
fmicb-07-01968 December 7, 2016 Time: 17:20 # 1

PERSPECTIVE
published: 08 December 2016

doi: 10.3389/fmicb.2016.01968

Edited by:
Dimitrios Georgios Karpouzas,
University of Thessaly, Greece

Reviewed by:
Anna Barra Caracciolo,

National Research Council, Italy
Christos Zamioudis,

Rijk Zwaan, Netherlands

*Correspondence:
Zisis Vryzas

zvryzas@agro.duth.gr

Specialty section:
This article was submitted to

Systems Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 30 August 2016
Accepted: 24 November 2016
Published: 08 December 2016

Citation:
Vryzas Z (2016) The Plant as

Metaorganism and Research on
Next-Generation Systemic

Pesticides – Prospects
and Challenges.

Front. Microbiol. 7:1968.
doi: 10.3389/fmicb.2016.01968

The Plant as Metaorganism and
Research on Next-Generation
Systemic Pesticides – Prospects and
Challenges
Zisis Vryzas*

Laboratory of Agricultural Pharmacology and Ecotoxicology, Department of Agricultural Development, Democritus University
of Thrace, Orestias, Greece

Systemic pesticides (SPs) are usually recommended for soil treatments and as seed
coating agents and are taken up from the soil by involving various plant-mediated
processes, physiological, and morphological attributes of the root systems. Microscopic
insights and next-generation sequencing combined with bioinformatics allow us now
to identify new functions and interactions of plant-associated bacteria and perceive
plants as meta-organisms. Host symbiotic, rhizo-epiphytic, endophytic microorganisms
and their functions on plants have not been studied yet in accordance with uptake,
tanslocation and action of pesticides. Root tips exudates mediated by rhizobacteria
could modify the uptake of specific pesticides while bacterial ligands and enzymes can
affect metabolism and fate of pesticide within plant. Over expression of specific proteins
in cell membrane can also modify pesticide influx in roots. Moreover, proteins and
other membrane compartments are usually involved in pesticide modes of action and
resistance development. In this article it is discussed what is known of the physiological
attributes including apoplastic, symplastic, and trans-membrane transport of SPs in
accordance with the intercommunication dictated by plant–microbe, cell to cell and
intracellular signaling. Prospects and challenges for uptake, translocation, storage,
exudation, metabolism, and action of SPs are given through the prism of new insights
of plant microbiome. Interactions of soil applied pesticides with physiological processes,
plant root exudates and plant microbiome are summarized to scrutinize challenges for
the next-generation pesticides.

Keywords: soil applied pesticide, PGPR, root exudates, biological membranes, metaphysiology, rhizosphere,
next-generation pesticides, nanopesticides

THE PLANT AS METAORGANISM AND SOIL APPLIED
PESTICIDES

Structure of the Plant Microbiome
Over the last few years, considerable attention has been devoted to the concept of “plant
as metaorganism.” Healthy plants host symbiotic and non-symbiotic rhizo-epiphytic and/or
endophytic microorganisms that do not cause diseases but support the host nutritionally
by stimulating germination and growth or help the plant to overcome biotic or abiotic
stress. Therefore, plants have to be considered as metaorganisms revealing close relationships
with their associated microorganisms (Berg et al., 2015). The plant microbiome consists
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a “second genome” that is up to 10 times more in scale than
the host genome (Turner et al., 2013). The composition of
the rhizosphere microbiome is dynamic, contains many more
microbial cells than host cells and is influenced by multiple
factors. Root microbiome is tightly related to the health of the
plants and any changes in the core-microbiome composition
lead to debilitative or destructive diseases as in the case of gut
microbiome and human health (Kinross et al., 2011).

