methods, one univariate testing for the interaction
(XUV), and one multivariate testing for the interaction (XMV).
More specifically, with XUV one tests the equality among the m
components in (9) by treating them as the m levels of a within-
subject factor in an AN(C)OVA or univariate GLM platform. In
contrast, the equality among the m components in (9) is tested
in XMV as m simultaneous variables in an MAN(C)OVA or
multivariate GLM (Appendix B).

The geometrical interpretations of the hypotheses are the
following (Table 1). EXC (9a) tests the main effect (or first-way
interaction) of Component, representing a straight line in R

m.
The associated test for (9a) is executed on the distance between
the data line and the null line (a diagonal line through the origin).
As the correct null hypothesis (2a) is only a subset of HEXC

01 , its
rejection domain is only a subset of the rejection domain for
MVT (2a), leading to a misrepresentation in (9a) and a detection
failure when the group centroid lies on the null line but not at the
origin (i.e., the HDR curve is roughly a flat line). Similarly, EXC
(9b) as a two-way interaction between Group/Condition and
Component is represented by two lines, and the corresponding
test acts on the distance between the two lines: are the HDR
profiles parallel with each other between the two groups or
conditions? As the correct null hypothesis (2b) is only a subset
of EXC (9b), the rejection domain of EXC (9b) is only a subset
of MVT (2b), resulting in a misrepresentation in (9b) and a
detection failure when the two HDR curves are roughly parallel
with each other (Table 1).

SIMULATIONS AND REAL EXPERIMENT
RESULTS

Among all the testing strategies, LME and MVT are the most
precise (points in Table 1). Among all the dimensional reduction
methods, the two EXCmethods, XUV andXMV, are of the closest
approximation to the null hypothesis (lines), while AUC and
L2D are the least accurate (Rm−1 planes and sphere surfaces
respectively). We need to address the question of whether the
geometric accuracy order translates to statistical power through
simulations and to performance when the methods are applied to
real data.

Simulations of Group Analysis with
Different Testing Methods
As the spatial extent of FMRI data analysis is independently
controlled through false positive rate or family-wise error, the
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simulations here were performed at a voxel to examine and
compare the false positives and power performance among
the testing methods. Simulated data were generated with the
following parameters, imitating a typical FMRI group analysis
with six scenarios (top row in Figure 1): a) one group of subjects
with a small undershoot at the end of HDR curve; b) one
group of subjects with a moderate undershoot at the end; c)
two homoscedastic groups (same variance between groups) with
equal number of subjects in each with a similar HDR profile
but a factor of 2 difference in amplitude; d) two homoscedastic
groups with equal number of subjects in each with HDR having
the same amplitude but with a 2 s difference in peak location; e)
two heteroscedastic groups (different variance between groups)
with equal number of subjects in each with a similar HDR
profile but a factor of 2 difference in amplitude; and f) two
heteroscedastic groups with equal number of subjects in each
with HDR having the same amplitude but with a 2 s difference
in peak location. The HDRs are presumably estimated through
7 basis functions (e.g., TENT in AFNI) at the individual level,
and the associated 7 effect components {βi, i = 1, 2, ..., 7} at
the TR grids are assumed to follow a multivariate Gaussian
distribution with a first order autoregressive AR(1) structure for
their variance-covariance matrix

6 = σ 2











1 ρ ρ2 ... ρ6

ρ 1 ρ ... ρ5

...
...

...
...

...
ρ6 ρ5 ρ4 ... 1











.

The choice of a simple 6 structure here is to allow manageable
number of simulations while in the same time providing a
reasonable structure similar to the one adopted for the Gaussian
prior in Marrelec et al. (2003) that guarantees the HDR
smoothness. To explore the impact of sample size, the number
of subjects in each group was simulated at n = 9, 12, 15, 18,
21, 24, 27, 30 with ρ = 0.3 for each of the six scenarios.
The standard error σ varied (shown in Figure 1) across the
scenarios to obtain comparable power for each n. 5000 datasets
were simulated, each of which was analyzed through 3dMVM

with two explanatory variables, Group (between-subjects factor
with 2 levels) and Component (within-subject factor with 7 levels
that are associated with the 7 basis functions). False positive
rate (FPR) and power were assessed by counting the datasets
with their respective F- or t-statistic surpassing the threshold
corresponding to the nominal significance level of 0.05. Similarly,
one- or two-sample t-test was performed on the AUC and L2D
values respectively.

