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Long QT syndrome: an emerging role
for inflammation and immunity
Pietro Enea Lazzerini*, Pier Leopoldo Capecchi and Franco Laghi-Pasini

Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy

The long QT syndrome (LQTS), classified as congenital or acquired, is a multi-factorial
disorder of myocardial repolarization predisposing to life-threatening ventricular arrhyth-
mias, particularly torsades de pointes. In the latest years, inflammation and immunity have
been increasingly recognized as novel factors crucially involved in modulating ventricular
repolarization. In the present paper, we critically review the available information on this
topic, also analyzing putative mechanisms and potential interplays with the other etiologic
factors, either acquired or inherited. Accumulating data indicate inflammatory activation
as a potential cause of acquired LQTS. The putative underlying mechanisms are complex
but essentially cytokine-mediated, including both direct actions on cardiomyocyte ion
channels expression and function, and indirect effects resulting from an increased
central nervous system sympathetic drive on the heart. Autoimmunity represents another
recently arising cause of acquired LQTS. Indeed, increasing evidence demonstrates that
autoantibodies may affect myocardial electric properties by directly cross-reacting with
the cardiomyocyte and interfering with specific ion currents as a result of molecular
mimicry mechanisms. Intriguingly, recent data suggest that inflammation and immunity
may be also involved in modulating the clinical expression of congenital forms of LQTS,
possibly triggering or enhancing electrical instability in patients who already are genetically
predisposed to arrhythmias. In this view, targeting immuno-inflammatory pathways may
in the future represent an attractive therapeutic approach in a number of LQTS patients,
thus opening new exciting avenues in antiarrhythmic therapy.
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Introduction

The QT interval indicates the duration of action potential (AP) in ventricles, which represents
the sum of ventricular depolarization and repolarization. AP is caused by transmembrane flow of
ions, including inward depolarizing currents mainly through sodium and calcium channels, and
outward repolarizing currents mainly through potassium channels. More in details, six sequentially
activated currents are fundamentally involved: the sodium current (INa), the transient outward
current (Ito), the L(long-lasting)-type calcium current (ICaL), the rapid component of the delayed
rectifier potassium current (IKr), the slow component of the delayed rectifier potassium current
(IKs), and the inward rectifier potassium current (IK1) (Figure 1).

The Long QT Syndrome (LQTS) is a multi-factorial disorder of myocardial repolarization
characterized by a prolonged corrected QT interval (QTc) on the electrocardiogram (ECG), and
predisposing to life-threatening ventricular arrhythmias, particularly torsades de pointes (TdP) (1).
The LQTS is traditionally classified as congenital or acquired (1, 2), even though it has becoming
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FIGURE 1 |Molecular and electrophysiological basis of QT interval.
INa, sodium current; Ito, transient outward current; ICaL, L(long-lasting)-type
calcium current; IKr, rapid component of the delayed rectifier potassium
current; IKs, slow component of the delayed rectifier potassium current; IK1,
inward rectifier potassium current.

clear how in many cases the clinical phenotype is the result
of a complex interaction of multiple etiologic factors operating
concomitantly in the single patient (3).

Congenital LQTS, which can often be a lethal disorder (2), is
caused by genetically determined abnormalities affecting directly
or indirectly the function of specific ionic channels involved
in ventricular AP, i.e., potassium (loss of function), sodium or
calcium channels (gain of function) (4). To date, about 1000
mutations in 13 LQTS-susceptibility genes have been identified;
however, only three of these genes, namely KCNQ1 (encoding
KvLQT1 channel α-subunit, conducting IKs), KCNH2 (encoding
hERG channel α-subunit, conducting IKr), and SCN5A (encod-
ingNav1.5 channel α-subunit, conducting INa), account by them-
selves for ~75% of all cases (5). The incidence of the congenital
LQTS is not well known, although a recent clinical-genetic analy-
sis on ~45,000 neonates suggests that it may be close to 1:2000 live
births (6).

Acquired LQTS is much more prevalent than the congeni-
tal form, although its precise incidence and mortality impact

in the general population are difficult to be estimated. Never-
theless, recent studies demonstrated that QTc prolongation is
highly prevalent (up to 25–30% of hospitalized patients), also
preliminarly suggesting that acquired LQTS may be as risky as
congenital LQTS (7–10). More frequently, acquired LQTS rep-
resents an adverse effect of drugs or the result of electrolyte
disturbances interfering with cardiomyocyte electrophysiology
(1). In particular, the molecular basis of drug-induced LQTS
almost exclusively involves the reduction of IKr through hERG-
potassium channel blockade (11). Other currently recognized
causes of acquired LQTS include structural heart diseases, brad-
yarrhythmias, endocrine disorders, liver diseases, nervous sys-
tem injuries, HIV infection, starvation, hypothermia, and toxins
(1, 12–14).

In the latest years, mounting evidence from basic and clinical
studies strongly suggests that inflammation and immunity rep-
resent further important determinants of acquired LQTS. In the
present paper, we review the available data on this topic, also
analyzing putative mechanisms and potential interplays with the
other etiologic factors, either acquired and inherited.

A list of the causes of acquired LQTS, also including
inflammatory- and immune-mediated forms, is proposed in
Table 1.

Inflammation as a Cause of Acquired LQTS

Clinical Data
Several lines of evidence support the hypothesis that inflam-
mation, either cardiac or systemic, significantly impacts on QT
interval duration and related risk of life-threatening arrhythmias
(Table 2).

First of all, inflammatory heart diseases, particularly myocardi-
tis, are frequently associated withQTc prolongation, in some cases
of severe degree. Indeed, in myocarditis patients, a prolonged QTc
was found to be the most common electrocardiographic abnor-
mality observed (15), also associating with the occurrence of com-
plex ventricular arrhythmias (44). Accordingly, in a large cohort
of 186 patients with myocarditis, Ukena et al. (16) demonstrated
that a QTc prolongation ≥440ms was frequent (~25% of cases)
and predicted a poor clinical outcome, including cardiac death.
Moreover, several cases of marked QTc prolongation complicated
with TdP have been reported in patients with acute infective cardi-
tis (myo/endocarditis), independently from the specific etiologic
agent involved (45–57). A peculiar form of diffuse myocardi-
tis is Chagas’s disease, triggered by the protozoan Trypanosoma
cruzi, and then progressing for (auto)immune-mediated mecha-
nisms (58). In this form, QTc prolongation represents a common
and prognostically relevant feature too (17, 18). Noteworthy, in
murine models of the disease, a significant correlation between
QTc duration and the degree of cardiac inflammation at the histo-
logical examination has been demonstrated (59, 60). Finally, evi-
dence also exists that QTc is often prolonged in a purely immune-
mediated inflammatory heart disease such as acute rheumatic
carditis (61), with some cases even complicating with TdP (62,
63). In particular, an increased QTc has been found to be the
most frequent ECG alteration in children with subclinical carditis
(~30%) (19). Moreover, in patients with acute rheumatic fever, a
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TABLE 1 | Causes of acquired long QT syndrome.