Among the six scenarios, all the testing methods showed
proper control of FPR except for L2D with one group of subjects.
L2D exhibits high power but at the cost of poor FPR control.
This is in part due to the reduction of effect estimates to a
positive value regardless the signs of the individual components
in ESM. It is possible to reduce this problem in ASM when
the sign of the principal kernel is assigned to the resulting L2D
measure as shown in (7) and (8). Also, L2D achieved the lowest
power with two groups of subjects. AUC simply sums over all
the components, significantly misrepresenting the effects when

the undershoot becomes moderate. This is reflected in the results
where reasonable power is achieved when the undershoot is small
and lower power is obtained when the undershoot is moderate.
With two groups, AUC performed well in power when the two
groups had the same HDR shape, but behaved as poorly as L2D
when the two groups had different HDR shapes. As expected,
AUC is only sensitive to peak amplitude differences, but is
insensitive to shape subtleties. Except for L2D andAUC, the other
methods tend to converge in power when the sample size is large
enough (e.g., 30 or more). With one group, LME outperformed
all other candidates. XUV had a balanced performance on power
among all the scenarios, constantly surpassing XMV. Lastly,
MVT was slightly more powerful than XUV with two groups
when their HDRs were of the same shape with a large number
of subjects (e.g., 20 or more per group).

In summary, our simulations show that LME is preferred
when there is only one group of subjects with no other
explanatory variables present. Under other circumstances, XUV
is the preferred choice, especially with the typical sample size of
most studies, while MVT, AUC, and XMV may provide some
auxiliary detection power.

Results with Experimental Data
How do the testing approaches perform when applied to
real data? Would their performances be consistent with the
simulations? To address these questions, we ran 3dMVM on the
ESM data presented in the Introduction section with n = 50 (2
groups: 21 children and 29 adults), m = 20 (2 conditions with
each having 10 component estimates at 10 TR grids) and design
matrix X of q = 4 columns in the MVM (1): all ones (intercept
associated with the average effect across groups), effect coding for
the two groups, the average age effect between the two groups,
and the interaction group:age (or group difference in age effect).
The age values were centered within each group so that the group
effect can be interpreted as the difference between the two groups
at their respective average age. The effect of interest was on the
interaction of group and condition: Did the two groups have
the same HDR profile difference between the two conditions?
Five F-statistics from MVT, XUV (with sphericity correction),
AUC, L2D, and XMV, were obtained and then, due to different
degrees of freedom, converted to Z-values for direct comparisons
(Figure 2A). To take advantage of the geometrical representation
in Table 1 when interpreting the effect of interest, we reduce the
within-subject factor Condition to the contrast between the two
conditions, so that the interaction effect essentially becomes the
group contrast in terms of the HDR profile difference between
the two conditions (Figure 2C).

Consistent with the simulation results, XUV achieved the
highest detection power in most regions (Figure 2A top) while
L2D showed low power (and likely high FPR) due to no
differentiation between the positive and negative effect estimates
for ESM. All the other three methods, MVT, AUC, and XMV,
were generally less powerful than XUV. The strong performance
of XUV can be seen in the estimated HDR curves at Voxel
1 (Figures 2B left,C) extracted from a cluster (left postcentral
gyrus). More specifically, the adults had roughly the same HDR
profile between the two conditions except for a faster recovery
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FIGURE 1 | Simulation parameters and results. The six rows correspond to the scenarios in which the presumed HDRs (first column) with a poststimulus

undershoot were generated by the convolution program waver in AFNI, and sampled at TR = 2 s (shown with vertical dotted lines): (1) one group with a small

(Continued)
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FIGURE 1 | Continued

(1a, σ = 1.8) and a moderate (1b, σ = 1.8) undershoot, (2) two homoscedastic groups with the same HDR shape but different amplitudes (2a, σ = 0.5) and with same

peak amplitude but a difference of two seconds in peak location (2b, σ = 0.3), (3) two heteroscedastic groups with the same HDR shape but different amplitudes (3a,

σ = 0.3) and with same peak amplitude but a difference of two seconds in peak location (3b, σ = 0.3). FPR and power are shown in the second and third columns

with a varying number of subjects in each group at a temporal correlation coefficient ρ of 0.3 under six testing approaches: XUV, LME, MVT, XMV, AUC, and L2D. The

curves for FPR and power were fitted to the simulation results (plotting symbols) through LOESS smoothing with second order local polynomials.

phase under the Congruent condition than the Incongruent
condition; in contrast, the upstroke and peak were more
elevated under the Congruent condition in the children than the
Incongruent condition except for the recovery phase during the
last 3 TRs. Geometrically, the interaction effect between Group
and Condition at Voxel 1 is represented by the fact that the HDR
profiles of condition difference were intersecting between the two
groups (Figure 2C). MVT and XMV achieved a moderate power
while AUC and L2D failed to reach the significance level of 0.05
at Voxel 1 (Figure 2B left). On the other hand, the detection
failure of XUV at Voxel 2 (left precuneus) was caused by the fact
that the condition contrast was roughly parallel between the two
groups (Figure 2C), as geometrically demonstrated in Table 1.
MVT, AUC, and XMV showed their auxiliary role when XUV
failed (Figure 2B left).

With the ASM analysis results, five tests were performed using
3dMVM. First, the popular approach of focusing on the effect
estimate β0 associated with the first basis (canonical) function
through the hypothesis (6b) was adopted (Figure 2A bottom).
Secondly, the L2D approach (7) was used on the first two basis
functions (not shown here) as well as all three. Thirdly, MVT
was performed using (2b) with the three coefficients. Lastly, the
HDR curve at each condition was reassembled for each subject
using the three coefficients, and the reconstructed effect estimates
only at the first 10 TRs were analyzed with 3dMVM for two
reasons: a) with the three SPM curves covering 32 s or 25 TRs,
the model would contain too many parameters relative to the
data size; b) the effect estimates after the first 10 TRs were mostly
negligible. Two tests, XUV and AUC, were performed while
MVT and XMV were impossible because the rank was 3 among
the 10 effect estimates from the linearly reconstructed HDR per
condition.

The detection power for both β0 and L2D with ASM was very
low (Figure 2A bottom), illustrating the fact that focusing on the
peak or the combined effects associated the two or three basis
functions would largely fail to detect subtle differences during the
BOLD uprising and recovery phases. In contrast, MVT (with the
coefficients from three basis functions of ASM), XUV and AUC
(with the reconstructed HDRs from ASM) outperformed the
conventional approaches of β0 and L2D in SPM. Such failure of
ASM is specifically demonstrated at Voxel 1 where the peak alone
or the summarized values from the three coefficients were not
as powerful as the reassembled HDR profiles (Figure 2B right).
It is noteworthy that XUV with ASM was less powerful than its
ESM counterpart, showcasing the coarser characterization with
three parameters in ASM than the estimation at every time point
in ESM. Furthermore, for both ESM and ASM, even though
XUV was mostly more powerful than the alternatives, MVT
and AUC (as well as XMV for ESM and β0 for ASM) played

a supplementary role when XUV failed (Voxel 2 in Figure 2B

right).
To recapitulate the performance of the five testing methods

in situations when LME cannot be applied, ESM provided a
more accurate estimation for the HDR curves than ASM, leading
to a higher success in detection power. In addition, with the
typical sample size in most studies, XUV as an approximate
approach had the lowest power loss at the group level compared
to other dimensional alternatives as well as the test with the most
accurate hypothesis formulation, MVT. However, MVT plus the
lesser accurate approximations such as AUC and XMV may play
an auxiliary or even irreplaceable role in situations when XUV
suffers from power loss (e.g., Table 1 or Voxel 2 in Figure 2).

DISCUSSION

There are many characteristics that could describe the HDR
shape: onset latency, onset-to-peak, peak location, peak duration,
magnitude or shape of the undershoot after the onset or during
the recovery phase, and habituation or saturation effect. Because
of the multiple facets of HDR shape, a lot of effects may well
have gone undetected at both individual and group levels in
most neuroimaging data analyses, and the failures to capture
the shape nuances might have partially contributed to the poor
reliability and reproducibility in the field. With a few exceptions,
most analyses adopt FSM or ASM mainly for the simplicity of
group analysis, as each condition or task is associated with one
effect estimate, while other coefficients (e.g., time and dispersion
derivatives in ASM) are a priori ignored. That is, activation
detection intuitively focuses on the estimated magnitude around
the activation peak while statistical inference on the whole HDR
shape is generally considered a daunting hurdle. FSM may work
well for situations such as a contrast between a condition and
fixation. However, it would fail to detect shape subtleties such
as prolonged plateau at the peak, slower or faster rise or fall,
bigger or longer undershoot, or overall duration. Therefore, FSM
through a presumed HDR (gamma variate in AFNI, canonical
function in FSL and SPM) is very crude even in an experiment
with a block design (Saad et al., 2006; Shan et al., 2013). ASM is an
improvement over FSM; however, its flexibility is still limited. For
instance, when one is interested in contrasting two conditions (or
groups) or in investigating higher-order interactions, the three
ASM basis functions may still not be enough in capturing the
undershoot subtleties. In addition, characterizing the whole HDR
curve with its peak value from ASM for group analysis may
suffer from significant power loss, as demonstrated in our real
experimental data. Response shapes can vary considerably over
space (e.g., Handwerker et al., 2004; Gonzalez-Castillo et al., 2012;
Badillo et al., 2013), and we believe it is important to model
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FIGURE 2 | Analysis results of experimental data. (A) Five tests for ESM and ASM are illustrated at an axial slice (Z = 54mm) at p = 0.05 level with the