1. Drugs
-Antiarrhythmic drugs (class I and class III)
-Antimicrobials (fluoroquinolones, macrolides, imidazole antifungals, antimalari-
als, HIV protease inhibitors)
-Antihistamines (histamine H1-receptor antagonists)
-Psychoactive agents (antidepressants, antipsychotics, lithium, methadone)
-Motility and antiemetic drugs (cisapride, domperidone, serotonin 5-HT3-
receptor antagonists)
-Anticancer drugs (arsenic trioxide, tamoxifen)
-Diuretics (indapamide)
-Inotropics (phosphodiesterase III inhibitors)
-Immunosuppressants (tacrolimus)

2. Electrolyte imbalances
-Hypokalemia, hypocalcemia, hypomagnesemia

3. Structural heart diseases
-Ischemic heart disease, left ventricular hypertrophy, heart failure, Takotsubo
cardiomyopathy

4. Bradyarrhythmias
-Complete atrioventricular block (or any bradyarrhythmia, even transient)

5. Endocrine disorders
-Hypothyroidism, corticosteroid insufficiency, diabetes mellitus, pheocrhromocy-
toma

6. Inflammatory diseases
-Inflammatory heart diseases (myocarditis, Chagas’s disease, rheumatic heart
disease)
-Systemic inflammatory diseases (rheumatoid arthritis, connective tissue dis-
eases)

7. Autoimmunity
-Anti-Ro/SSA antibodies
-Other autoantibodies (anti−β1-adrenergic receptor, anti-Kv1.4 potassium chan-
nel)

8. End-stage liver disease
9. Nervous system injuries
-Subarachnoid hemorrhage, thalamic hematoma, right neck dissection, auto-
nomic neuropathy

10. HIV infection
11. Starvation
-Anorexia nervosa, “liquid protein” diets, gastroplasty and ileojejunal bypass,
celiac disease

12. Hypothermia
13. Toxins
-Cocaine, arsenic, organophosphates (insecticides, nerve gas)

prolonged QTc correlated with both the presence of carditis and
the level of acute-phase reactants (20).

Not only cardiac, but also systemic inflammation is associated
withQTprolongation, as indicated by accumulating data obtained
in patients with autoimmune chronic inflammatory diseases, as
well as in patients affected with non-inflammatory heart diseases
or apparently healthy subjects from general population.

Among systemic autoimmune diseases, the largest evidence
regards rheumatoid arthritis (RA) and connective tissue diseases
(CTDs). In RA, representing a paradigmatic example of chronic
disease with high-grade inflammatory burden, the risk of sudden
cardiac death (SCD) is approximately two times higher than in
non-RA subjects (64). Recent studies demonstrated that in RA
patients, QTc is frequently prolonged, associates with disease
severity and inflammatory markers, and predicts mortality (65).
In a cohort of 101 patients with chronic inflammatory arthritis,
in which a significant positive correlation between C-reactive
protein (CRP) values and QTc duration was demonstrated, we
found that RA patients had a longer QTc when compared with

both spondyloarthritis patients and healthy controls (21). These
findings were very recently confirmed in a larger retrospective,
population-based cohort study involving 650 RA patients and 650
age- and sex-matched non-RA patients. During follow-up, the
cumulative incidence of QTc prolongation at 20 years after RA
incidence (or after index date for controls) was higher among
RA than non-RA subjects. Notably, in RA patients, erythrocyte
sedimentation rate (ESR) at diagnosis was significantly associated
with risk of idiopathic QTc prolongation, i.e., excluding prolonga-
tions explained by ECG changes,medications, etc. (22). In another
prospective study carried out on 357 RApatients, it was found that
prolonged QTc is a strong predictor of death as a 50ms increase in
QTc interval associated with a doubling of the hazard for all-cause
mortality (22). The evidence that in this population, QTc prolon-
gation was independently associated with CRP levels, and that the
significance of the association between QTc and all-cause mortal-
ity was lost after the adjustment for CRP, once more and robustly
supported the hypothesis that systemic inflammation plays a key
mechanistic role in the phenomenon. As a further confirmation
of this view, Adlan et al. (24) found that in RA patients circulat-
ing levels of inflammatory cytokines (TNFα, IL-1β, IL-6, IL-10)
correlated with QTc duration. Moreover, we demonstrated that
in RA anti-cytokine therapy with the anti-interleukin 6-receptor
antibody, tocilizumab was associated with a rapid and significant
QTc shortening, which correlated throughout the study time with
the decrease in both CRP, and, more strongly, circulating TNFα
levels (25).

Several studies performed in patients with different CTDs
reported a high overall prevalence of QTc prolongation (up to
~30%) (26–30), with circulating IL-1β levels independently pre-
dicting the presence of a prolonged QTc (30). As regards spe-
cific CTD forms, it has been demonstrated that systemic lupus
erythematosus (SLE) patients display longer mean QTc than
controls (31, 32), and data obtained from large SLE cohorts
found a 7–15% incidence of QTc prolongation (33, 34) [marked
QTc prolongation, i.e., >500ms, in ~3% (35)], with a signif-
icant association between QTc and overall inflammatory bur-
den, as reflected by SLICC/ACR damage index (SDI) (34, 35).
Noteworthy, 10 cases of drug-induced TdP in SLE patients were
reported (66–75), and although CRP was specifically assessed
only in two cases, nevertheless it was elevated in both (70,
74). Maximum QTc is also increased in systemic sclerosis (SSc)
patients when compared to healthy controls (36). Furthermore,
a recent study on 689 SSc patients demonstrated that QTc pro-
longation occurs in 25% of the cases, also independently cor-
relating with disease duration and disease severity (37). Finally,
preliminary results suggest that an increased frequency of QTc
prolongation may be observed in other chronic inflammatory
diseases, particularly inflammatory bowel disease and psoriasis
(76, 77).

Systemic inflammation can also be involved in the pathogenesis
of QTc prolongation in some non-inflammatory heart diseases.
By analyzing 466 hypertensive patients, Chang et al. (38) found
that CRP level correlated with QTc and independently predicted
QTc prolongation presence. Similarly, in patients with coronary
artery disease, a significant association betweenQTc duration and
circulating CRP was observed (39). Moreover, a study involving
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TABLE 2 | Inflammation and QTc prolongation: clinical studies.