radiological convention (left is right). To demonstrate the subtle differences among the methods, the raw results are shown here without multiple testing correction

applied. When family-wise error correction through Monte Carlo simulations was adopted, a minimum cluster of 140 voxels for a voxel-level significance of 0.05 led to

a surviving cluster at the crosshair (Voxel 1) for XUV for ESM and XUV for ASM. For the cluster labeled with blue circles (Voxel 2), the surviving tests were AUC for

ESM, AUC and β0 for ASM. (B) The power differences (p-values in blue when below 0.05) among the five tests are demonstrated at Voxels 1 and 2, whose

approximate locations (left postcentral gyrus and left precuneus) are marked with the green crosshair and blue circle respectively in the axial views in (A). (C) The

estimated HDRs through ESM are shown for the two conditions (first two columns) and their differences (third column) at Voxels 1 and 2. Each HDR profile spans over

11 TRs or 13.75 s. The profile patterns at Voxels 1 and 2 are shared by their neighboring voxels in their respective clusters. In addition to the statistical significance in

(A) and (B), the HDR signature profiles provide an extra evidence for the associated effects at these voxels.
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more accurately the HDRs at the individual level and test for
shape rather just amplitude at the group level, particularly when
detecting subtle differences between conditions or groups. The
dominant adoption of FSM or ASM with a relatively rigid HDR
shape reflects the daunting challenge in adopting ESM at the
group level, and it is this challenge that motivated our exploration
of various group analysis strategies with ESM.

Overview of the Testing Methodologies
Among all the testing strategies for ESM (Table 1), MVT and
LME maintain an accurate characterization for the hypothesis.
In contrast, the dimensional reduction methods AUC, L2D, and
EXC (XUV and XMV) project the original space of the alternative
hypothesis from R

m to R
1, R

1, and R
m−1, respectively. Any

dimensional reduction usually translates to information loss or
geometrical distortion. Based on the results from our simulations
and real data applications, we believe that the major testing
methods for ESM are LME, XUV, MVT, XMV, and AUC,
which all have the proper controllability for FPR. If sample
size is not an issue in FMRI studies, MVT (e.g., hypothesis
2a or 2b) would be the most accurate approach in terms of
hypothesis characterization. However, in practice the number of
subjects is usually not large enough for MVT due to resource
limitations (e.g., financial cost, time, and manpower), leading
to an underpowered performance of MVT as shown in our
simulations and real data. Among all the workaround methods
through dimensional reduction, XUV has the least hypothesis
distortion and the lowest power loss. With one group of subjects
and no other explanatory variables present, XUV surpasses
MVT, XMV, and AUC in power. However, with an accurate
representation of the hypothesis, LME is slightly more efficient
than XUV, and should be considered as the first choice (e.g.,
Alvarez et al., 2008). For all other situations, LME modeling is
not feasible due to the constraint of variable parameterization,
and we opt for the workaround methods through dimensional
reduction, among which AUC is insensitive to subtle shape
differences while XMV mostly underperforms unless when the
temporal correlation is relatively high (e.g., 0.65 or higher; Chen
et al., 2014). XUV achieves the best balance between dimensional
reduction and statistical power. However, as XUV tests for
parallelism, not exactly the same as the accurate representation
characterized in MVT, it may fail in detecting the situation where
the HDR profiles are roughly parallel. To compensate for the
occasions when XUV fails, other dimensional reduction methods
(MVT, AUC, XMV) may offer some complementary detection
power.

In light of the discussion here, we strongly encourage the
adoption of the ESM approach to achieving two goals: detecting
activations and estimating the hemodynamics by characterizing
the HDR shape. In addition to the large power gain at both
individual and group levels, ESM provides the estimated HDR
shape information at the group level, providing an extra layer of
validation about the effect veracity through the graphical display
of the familiar HDR shape, and alleviating the misconceptions
and malpractices prevalent in statistical analysis (e.g., P-hacking,
graphical presentation of statistic values instead of effect
estimates, overuse of statistical significance; Motulsky, 2014).

The HDR profile information from ESM offers a precious boost
especially when a cluster fails to survive the typical stringent
thresholding for multiple testing correction but still reaches the
significance level of 0.05 at the voxel level. Such a reassuring
support of ESM is unavailable from the alternatives of FSM and
ASM, with which typically the investigator would be only able to
report the peak HDR magnitude or statistic values at a region.