Reference Study population Subjects Controls Main findings
n n

INFLAMMATORY HEART DISEASES
Ramamurthy et al. (15) Myocarditis (biopsy-proven) 20 – QTc prolongation was the most common ECG abnormality (70%)

Ukena et al. (16) Myocarditis 186 – QTc prolongation (25% of patients) predicted cardiac death

Williams-Blangero et al. (17) Chagas’ disease 722 667 Mean QT intervals longer in T. Cruzi seropositive than seronegative
subjects

Salles et al. (18) Chagas’ disease 738 – QTc max was an independent predictor of sudden death

Santos et al. (19) Acute rheumatic carditis 27 – QTc prolongation was the most common ECG abnormality (30%)

Balli et al. (20) Acute rheumatic carditis 73 – A prolonged QTc correlated with both presence of carditis and
levels of acute phase reactants

SYSTEMIC INFLAMMATORY DISEASES
Lazzerini et al. (21) Rheumatoid arthritis 25 20 Mean QTc longer in RA patients than healthy controls and

correlated with CRP levels

Chauhan et al. (22) Rheumatoid arthritis 518 499 Cumulative incidence of QTc prolongation higher in RA than
non-RA patients; any QTc prolongation independently associated
with all-cause mortality; idiopathic QTc prolongation correlated
with ESR

Panoulas et al. (23) Rheumatoid arthritis 357 – QTc prolongation was independently associated with CRP levels
and predicted all-cause mortality

Adlan et al. (24) Rheumatoid arthritis 112 – QTc prolongation correlated with circulating levels of inflammatory
cytokines

Lazzerini et al. (25) Rheumatoid arthritis 17 – Anti-IL-6 therapy (TCZ) was associated with a rapid QTc
shortening, which correlated with the decrease in both CRP and
TNFα levels

Lazzerini et al. (26) Connective tissue diseases 57 – QTc prolongation in 31% of patients

Costedoat-Chalumeau et al. (27) Connective tissue diseases 89 – QTc prolongation in 12% of patients

Lazzerini et al. (28) Connective tissue diseases 46 – QTc prolongation (28% of patients) correlated with complex
ventricular arrhythmias

Lazzerini et al. (29) Connective tissue diseases 49 – QTc prolongation in 32% of patients

Pisoni et al. (30) Connective tissue diseases 73 – QTc prolongation (15% of patients) was independently predicted
by circulating IL-1β levels

Cardoso et al. (31) Systemic lupus erythematosus 140 37 Mean QTc longer in SLE patients than healthy controls

Milovanović et al. (32) systemic lupus erythematosus 52 41 Mean QTc longer in SLE patients than healthy controls

Bourrè-Tessier et al. (33) Systemic lupus erythematosus
(two studies)

150 – QTc prolongation (7% of patients) was independently associated
with SDI278 –

Bourrè-Tessier et al. (34) Systemic lupus erythematosus 779 – QTc prolongation (15% of patients) was independently associated
with SDI

Alkmim Teixera et al. (35) Systemic lupus erythematosus 317 – Marked QTc prolongation (>500ms) in 3% of patients

Sgreccia et al. (36) Systemic sclerosis 38 17 Mean QTc was longer in SSc patients than healthy controls

Massie et al. (37) Systemic sclerosis 689 – QTc prolongation (25% of patients) was independently associated
with disease duration and severity

NON-INFLAMMATORY HEART DISEASES
Chang et al. (38) Arterial hypertension 466 – CRP levels correlated with QTc duration and independently

predicted QTc prolongation

Yue et al. (39) Coronary artery disease 56 – CRP levels correlated with QTc duration

Song et al. (40) Takotsubo cardiomyopathy 105 – Patients with QTc prolongation had higher CRP levels than those
with normal QTc

GENERAL POPULATION
Kazumi et al. (41) Healthy subjects 179 – QTc length independently correlated with CRP

Kim et al. (42) Healthy subjects 4758 – QTc prolondation independently associated with elevated CRP

Medenwald et al. (43) Healthy subjects 1716 – Soluble TNF-receptor 1 levels independently correlated with QTc
duration in women

ECG, electrocardiogram; QTc, corrected QT interval; RA, rheumatoid arthritis; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; TCZ, tocilizumab; CTD, connective
tissue disease; SLE, systemic lupus erythematosus; SSc, systemic sclerosis; TNF-α levels, tumor necrosis factor alpha; IL-1β, interleukin-1 beta; SDI, Systemic Lupus International
Collaborating Clinics/American College of Rheumatology (SLICC/ACR) damage index.
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FIGURE 2 | Potential mechanisms responsible for inflammation-mediated QTc prolongation. CRP, C-reactive protein.

105 patients with Takotsubo cardiomyopathy demonstrated that
subjects presented with QTc prolongation had higher CRP levels
than those with normal QTc (40).

Finally, a significant relationship between the degree of
systemic inflammatory activation and QTc duration is also
observed in apparently healthy subjects in general population.
The first report by Kazumi et al. (41) showed that QTc length
was independently correlated with CRP in 179 males aged
18–22 years. More recently, two large population-based studies
involving middle-aged or elderly subjects confirmed these find-
ings. In the first one, Kim et al. (42) analyzed 4758 individ-
uals (40–69 years) and concluded that prolonged QTc was sig-
nificantly associated with elevated CRP (about twofold increase
in the odds of QTc being ≥440ms), independent of confun-
ders. Accordingly, in the CARdiovascular diseases, Living, and
Aging in Halle (CARLA) Study involving 1716 subjects aged
45–83 years, parameters of inflammation correlated with QTc
duration, particularly soluble TNF-receptor-1 levels (sTNF-R1,
a circulating stabile marker of TNFα system activation) in
women (43). The concomitant evidence from large prospec-
tive community-based studies that inflammatory markers (CRP,
IL-6) predict SCD in apparently healthy persons (78, 79) sug-
gests that this association, at least in part, may be explained by
a higher propensity to develop long QT-associated malignant
arrhythmias.

Mechanisms
An increasing body of evidence indicates that inflammatory acti-
vation profoundly impacts the electrophysiological properties of
cardiomyocytes via multiple effects, ultimately resulting in a pro-
longation of AP duration (APD), and thereby of the QTc on
ECG. In this scenario, the key mediators seem to be inflammatory
cytokines (particularly TNFα, IL-6, IL-1β), which may affect
myocardium either directly, by modulating specific ion channels
critically involved in APD, and indirectly, by increasing central
nervous system sympathetic drive on the heart (Figure 2).

A number of basic studies demonstrated significant direct
effects of inflammatory cytokines on cardiac electrophysiology,
particularly inducing changes in the expression and function
of potassium and calcium channels (Table 3). Perfused hearts
from transgenicmice overexpressing TNFα exhibited a prolonged
APD and re-entrant ventricular arrhythmias (80); left ventricular
myocytes isolated from these animals revealed a robust decrease
of Ito and a reduced expression of the corresponding potassium
channel protein (81). Several authors reported consistent findings
when rat ventricular myocytes were cultured with TNFα, also
demonstrating the involvement of a molecular cascade includ-
ing iNOS overexpression, oxidant species generation, NFκB acti-
vation, and potassium-channel-interacting protein 2 (KChIP-2)
inhibition (82–84). Moreover, Wang and coll (85) showed that
TNFα down-regulates in vitro IKr by impairing the function
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TABLE 3 | Effects of inflammatory cytokines on cardiomyocyte action potential: electrophysiological and molecular mechanisms.

Cytokine Effects on cardiomyocyte
ion currents

Molecular mechanisms Effect on APD

TNFα IKr decrease (85) Impairment of hERG potassium channel function (via stimulation of ROS) (85) Prolongation
(80, 83, 85)Ito decrease (81–83) reduced expression of Kv4.2 and Kv4.3 potassium channels (81–83) [via iNOS induction (83),

ROS generation (83), NKkB activation (84), and KChIP-2 inhibition (82, 84)]

IL-1β ICaL increase (86) Lipoxygenase pathway-mediated (86) Prolongation (86)

IL-6 ICaL increase (87) Enhancement of Cav1.2 calcium channel function (via SHP2/ERK-mediated phosphorilation) (87) Prolongation (87)

TNFα, tumor necrosis factor α; IL-1β, interleukin-1β; IL-6, interleukin-6; ROS, reactive oxygen species; iNOS, inducible nitric oxyde synthase; NFkB, nuclear factor-kappa-B; KChIP-2,
K(+) channel-interacting protein; SHP/ERK, Src homology 2 domain-containing phosphatase/extracellular signal-regulated kinase; APD, action potential duration.

of the hERG potassium channel via the stimulation of reactive
oxygen species. Although it is far probable that similar effects
on potassium channels are also exerted by the other main pro-
inflammatory cytokines IL-6 and IL-1, no specific studies eval-
uated this topic as yet. Nevertheless, experiments on pig and
mouse ventricular cells clearly demonstrated the ability of both
these cytokines to prolong APD, possibly by enhancing ICaL (86,
87). Finally, no data exist about possible effects of cytokines on
sodium channels. This area needs further evaluation, given that
an increase in the INa current may theoretically contribute to
cytokine-induced APD prolongation. Although not fully eluci-
dated, the previously reported evidence that circulating inflamma-
tory cytokine levels correlated with QTc duration in patients with
RA (24, 25), CTDs (30), as well as in healthy subjects (43) strongly
indicate that also in vivo, these pathophysiological mechanisms
are of crucial importance.

Animal models of cardiac or systemic inflammation confirm
and expand the relevance of these data. In isolated ventricular
myocytes from mice with experimental autoimmune myocarditis
(EAM), APD was markedly prolonged and Ito density signifi-
cantly reduced when compared to controls (88). An increased
APD (with a higher susceptibility to triggered ventricular arrhyth-
mias) was consistently reported by Park et al. (89) by analyzing
EAM rat hearts in which an elevated tissue expression of IL-6
and TNFα was demonstrated. Notably, the authors also proved
that both cytokine myocardial accumulation and electrophysi-
ological changes were prevented by prednisone administration.
Similar preventive effects, associated with a significant attenu-
ation of Ito inhibition, were also reported by Tang et al. (90)
by treating the animals with statins (atorvastatin), whose anti-
inflammatory potential in myocarditis has being increasingly
recognized (91). Moreover, relevant cardiac electrophysiological
alterations have been recently demonstrated in a murine model of
myocardial infarction (MI) in which a state of systemic inflam-
mation was induced. In MI mice, intraperitoneal injection with
lipopolysaccharide (LPS) was associated with repolarization and
APD prolongation, and higher ventricular arrhythmia propen-
sity than non-LPS-injected animals. Notably, LPS-treated mice
showed increased inflammatory macrophage activity transmu-
rally in the heart, with a strong relationship between the degree of
local myocardial inflammation and electric remodeling. Further-
more, the authors provided indirect evidence of a link between
electrophysiological abnormalities and higher IL-1β expression
in the myocardium (92). Besides inducing macrophage-derived
cytokine production, LPS may also prolong APD by directly

downregulating Ito via toll-like receptor 4 activation, as recently
demonstrated in isolated rat ventricular myocytes (93).

Inflammation can also produce cardiac electrophysiology
changes leading to QTc prolongation in an indirect manner, by
inducing autonomic nervous system (ANS) dysfunction. Indeed,
many basic and clinical studies demonstrated that, by target-
ing the autonomic centers of the brain, inflammatory cytokines
increase the sympathetic outflow overdrive that in turn inhibits
cytokine production and immuno-inflammatory activation by
stimulating the β2-adrenergic receptors expressed in circulating
lymphocytes and monocytes. Such a self-controlling loop is a
crucial component of the so-called inflammatory reflex, and in this
context sympathetic activation putatively represents an adaptive
response to damping the immuno-inflammatory response (94–
97). However, central sympathetic system, when activated, affects
not only the immune system, but also all the body districts under
its control, including the heart, with relevant electrophysiological
consequences on the myocardium (Figure 2). Indeed, cardiomy-
ocyte β-adrenergic receptor activation profoundly and complexly
affects calcium (ICaL) and potassium (IKs, IKr) conductance with
a net effect of increase in APD (98). Accordingly, cardiac sympa-
thetic denervation shortens APD in rats (99). Moreover, increased
catecholamine levels typically prolong QTc in healthy individuals
(100–102), and intravenous adrenaline produces increase in QTc
length in congenital LQTS patients (103).

A large body of evidence demonstrates a strict relationship
between the degree and duration of inflammatory activation
and the severity of ANS dysfunction. In particular, many data
focused on heart rate variability (HRV), a non-invasive method
to detect early cardiovascular autonomic impairment by assessing
the effects of the sympatho-vagal balance on the heart (104).
Reduced HRV, indicating an increase in sympathetic and a reduc-
tion in parasympathetic nervous system activity (104), is a com-
mon finding in several systemic inflammatory immuno-mediated
diseases, including chronic inflammatory arthritis (21, 65, 105,
106) andCTDs (26, 105), aswell as in heart inflammatory diseases,
including viral myocarditis (107) and acute rheumatic fever (108).
Moreover, HRV parameters inversely correlated with circulat-
ing CRP (and/or inflammatory cytokines) in healthy individuals
as well as in patients with cardiovascular diseases (109, 110).
The amount of data on this topic available in RA is of partic-
ular significance. In these patients, cardiac ANS dysfunction is
highly prevalent (~60%) with amain pattern indicative of elevated
sympathetic activity and reduced parasympathetic activity (65,
106). Autonomic impairment (particularly HRV) associated with
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disease duration, disease activity, or inflammatory markers (65),
and treatment with infliximab (a TNFα-antagonist monoclonal
antibody) produced rapid and evident HRV changes, i.e., decrease
in the sympathetic tone with a shift toward a relative vagal preva-
lence (97). Noteworthy, in patients with chronic inflammatory
arthritis, systemic inflammation degree, as assessed by CRP, and
HRV depression severity significantly correlated one each other
and both with QTc duration (21).