Our recommendation of adopting ESM not only applies to
event-related experiments, but also are adaptable to modeling the
attenuation or habituation effect in block designs (Saad et al.,
2006). In addition, this approximation modeling methodology
of XUV assisted with MVT, AUC, and XMV has been applied
to DTI data in which the simultaneous variables (white matter
network groups such as corpus callosum, corona radiata, left and
right hemispheric projection fibers, left and right hemispheric
association fibers) were modeled by multiple explanatory
variables (e.g., sex, age, behavioral measures) for each response
variable such as fractional anisotropy, axial diffusivity, mean
diffusivity, radial diffusivity, T1 relaxation time, proton density,
and volume (Taylor et al., 2015).

The proposed modeling strategies have been implemented
into the open-source program 3dMVM in AFNI, which offers
the investigator all the testing results in the output including
XUV and the auxiliary approaches (MVT, XMV, and AUC).
MVT for the components from ESM presents a unique challenge
when one or more within-subject factors are included in the
model, and we offer a testing strategy that still fits in the
MVM framework (Appendix B). As an alternative, these tests
could be conducted in the traditional univariate GLM except
for the two multivariate methods, MVT and XMV. In other
words, some of the testing methods (MVT and XMV) are truly
multivariate, while others (XUV, AUV, and L2D) are essentially
univariate. However, as we demonstrated in Chen et al. (2014),
these univariate tests are sometimes difficult to perform under
the univariate framework, as shown by the implementation
challenges faced by some of the neuroimaging packages. Instead,
these univariate tests can bemore conveniently formulated under
the MVM platform by treating the levels of each within subject
factor as simultaneous variables in (1) and then constructing
the univariate testing statistics through a conversion process.
For example, those univariate tests presented in Figure 2 cannot
be performed under the univariate GLM framework due to
the incorporation of a covariate (age) in the presence of
two within subject factors (Condition and HDR effects). It is
in this sense that we frame our discussion here under the
MVM perspective.

Limitations of the ESM Approach
It is noteworthy that the reliability information from the
individual subject analysis is not considered at the group level
with the modeling methods discussed here, unlike the mixed-
effect multilevel analysis (Worsley et al., 2002; Woolrich et al.,
2004; Chen et al., 2012). In addition, the number of basis
functions monotonically increases among FSM, ASM, and ESM,
therefore it is expected that the goodness of fit at the individual
subject analysis level improves across the three methods. On the
other hand, as each condition is characterized through multiple
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(e.g., ≥7) basis functions in ESM, a reliable estimation of the
HDR curve at the individual level pays a price through the
lower degrees of freedom and requires enough (e.g., 20 or more)
trials per condition, and may encounter the risk of numerical
instability due to high correlations or even multicollinearity
among the regressors. These latter issues can be exacerbated by
poor stimulus timing designs. In addition, the typical regression
analysis at the individual level assumes the linearity of HDR
across trials. Although available (e.g., 3dNLfim in AFNI),
a non-linear approach is usually difficult to handle and still
requires some extent of prior information about the HDR shape.
Furthermore, the ESM approach is generally considered to be
susceptible to noise or effects unrelated to the effects of interest
(e.g., head motion, physiological confounds). In other words, the
confounding effects may leak into the HDR estimation through
over-fitting. However, the false positives from the potential over-
fitting at the individual level is less a concern at the group level
for the following reasons: a) the likelihood is reduced unless
most subjects systematically have similar or same confounding
effects; b) cluster-based inferences may reduce the risk of false
positives; and most importantly c) examination of the estimated
HDR profiles offer an extra safeguard to filter out the potential
false positives.

Comparisons with Other Modeling
Approaches
Some (not all) of the dimensional reduction methods for ESM
discussed here have been sporadically and individually applied to
real data in the literature. For example, a popular practice with
ASM is to solely focus on the coefficient of the principal basis
function (e.g., canonical curve in SPM) with other coefficients
(e.g., time and dispersion derivatives) being a priori abandoned.
As our results with real data showed, the investigator may fail
to detect most activations when the effect lies in the HDR shape
nuances but not the peak. One suggestion for ASM was to extend
the definition of amplitude in (6) to the L2-distance by including
either the effect for the time derivative (7) or the effects for both
time and dispersion derivatives (8) (Calhoun et al., 2004;Worsley
and Taylor, 2006; Steffener et al., 2010). A similar approach was
to express the effect estimates from the first two basis functions
of ASM as a complex number (Wang et al., 2012). However,
the potential issues with L2D or its analogs (e.g., Worsley and
Taylor, 2006) are the following. a) The definition of amplitude
extension in (7) and (8) is under the premise that all the three
basis functions are orthogonal with each other (Calhoun et al.,
2004). However, only the first two basis functions are orthogonal
with each other, but not the third one. b) The second and
third basis functions are not normalized; that is, they are not
scaled to have a maximum value of 1, unlike the first basis
function. In addition, the three effect estimates have different
dimensions: the first is of percent signal change while the other
two of percent signal change by the unit of time. Therefore, it
is difficult to render a physically meaning interpretation with
the L2D measures. c) All the effect estimates including negative
values are folded into a positive L2D measure, which cannot be
differentiated among those effect estimates on the same circle or
sphere (see Table 1). In addition, it may lead to the violation of