Autoimmunity as a Cause of Acquired
LQTS

Clinical Data
In the last years, accumulating evidence indicates that autoim-
mune mechanisms are involved in the pathogenesis of cardiac
arrhythmias (111). Indeed, a number of autoantibodies can deeply
interfere with the bioelectric properties of the heart by directly
targeting specific receptors, ion channels, or enzymes expressed
on the cardiomyocyte surface (112, 113). In particular, increasing
data demonstrated that some of these autoantibodies can increase
the arrhythmic risk by inducing an acquired LQTS of autoimmune
origin. Although most studies relate to anti-Ro/SSA antibodies,
some data suggest that other autoantibodies may lead to QTc
prolongation and related arrhythmias.

Anti-Ro/SSA antibodies (anti-Ro/SSA) consist of two funda-
mental subtypes, i.e., anti-Ro/SSA-52kD and anti-Ro/SSA-60kD,
whose detection is frequent in CTDs, particularly Sjögren’s syn-
drome (30–95%) and SLE (30–50%), but also in 0.5–2.7% of the
apparently healthy population (114). Large evidence links the
trans-placental passage of anti-Ro/SSA from mother to fetus with
the risk of developing congenital atrioventricular block (AVB)
(115). Although traditionally considered as invulnerable, recent
data suggest that also the adult conduction systemmay be affected
by these antibodies (116). Moreover, increasing data indicate that
anti-Ro/SSA significantly interfere with ventricular repolariza-
tion and promote QTc prolongation (114) (Table 4). In 2000,
Cimaz et al. (117) for the first time reported a high prevalence
(42%) of prolonged QTc in anti-Ro/SSA-positive infants without
congenital-AVB. Later on, the same investigators demonstrated
a concomitant disappearance of ECG abnormality and acquired
maternal autoantibodies during their first year of life (118). More-
over, Gordon et al. (119) found that the QTc was significantly
longer in children of anti-Ro/SSA-positive mothers compared
with children of negative mothers, with a further increase in
thosewith siblings with congenital-AVB. Consistent findings were
obtained by several following studies performed in adults. In a
cohort of adult CTD patients, we found that more than 50% of
anti-Ro/SSA-positive subjects displayed a prolonged QTc, with
mean QTc values significantly longer in positive vs negative
patients (26). Accordingly, a similar prevalence of anti-Ro/SSA-
associated QTc prolongation (46%) was demonstrated in a further
24-h ECGmonitoring study on 46 CTDpatients also showing that
this ECG abnormality was associated with the occurrence of com-
plex ventricular arrhythmias (28). More recently, Bourré-Tessier
et al. (33) performed two consecutive large studies on 150 and
278 SLE patients, respectively. The authors found a 5.1- to 12.6-
times higher risk of QTc prolongation in anti-Ro/SSA-positive

group than in negative patients, and each 10U/ml increase in
anti-Ro/SSA titer was associated with a parallel increase in the
risk of having prolonged QTc. The existence of a strict relation-
ship between QTc length and antibody levels, as well as subtype
specificity, was confirmed in a further study on 49 CTD patients
performed in our institution. In this cohort, it was demonstrated
a direct correlation between anti-Ro/SSA concentration and QTc
duration, but with the anti-Ro/SSA-52kD subtype only when
the two subtypes were considered separately (29). Very recently,
Pisoni et al. (30) reported that among 73 CTD patients, 20%
of anti-Ro/SSA-positive vs 0% of anti-Ro/SSA-negative subjects
had QTc prolongation. Notably, in patients with prolonged QTc
(all anti-Ro/SSA-positive), IL-1β levels were significantly higher
than patients with normal QTc, thus intriguingly suggesting a
synergistic interplay between autoantibodies and inflammatory
cytokines on QTc duration. Furthermore, Nakamura et al. (120)
described the case of a anti-Ro/SSA-positive woman with severe
QTc prolongation and TdP in which clear evidence of a direct
mechanistic link between circulating antibodies and QTc pro-
longation was provided (see Mechanisms). In this patient, no
genetic or acquired known causes of QT prolongation were
detected, although a polymorphism (D85N) in KCNE1 gene was
found. Noteworthy, she was totally asymptomatic for autoim-
mune diseases. Since anti-Ro/SSA is the most frequent autoan-
tibody found in general population, but in most cases (60–70%)
totally asymptomatic (114), an intriguing speculation is that by
reducing the repolarization reserve anti-Ro/SSA may be silently
involved as a predisposing factor in a number of “idiopathic”
life-threatening arrhythmias, including drug-induced TdP, and
sudden unexpected deaths occurring in apparently healthy
people.

In addition to the above reported forthrightly supporting data,
there are other studies that although not observing significant
differences between anti-Ro/SSA-positive and negative patients in
terms of mean QTc length and/or QTc prolongation prevalence,
nevertheless found differences in these parameters that were very
close to statistical significance. This is the case of the pediatric
study of Motta et al. (124) (QTc of infants of anti-Ro/SSA-positive
mothers slightly prolonged vs control group, p= 0.06), as well as
of the adult studies of Gordon et al. (121) (QTc slightly longer
in the anti-Ro/SSA-positive CTD group, p= 0.06), Nomura et al.
(126) (anti-Ro/SSA positivity slightly more frequent among SLE
patients with QTc prolongation, p= 0.08), and Bourrè-Tessier
et al. (34) [proportion of SLE patients with prolonged QTc slightly
higher in anti-Ro/SSA-52kD-positive group, although not reach-
ing significance for wide confidence intervals].

Although the majority of the data point to an association
between anti-Ro/SSA and QTc prolongation, there are conflicting
results from other studies, either in children (123, 125) and adults
(27, 35, 37). However, it should be noted that one of these studies
(37) was performed in SSc patients, who frequently display anti-
Ro/SSA but at a low level (127), thus possibly not high enough
for the threshold level required for QTc prolongation manifesta-
tion (29, 128); in another one (35), involving SLE patients, the
authors used a cutoff for QTc prolongation (>500ms) probably
not adequate to detect the phenomenon in this setting, as previous
studies consistently demonstrated that in the large majority of the
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TABLE 4 | Clinical studies on anti-Ro/SSA antibodies and QTc interval.