the Gaussian distribution assumption, as illustrated in the poor
controllability of FPR (Figure 1). d) Their power performance is
not satisfactory (Figures 1, 2). As an alternative, MVT or LME
through the hypothesis (2a) or (2b) on the two or three effect
estimates from ASM, as shown in Figure 2A, provides a more
accurate characterization because it allows for different units or
dimensions across the effects.

Similarly for ESM, two dimensional reduction methods have
separately been adopted in data analyses. For example, AUC
was employed in Beauchamp et al. (2003), Greene et al. (2007),
and McGregor et al. (2013). Although not explicitly stated,
XUV was used in several real applications to identify the
HDR effect under a condition through the main effect (or
one-way interaction) of the ESM components in a one-way
within-subject ANOVA (Weissman et al., 2006; Geier et al.,
2007; Church et al., 2008), to detect the group or condition
differences in the overall HDR shape through the group-by-
component or condition-by-component interaction in a two-
way ANOVA (e.g., Schlaggar et al., 2002; Church et al., 2008;
Shuster et al., 2014), and to explore the three-way group-by-task-
by-component interaction (Church et al., 2008). However, two
limitations were not addressed in those analyses: the potential
identification failure of XUV (Table 1 and Voxel 2 in Figure 2),
and the limited applicability of univariate GLM.

Some comparisons were performed in terms of amplitude,
peak latency, and duration in the estimated HDR among various
modeling methods (e.g., FSM, L2D, ESM, a nonlinear model,
and inverse logit model; Lindquist et al., 2009). The inverse
logit model was deemed the best among the candidates in
both simulations and real data, and slightly more powerful
than ESM. However, the comparisons were not optimal. First,
the dimensional reduction from the HDR shape in R

m to the
three quantities (amplitude, delay, and duration) in R

3 might
be compromised in power when detecting the shape subtleties—
this point can be highly dependent on the experiment. Secondly,
the reliability for the estimation of the three characteristics was
suboptimal. For example, the lackluster performance of ESM
in Lindquist et al. (2009) might be caused by the inaccurate
amplitude based on the first local peak because such an approach
could be misleading especially when more than one local peak
occurs. Lastly, the final group analyses were still focused on
the amplitude with the Student’s t-test, an effective dimensional
reduction from R

m to R
1.

A multivariate approach (Zhang et al., 2012) was previously
proposed, analogous to our method except for the following
differences. It was demonstrated among the voxels within only
five structurally pre-defined regions; smoothing the estimated
HDR from each subject by a Gaussian kernel and imposing
regularization on the smoothedHDRwere performed to improve
the temporal continuities of the HDR; and group analysis was
run through multivariate testing of one-sample or pair-wise
comparisons among conditions, equivalent to MVT (2a or 2b)
discussed here. Another approach (Zhang et al., 2013) assumed
that the HDR under each condition would only vary in amplitude
and latency across subjects; that is, the HDR shape was presumed
same across all subjects. Specifically, the HDR curve for each
condition was characterized at the group level by two parameters:
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one was of interest (amplitude) and the other of no interest
(delay). In addition, the HDR shape (fixed across subjects) was
modeled by cubic splines plus their time derivatives. Once the
amplitude was estimated for each subject in a one-tier model
that incorporated both within- and across-subject variances, a
second round of group analysis was performed only on the
amplitudes (ignoring the delay) through typical one-sample or
paired t-test to make inference about a condition or contrast. The
approach was demonstrated among the voxels within only three
structurally predefined regions.

Recently, a hierarchical approach was proposed for ESM
through integrating both individual and group levels into one
model (Degras and Lindquist, 2014) in which the HDR curves
were captured through multiple higher-order B-spline functions.
Even though only demonstrated on one slice of data, the
approach is appealing because the variability at both levels is
accounted for. However, the current implementation in Matlab
is hindered by the following constraints or limitations. a)
Spatial parcellation based on anatomical structure was required
to determine the temporal correlation structure in the noise
component. More applicable approaches would be based on
a priori regions that are functionally parcellated through, for
example, hierarchical clustering (Thirion et al., 2006; Ji, 2010),
joint parcellation detection-estimation (Badillo et al., 2014),
consensus clustering (Badillo et al., 2013), k-means clustering
(Ji, 2010), etc. (b) The HDR shape may vary across different
stimulus conditions under some scenarios (e.g., Ciuciu et al.,
2003), and a presumption of the same shape HDR as in Degras
and Lindquist (2014) may decrease the detection power when
the shape subtleties are of interest. The same HDR assumption is
reasonable under other circumstances and has proven sufficient
for encoding or decoding the brain activity (Pedregosa et al.,
2015). c) Final statistical inference in Degras and Lindquist
(2014) through an asymptotic t-test was still based on the scaling
factors of the same HDR curve shared by all conditions, a
dimensional reduction approach from R

m to R
1. An alternative

approach is the incorporation of both individual and group
levels in a mixed-effects model under the Bayesian framework
(Chaari et al., 2013; Badillo et al., 2014). Applied at a priori
regions that are functionally parcellated, this jointed detection
and estimation method may render a robust procedure less
sensitive to outliers than the conventional two-tier methods

under the assumption that all the voxels share the same HDR
within a region or parcel.

CONCLUSION

Here we demonstrate with simulations and experimental data
that the fixed-shape (FSM) or adjusted-shape (ASM) method
may fail to detect most of the shape subtleties (e.g., the speed
of rise or recovery, undershoot) in hemodynamic response
(HDR). In contrast, the estimated-shape method (ESM) through
multiple basis functions would more accurately characterize the
cerebral blood flow regulation, and significantly improve the
detection power at both individual and group levels. In addition,
we propose an analysis scheme for ESM that still fits within
the conventional two-tier analysis pipeline and achieves higher

statistical power than the alternatives: one performs regression
time series analysis separately for each individual subject, and
then conducts group analysis with the individual effect estimates.
For one group of subjects, a linear mixed-effects (LME) model
is preferred if no other explanatory variables are present. In
all other scenarios, statistical inferences on the HDR shape
can be achieved through a hybrid combination of multivariate
testing (MVT) and dimensional reduction approaches with a
multivariate model (MVM). Simulations are shown in terms
of controllability for false positive rate (FPR) and power
achievement among various testing methods. The strategy was
applied to a dataset from a real experiment to compare among
different testing strategies in terms of power assessment. In
addition, we showcase that the MVM flexibility allows any
number of explanatory variables including between- and within-
subject factors as well as between-subjects covariates.
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APPENDIX A

List of Acronyms used in the Paper

AN(C)OVA Analysis of (co)variance
ASM Adjusted-shape method
AUC Are under the curve
ESM Estimated-shape method
EXC Effect-by-component interaction
FPR False positive rate
FSM Fixed-shape method
GLM General linear model
HDR Hemodynamic response
IRF Impulse response function
L2D Euclidian (L2 ) distance
LME Linear mixed-effects
MAN(C)OVA Multivariate analysis of (co)variance
MVM Multivariate modeling
MVT Multivariate testing
UVM Univariate modeling
UVT Univariate testing
XMV Multivariate testing for interaction
XUV Univariate testing for interaction.

APPENDIX B

FORMULATION OF MULTIVARIATE
TESTING IN THE PRESENCE OF ONE OR
MORE WITHIN-SUBJECT FACTORS

As discussed in Chen et al. (2014), all the within-subject factors
are flattened into R

1 under the multivariate model (MVM)
formulation (1). Once the regression coefficient matrix A is
estimated through solving the MVM system (1) with the least
squares principle, each general linear test (GLT) can be expressed
as a function of A,

H0 : Lu×q Aq×m Rm×v = 0u×v, (A1)

where the hypothesis matrix L, through premultiplying, specifies
the weights among the rows of A that are associated
with the between-subjects variables (groups or subject-specific
quantitative covariates), and the response transformation matrix
R, through postmultiplying, formulates the weighting among
the columns of A that correspond to the m response variables.
It is assumed that L and R are full of row- and column-rank
respectively, and u ≤ q, v ≤ m. The matrix L (or R) plays a
role of contrasting or weighted averaging among the groups of a
between-subjects factor (or the levels of a within-subject factor).