Reference Study
population

Anti-Ro/SSA+
patients (n)

Anti-Ro/SSA−
patients (n)

Main findings

Cimaz et al.
(117)

Children of CTD
mothers

21 7 Mean QTc significantly longer in anti-Ro/SSA-positive subjects

Gordon et al.
(119)

Children of CTD
mothers

38 7 Mean QTc significantly longer in children of anti-Ro/SSA-positive
mothers

Gordon et al.
(121)

Adult AD
patients

49 (SLE, 29; SS, 11;
other ADs, 9)

62 (SLE, 48; SS, 2;
other ADs, 12)

Mean QTc slightly longer in anti-Ro/SSA-positive patients (p=0.06)

Cimaz et al.
(118)

Children of CTD
mothers

21 – Concomitant disappearance of QTc prolongation and acquired
maternal antibodies at 1-year follow-up

Lazzerini et al.
(122)

Adult CTD
patients

31 (SLE, 6; SS, 14; SSc,
4; UCTD, 5; MCTD, 1)

26 (SLE, 4; SS, 1;
SSc, 17; UCTD, 3;
MCTD, 1)

Mean QTc significantly longer and prevalence of QTc prolongation
significantly higher in anti-Ro/SSA-positive subjects

Costedoat-
Chalumeau
et al. (123)

Children of CTD
mothers

58 85 No differences in mean QTc duration or in QTc prolongation
prevalence between groups

Costedoat-
Chalumeau
et al. (27)

Adult CTD
patients

32 (SLE, 28; SS, 4) 57 (SLE, 49; UCTD,
4; MCTD, 4)

No differences in mean QTc duration or in QTc prolongation
prevalence between groups

Lazzerini et al.
(28)

Adult CTD
patients

26 (SLE, 4; SS, 9; SSc, 2;
UCTD, 8; MCTD, 2;
PM/DM, 1)

20 (SLE, 9; SS, 3;
SSc, 4; UCTD, 1;
MCTD, 2; PM/DM,
1)

Mean QTc significantly longer and prevalence of QTc prolongation
significantly higher in anti-Ro/SSA-positive subjects; QTc prolongation
significantly associated with the presence of complex ventricular
arrhythmias

Motta et al.
(124)

Children of CTD
mothers

51 50 Mean QTc slightly longer in children of anti-Ro/SSA-positive mothers
(p= 0.06)

Gerosa et al.
(125)

Children of AD
mothers

60 30 No difference in the prevalence of QTc prolongation between the
groups

Bourrè-Tessier
et al. (33)

Adult SLE
patients (two
studies)

57 93 5.1- to 12.6-times higher risk of QTc prolongation in
anti-Ro/SSA-positive vs negative group

113 165

Lazzerini et al.
(29)

Adult CTD
patients

25 (SLE, 9; SS, 13;
UCTD, 2; MCTD, 1)

24 (SLE, 13; SS, 3;
UCTD, 6; MCTD, 2)

Mean QTc significantly longer and prevalence of QTc prolongation
significantly higher in anti-Ro/SSA-positive subjects; significant
correlation between anti-Ro/SSA-52kD concentration and QTc
duration

Nomoura et al.
(126)

Adult SLE
patients

43 47 Anti-Ro/SSA positivity slightly more frequent among SLE patients with
QTc prolongation (p=0.08)

Alkmim Teixera
et al. (35)

Adult SLE
patients

111 206 No difference in the prevalence of marked QTc prolongation
(>500ms) between groups

Massie et al.
(37)

Adult SSc
patients

148 541 No difference in the prevalence of QTc prolongation between groups

Bourrè-Tessier
et al. (34)

Adult SLE
patients

283 314 Prevalence of QTc prolongation slightly higher in anti-Ro/SSA-positive
subjects, but not significantly for wide confidence intervals

Pisoni et al. (30) Adult AD
patients

55 (SLE, 16; SS, 20; SSc,
3; UCTD, 11; MCTD, 1;
PM/DM, 2; other ADs, 2)

18 (SLE, 14; SS, 1;
UCTD, 1; other
ADs, 1)

Anti-Ro/SSA positivity significantly more frequent among CTD patients
with QTc prolongation (all patients with QTc prolongation were
anti-Ro/SSA-positive)

CTD, connective tissue disease; AD, autoimmune disease; SLE, systemic lupus erythematosus; SS, Sjögren’s syndrome; SSc, systemic sclerosis; UCTD, undifferentiated connective
tissue disease; MCTD, mixed connective tissue disease; PM/DM, polymyositis/dermatomyositis.

anti-Ro/SSA-positive CTD patients with QTc prolongation values
ranged from 440 to 500ms.

Besides anti-Ro/SSA, some lines of evidence suggest that
other autoantibodies, i.e., anti-beta1-adrenergic receptor anti-
bodies (anti-β1) and anti-voltage-gated potassium channel Kv1.4
antibodies (anti-Kv1.4), may be responsible of immuno-mediated
forms of acquired LQTS.

Anti-β1 are frequently detected in idiopathic dilated cardiomy-
opathy (IDC, 30–50%), but also in Chagas’disease and in subjects

with primary electrical disturbances (112). IDC is often com-
plicated by ventricular arrhythmias [including TdP (129–134)]
and SCD (135), with QT dynamicity representing an independent
predictor of major arrhythmic events (136). Since the underlying
mechanisms of such electrical instability are not fully clarified, and
increasing evidence indicates that autoimmunity plays a relevant
role in IDC pathogenesis (137), a possible link between anti-β1
and arrhythmic risk has been investigated. In IDC patients,
circulating anti-β1 are associated with increased all-cause and
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FIGURE 3 | Autoantibody-mediated QTc prolongation: molecular
targets and electrophysiological consequences. Anti-β1, anti
β1-adrenergic receptor antibodies; Ito, transient outward potassium current;

IKr, rapid component of the delayed rectifier current; IKs, slow component of
the delayed rectifier current; ICaL, L-type calcium current; APD, action
potential duration.

cardiovascular mortality risk (138). Moreover, by studying 104
IDC subjects, Iwata et al. (139) demonstrated that the presence
of anti-β1 independently predicted ventricular tachycardia and
SCD. The following evidence in an animal model that induc-
tion of anti-β1 autoimmunity was concomitantly associated with
QT/RR interval prolongation (with a parallel increase in APD at
ex vivo electrophysiological examination), sustained ventricular
tachycardia, and SCD (140) suggests that these antibodies may
increase in vivo the risk of life-threatening arrhythmias at least in
part by prolonging QTc.

Finally, an association of anti-Kv1.4 andLQTShas been demon-
strated in patients affected with myasthenia gravis (MG), an
autoimmune disease primarily affecting the neuromuscular func-
tion (141). The Kv1.4 protein is one of the forming α-subunits
(Kv) of the voltage-gated potassium channel (VGKC), which plays
a crucial role in the acetylcholine presynaptic release, but also in
the cardiac repolarization (142). Indeed, Kv1.4 is also expressed
in ventricular cardiomyocytes as pore-forming subunit of the
channel responsible for the slowly recovering component of Ito,
the main current of the phase 1 (early repolarization) of cardiac
AP (143). Recent studies indicate that anti-Kv1.4 are relatively
frequently detected in MG patients and their presence associates
with QTc prolongation (~15–35% of positive cases) (144, 145).
Moreover, in a cohort of 650 MG patients, Suzuki et al. (144)
reported that among 70 anti-Kv1.4-positive subjects (14%), two

died of lethal QT-associated arrhythmias (TdP in one case, SCD
in a patient who had QTc prolongation in the other one). Notably,
at least two further reports of TdP in MG patients are present in
the literature (146, 147).

Mechanisms
Although mechanisms underlying autoimmune-mediated LQTS
are not fully known, accumulating evidence indicates that autoan-
tibodies may directly affect cardiomyocyte electric properties by
interfering on ion channels function (Figure 3).

The electrophysiological effects of anti-Ro/SSA are largely rec-
ognized, but mostly in the setting of congenital-AVB. Experi-
mental studies clearly demonstrated the ability of anti-Ro/SSA
from mothers with children with congenital-AVB in biochem-
ically cross-reacting with -type and T-type calcium-channels,
thus significantly inhibiting the related currents (ICaL, ICaT),
which both play a key role in the AP of heart conduction system
cells (148). More in detail, it has been proven that anti-Ro/SSA
specifically recognize the α1 pore-forming subunit of the calcium
channels through a binding site localized on the extracellular
loop of domain I S5–S6 (122, 149–153). The hypothesis is that
Ro protein (particularly Ro52-kD) shares structural similarities
with calcium channels, thus explaining a cross-reactivity of anti-
Ro/SSA as a result of molecular mimicry mechanisms. Keeping
this in mind, and in consideration of the fact that calcium and

Frontiers in Cardiovascular Medicine | www.frontiersin.org May 2015 | Volume 2 | Article 269

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


Lazzerini et al. LQTS, inflammation, and immunity

potassium channels belong to the same superfamily of voltage-
gated ion channels in which, in particular, the structure of the
voltage-sensor sequence is highly conserved (154), it is conceiv-
able that a concomitant inhibitory cross-reactivity with potassium
channels may be responsible of the effects of anti-Ro/SSA on QTc
interval by impairing ventricular repolarization. In accordance
with this view, some recent data suggest that hERG-potassium
channel, conducting IKr, may represent a further specific target
of anti-Ro/SSA. As already cited, Nakamura et al. (120) demon-
strated that both serum and purified IgGs from an anti-Ro/SSA-
positive woman with extreme QTc prolongation and TdPs specif-
ically reacted with hERG-channel and induced a concentration-
dependent and fully reversible inhibition of IKr. In a very recent
study performed in the laboratory of Boutjdir in collaboration
with our institution, these findings have been confirmed and
expanded in a larger number of subjects, by comparing anti-
Ro/SSA-positive vs negative CTD patients, as well as in an ani-
mal model. In particular, electrophysiological and biochemical
evidence is provided that anti-Ro/SSA inhibit IKr and prolong
APD by directly binding to the hERG-channel protein, likely at
the pore region where homology with Ro-52kD antigen is present.
Moreover, Ro-52kD antigen immunized guinea-pigs showed QTc
prolongation on ECG after developing high titers of anti-Ro/SSA
(155). In accordance with these results, strongly suggestive of
a mechanism dependent on a purely electrophysiological inter-
ference on the heart, recent preliminary data from single case
reports demonstrated the effectiveness of immunosuppressive
therapy in reversing anti-Ro/SSA-associated electrocardiographic
abnormalities in vivo, at least in adults (116, 156–158).

Despite this evidence, clinical studies analyzing the relationship
between anti-Ro/SSA and QTc showed some degrees of discrep-
ancy. Moreover, even among studies demonstrating significant
association, markedly different percentages of QTc prolongation
in anti-Ro/SSA-positive CTD patients were observed (~10–60%)
(29). Although previously reported data (29, 30) suggest that it
may be explained, at least in part, by differences among CTD
cohorts in terms of autoantibody concentration and specificity
[high levels of anti-Ro/SSA-52kD are particularly frequent in SS,
much less in SLE and rarely in SSc (159)], or disease-related
inflammatory burden (and thus cytokine levels), the above elec-
trophysiological data, by indicating that anti-Ro/SSA inhibit both
calcium and hERG-potassium currents, provide a further patho-
physiological mechanism possibly contributing to differences
observed. Indeed, it is well recognized that calcium and potassium
channels have conflicting effects on APD, thus on QTc length. A
block of the inward ICaL during the plateau phase shortens, while
an inhibition of outward IKr during repolarization prolongs APD
(160). Thus, it is conceivable that a concomitant inhibitory effect
of anti-Ro/SSA on calcium channels can partially counteract the
IKr inihibition-dependent APD prolonging effects in vivo, thus
reducing the actual extent of QTc prolongation observed (128).
In this view, intrinsic (inherited or acquired) differences in potas-
sium and calcium channel expression on patient’s cardiomyocytes
may participate in the QTc variability observed. In conclusion,
evidence indicates that anti-Ro/SSA inhibit IKr, but the clinical
phenotype may not be the same for each patient as a result of
several modifying factors, including the anti-Ro/SSA level, the

degree of systemic inflammation, and the peculiar cardiomyocyte
ion channels’ profile.

A modulating activity on ion channel function seems to be
also critically involved in the mechanism by which anti-β1 pro-
long APD and QTc, although in this case the effect is indirect
via a stimulating interaction with the myocardial β1-adrenergic
receptor. Indeed, some basic studies demonstrated that anti-β1
produced a profound electrical remodeling of the cardiomyocyte,
mainly involving potassiumand calciumconductance. Christ et al.
(161) found that purified anti-β1, obtained from IDC patients,
increased APD and ICaL in isolated rat and human cardiomy-
ocytes. Later on, by analyzing isolated ventricular myocytes from
rabbits immunized with a synthetic peptide corresponding to
the second extracellular loop of β1-adrenergic receptors, Fukuda
et al. (140) showed a significant decrease (~35–45%) of Ito1 and
Iks. Moreover, they demonstrated APD prolongation and early
afterdepolarization in the right ventricular papillary muscle, as
well as a longer QT/RR interval ratio and a higher prevalence of
sustained ventricular tachycardia in immunized vs control rabbits.

Do Inflammation and Immunity Play a Role
in Congenital LQTS?

Recent data intriguingly suggest that inflammation and immunity
may be also involved in modulating the clinical expression of
congenital LQTS, possibly triggering or enhancing electrical insta-
bility in patients already genetically predisposed to arrhythmias.