The conventional multivariate test (MVT) can be performed
through any of the four multivariate statistics (Wilks’ λ, Pillai-
Bartlett trace, Lawley-Hotelling trace, and Roy’s largest root) with
R = Im once the hypothesis matrix L in (A1) is constructed
(Appendix B in Chen et al., 2014). For instance, suppose that
we consider an m-variate model with the following explanatory
variables: three genotypes of subjects, age and their interactions.
Via effect coding with the first genotype as reference, the model

matrix X in (1) is of q = 6 columns: one for the intercept, two for
the three genotypes, one for age, and two for their interactions.
Accordingly, the q = 6 rows in A represent the overall mean,
the respective effects for the second and third genotypes relative
to the overall mean, the age effect associated with the overall
mean, and the respective age effects for the second and third
genotypes relative the average age effect. MVT for the main effect
of genotypes, the genotype-by-age interaction, and the age effect
for the first genotype can be obtained under (A1) respectively
with

L1 =

[

0 1 0 0 0 0
0 0 1 0 0 0

]

, L2 =

[

0 0 0 0 1 0
0 0 0 0 0 1

]

,

L3 =
[

0 0 0 1 −1 −1
]

,R1 = R2 = R3 = Im.

Similarly, both univariate and within-subject multivariate tests
can be formulated by obtaining both the hypothesis matrix L

and the response transformation matrix R in (A1) (Appendix C
in Chen et al., 2014). In addition, all the post-hoc t- and F-tests
(options -gltCode and -glfCode respectively in 3dMVM) are also
constructed as MVT under the platform (A1). For instance, the
effect under a specific level and the contrast between two levels of
a within-subject factor through -gltCode are evaluated essentially
by a one-sample and a paired t-test respectively, while the main
effect of a within-subject factor through -glfCode is assessed by a
within-subject multivariate test.

When R = 1m×1, the hypothesis (A1) solely focuses on the
between-subjects explanatory variables (columns in the model
matrix X of MVM; 1) while the effects among the levels of
the within-subject factors are averaged (or collapsed). Therefore,
the AUC approach (4) can be conceptually tested under the
multivariate framework (A1), respectively for one group,

L4 = 1,R4 = 1m×1,

and two groups,

L5 = (0, 1),R5 = 1m×1,

even though they would be readily performed through the
conventional one- and two-sample t-tests.

When applied to the effect-by-component interaction (9a or
9b) with ESM (EXC in Table 1), the MVM framework offers
both univariate (XUV) and multivariate (XMV) approaches,
which are tested under the same formulation, respectively for one
group (A1),

H0 : α1 = α2 = ... = αm,

L6 = 1,R6 =

[

Im−1

−11×(m−1)

]

,

and two groups,

H0 : α11 − α21 = α12 − α22 = ... = α1m − α2m,

L7 = (0, 1),R7 = R6.
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For XMV, standard multivariate testing statistics (Wilks’ λ,
Pillai-Bartlett trace, Lawley-Hotelling trace, Roy’s largest root)
are constructed through the eigenvalues of the "ratio" H(H +

E)−1 between the SSPH matrix H for the hypothesis (A1)
against the SSPE matrix E for the errors in the full model
(Rencher and Christensen, 2012). In contrast, the univariate
approach XUV is tested through the formulation of an F-
statistic with the numerator and denominator sums of squares
being as tr(H(RT

R)−1) and tr(E(RT
R)−1) under the sphericity

assumption (Fox et al., 2013), and the F-value can be adjusted
through the Greenhouse and Geisser (1959) or Huynh and Feldt
(1976) correction if the sphericity assumption is violated.

All the applications so far in the literature have been focused
on either MVT or UVT. In other words, a strict MVT applies
to the situations of truly multivariate nature while a purely UVT
is adopted to the conventional AN(C)OVA or GLM. However,
if we treat the components from ESM as simultaneous response
variables, the presence of one or more within-subject factors
(e.g., two task conditions in the experimental data of this paper)
necessitates a partial MVT. Here we demonstrate a strategy to
formulate partial MVT with the construction of L and R using

a template of two-way within-subject ANOVA with factors A
and B of a and b levels respectively. Suppose that we want to
model the levels of factor A as a simultaneous response variables
(e.g., components or effect estimates from ESM) while factor
B is considered as an explanatory variable (e.g., conditions).
MVT for the effect of B can be achieved through the following
specifications in (A1),

L = Iq,R = Ia ⊗ R
(B).

Similarly, if the levels of factor B are modeled as b simultaneous

response variables while factor A is considered as an explanatory
variable, we have the following MVT specifications for the effect
of A,

L = Iq,R = R
(A)

⊗ Ib.

The notations R(A) =

[

Ia−1

−11×(a−1)

]

and R
(B) =

[

Ib−1

−11×(b−1)

]

above are conveniently the effect coding matrices for factors A
and B respectively.
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