Rizzo et al. (162) performed a histopathologic study on stel-
late ganglia specimens obtained from 12 patients, 8 with dif-
ferent forms of congenital LQTS and 4 with catecholaminergic
polymorphic ventricular tachycardia (CPVT), who underwent
left cardiac sympathetic denervation for malignant intractable
arrhythmias. Indeed, all the patients were severely sympthomatic
before the ganglionectomy, with most patients having had multi-
ple shocks from a previously implantable cardioverter defibrillator
(including arrhythmic storms), and the procedure resulted in
a rhythm stabilization in almost all the cases. Examination of
patients’ stellate ganglia revealed low-grade but distinct inflam-
matory infiltrates composed by activated T lymphocytes and
macrophages, indicative of a chronic T-cell-mediated ganglionitis.
Moreover, morphometric analysis demonstrated that the num-
ber of T cells/mm2 were significantly higher in the ganglia of
these patients when compared with those obtained from 10 sex-
and age-matched control subjects accidentally died. On the basis
of these findings, the authors speculated that a T-cell-mediated
cytotoxicity toward ganglion cells may boost adrenergic activity
through release of inflammatory mediators in ganglia and in
this manner contribute to the electric instability in LQTS/CPVT
patients, particularly in those who are heavily symptomatic. In
accordance with this view, intracardiac ganglionitis and its pro-
arrythmic potential have been previously described in LQTS
patients who died suddenly, the first time over 35 years ago (163–
165). Moreover, although the origin of inflammatory infiltrates
remains unknown, Rizzo et al. (162) put forward the hypothesis
of a viral (however not herpes-virus DNA was found in speci-
mens) or autoimmune pathogenesis. As concerns this lattermech-
anism, Moss et al. (166) underlined how all patients had recurrent
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syncope and/or many defibrillator shocks, and both transient
hypoperfusion and recurrent shocks could cause ganglionic cell
injury with protein damage putatively resulting in a secondary
autoimmune reaction with manifestations of ganglionitis. In any
case, independently whether ganglionitis is a primary event or a
phenomenon secondarily occurring after first severe arrhythmic
episodes (thus triggering a self-aggravating loop), it is conceivable
that itmay have played a role in precipitating life-threatening tach-
yarrhythmias since stellectomy induced rhythm stabilization in
almost all patients. These findings, although preliminary, intrigu-
ingly suggest that immuno-inflammatory pathways could in the
future represent a novel target in the therapeutic approach to con-
genital LQTS, particularly in patients with intractable arrhythmias
despite appropriate standard therapy.

Although these considerations primarily point to the therapeu-
tic potential of interventions lowering the degree of the immuno-
inflammatory response, a very recent study from the group of
Nattel (167) suggests that a selective stimulation of the immune
system may be also theoretically useful in the treatment of con-
genital LQTS. Starting fromprevious evidence demonstrating that
in a subpopulation of IDC patients, autoantibodies against the
KCNQ1-encoded Kv7.1 potassium channel were associated with
QTc shortening possibly by increasing IKs conductance (168).
Li et al. (167) immunized rabbits with KCNQ1-channel peptide,
thus inducing high circulating anti-KCNQ1 antibody titers. As

expected, these animals developed significant QTc shortening
compared to controls, as well as APD decrease and IKs densities
enhancement in left ventricular cardiomyocytes when isolated.
Since these findings indicate that KCNQ1 autoimmunity accel-
erates cardiac repolarization by increasing channel function, the
potential consequences of this immunization were tested in a
well-recognized rabbit model of human LQTS, induced by infu-
sion of methoxamine and dofetilide. KCNQ1-immunized ani-
mals showed much less striking ECG changes with significantly
less severe QTc prolongation, compared to sham-immunized
animals upon drug challenge (17.5 vs 73.4% increase). More-
over, life-threatening ventricular arrhythmias, particularly TdP,
were observed in the sham-group only. On the basis of these
results, the authors speculated that by enhancing repolarization
reserve KCNQ1 vaccination may be therapeutically useful in
patients with congenital LQTS resistant to conventional treat-
ments, thus opening new exciting avenues in antiarrhythmic
therapy (167).

Conclusion and Perspectives

In the latest years, inflammation and immunity have been increas-
ingly recognized as novel factors crucially involved in modulating
arrhythmic risk, an effect in part resulting from a significant
impact on ventricular repolarization.

FIGURE 4 | Putative pathways involved in exacerbating myocardial electrical instability in patients with congenital LQTS during an acute
inflammatory illness. LQTS, long QT syndrome; APD, action potential duration.
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Anumber of considerations suggest that these phenomenamay
have relevant clinical implications, also in terms of therapeutic
perspectives.

First, although inflammatory and autoimmune mechanisms
are in most cases probably not per se able to induce a QTc
prolongation as critical as to induce TdP [but actually this is
true for all recognized causes of LQTS, when present alone (130,
169)], nevertheless they can reduce the ventricular repolarization
reserve, thereby significantly increasing the risk of life-threatening
arrhythmias in the presence of other classical QT-prolonging fac-
tors (drugs, electrolyte imbalances, genetic polymorphisms, etc.).
While it is well conceivable that these events may take place in
patients with autoimmune chronic inflammatory diseases, thus
putatively contributing to explain the increased risk of sudden
death observed in the course of RA (64) and CTDs (170), nev-
ertheless asymptomatic low-grade chronic inflammation and/or
circulating anti-Ro/SSA may be also silently involved, as a predis-
posing factor, in a number of unexpected life-threatening arrhyth-
mias, including drug-induced TdP, and SCDs occurring in general
population.

Moreover, as also preliminarily suggested by a recent
histopathology study in stellate ganglia (161), it is also probable
that inflammation and immunity may enhance arrhythmic risk in
patients with congenital LQTS. Indeed, it should be underlined
that an acute inflammatory illness is recently recognized among
the possible precipitant factors of malignant arrhythmias and
electrical storms in these subjects (171–173). Although it has
been demonstrated that fever has per se a role by influencing
temperature-sensitive biophysical properties of mutant channels
(particularly in LQTS2) (173, 174), it can also be speculated
that in patients with congenital LQTS episodes of systemic
inflammationmay further increase arrhythmias susceptibility due
to circulating cytokines directly affecting cardiomyocyte APD,
and indirectly increasing sympathetic output from central and

peripheral ANS (Figure 4). In this view, it is also conceivable
that some acquired LQTS patients are occult (latent) carriers of
mutations in LQTS-susceptibility genes that are unmasked under
inflammatory/autoimmune conditions, with a potential different
impact of immunotherapies on QTc.

Thus, in terms of therapeutic perspectives, in patients with
inflammatory/autoimmune disease-associated QTc prolongation,
besides avoiding any further acquired factor potentially prolong-
ing QTc, and carefully balancing pro and contrawhen introducing
any QT-prolonging drug, available data highlight the importance
of minimizing systemic immuno-inflammatory burden through a
tight control of disease activity, a goal now more feasible after the
introduction of potent biologic therapies targeting the immune
system.

As concerns QTc prolongation occurring in general popula-
tion subjects displaying chronic low-grade systemic inflamma-
tion and/or specific autoantibodies in the absence of a clinically
evident inflammatory/autoimmune disease, as well as malignant
intractable arrhythmias in congenital LQTS patients with signs of
immuno-inflammatory activation, no data are currently available
on the therapeutic role of anti-inflammatory or immunomodula-
tory interventions. Nevertheless, accumulating evidence reviewed
in this paper underlines the need for further specific investigations
on this topic.

In conclusion, the potential impact of inflammatory and
immunologic mechanisms on ventricular repolarization should
be always carefully kept in mind, not only in the presence
of a manifest immune-inflammatory disease, but also in sub-
jects with QTc prolongation of unclear origin, or in patients
with an already recognized LQTS (inherited or acquired) as a
possible trigger for electrical instability. In this view, target-
ing immuno-inflammatory pathways may represent an attrac-
tive and innovative therapeutic approach in a number of LQTS
patients.
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