Mechanisms of Action
Plant growth-promoting rhizobacteria (PGPR) and fungi
(PGPF) can stimulate plant growth through the production of
phytostimulators (auxins, gibberellins), increase the nutrients
uptake (nitrogen fixation, phosphate solubilization), even
confrere tolerance to plants against abiotic stress such as drought
and salinity or by suppressing biotic stressors like plant diseases
or pests (Lugtenberg and Kamilova, 2009; Pineda et al., 2010;
Wang et al., 2012; Zamioudis and Pieterse, 2012). According
to our studies, PGPR enhanced uptake of thiamethoxam and
acibenzolar-S-methyl in corn and tomato plants, respectively
(Myresiotis et al., 2014, 2015). During integrated control
management against soilborne plant pathogens studied by our
group, increased efficacy of pesticides was observed when PGPR
were combined with soil applied pesticides (Myresiotis et al.,
2012a). Suppression of plant diseases and tolerance against
pests are often achieved through mechanisms such as the
elicitation of an induced systemic resistance (ISR), production of
antibiotics and lytic enzymes and competition with pathogens
for nutrients and colonization sites (Kloepper et al., 2004; Van
Wees et al., 2008). The development of ISR in plants depends
on jasmonic acid, ethylene, or/and salicylic acid priming, which
are important endogenous signaling defense regulators against
pathogens and is responsible for activating the expression of
pathogenesis-related genes (Buonaurio et al., 2002; Pieterse et al.,
2009; Vlot et al., 2009). Recently, the role of PGPR and other
beneficial microorganisms, belonging to plant microbiome,
on the degradation of soil applied pesticides has been studied
(Gurska et al., 2009; Myresiotis et al., 2012b; Zhou et al., 2013;
Abraham and Silambarasan, 2014). While most of these studies
showed that PGPR increase the degradation of some pesticides,
others report that certain PGPR have no effect on biodegradation
of specific pesticides. Recently, the role of endophytic bacteria
on plant growth-promoting characteristics, phytoremediation
of organic pollutants and other plant physiological processes is
reconsidered (Barac et al., 2004; Ferrara et al., 2012; Syranidou
et al., 2016). Nonetheless, the role of systemic pesticides (SPs)
on endophytic microbial consortium has not yet been studied
(Figure 1). On the other hand, endophytic bacteria usually act
on host cells or stimulate biological systems by using enzymatic
processes or ligands (adhesins) which are also expected to
interact with SPs. Metabolism, conjugation and complex
formation within plant compartments are processes that affect
pesticide efficacy and fate.

Plant Microbiome and Root Exudation
Although a single beneficial microorganism is already
recommended for soil applications and management of

plant diseases, information on plant microbiome suggests
that microbial consortia or bespoke artificial root microbiome
transfer can be more effective (Gopal et al., 2013). Moreover,
current research indicates that various different volatile
metabolites released by soil bacteria are capable of stimulating
physiological responses to other microorganisms and plants
(Wenke et al., 2010; Effmert et al., 2012; Abrudan et al., 2015;
Kai et al., 2016). It is well documented that composition of plant
root exudates play pivotal role in the rhizosphere microbiome
(Chaparro et al., 2013). Plant roots release up to 20% of their
photosynthetic fixed carbon into the soil during vegetation
period and the phenomenon called rhizodeposition played an
important role in chemo-attract and repellent processes (Hutsch
et al., 2002; Badri and Vivanco, 2009; Jones et al., 2009). However,
it has recently been observed that root exudates are ecologically
relevant to plants (withstand herbivory, inhibit the growth of
competing plant by allelopathy, promote the recognition of
host plant by the parasitic plants and cause loss of organic
compound), important for soil structure (modify the chemical
and physical soil properties), and soil microflora (regulate the soil
microbial community, facilitate beneficial symbioses) (Rasmann
and Agrawal, 2008; Sanon et al., 2009; Doornbos et al., 2012).
Additionally, root exudates trigger biofilm formation on the roots
of host plants and enhance biocontrol against many pathogens
(Chen et al., 2013). Mechanisms of rhizodeposition include
sloughing-off root cap cells, secretion of mucilage, passive
diffusion of root solutes and senescence of epidermal and cortical
cells (Nguyen et al., 2009). Various root exudates such as sugars,
growth regulators, amino acids, organic acids, phenolic acids,
flavonoids, enzymes, fatty acids, nucleotides, tannins, steroids,
terpenoids, alkaloids, polyacetylenes, phytosiderophores, and
vitamines have been detected in rhizosphere (Seigler, 1996;
Dakora and Phillips, 2002). The nature and diversity of
root exudations is highly influenced by the plant genotype,
developmental stage, a multitude of environmental factors (soil
properties, temperature, pH, humidity, nutrients), rhizosphere
microbiome and the application of pesticides (Bais et al., 2006;
Dinelli et al., 2007; Sun et al., 2013; Lu et al., 2015). Apart from
endogenous exudates, plants are capable of exuding pesticides
applied to aerial part of plants (Dinelli et al., 2007). Furthermore,
bioavailability, enantioselective uptake and translocation of
soil applied pesticides can also be modified by different root
exudates as mainly have been observed during phytoremediation
studies (Lu et al., 2015; Hurtado et al., 2016). Although pesticide
exudation in plants is not as extensive as in animals, large
amounts of volatile pesticide or those mainly translocated
through phloem can be exuded from roots (Schröder et al.,
2007).

SYSTEMATICITY OF SOIL APPLIED
PESTICIDES: UPTAKE AND
TRANSLOCATION

The first classes of pesticides marketed had only contact
action. However, by the 1950s many classes of SPs, which
were able to enter plants by roots, stem or leaves and be
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translocated to other parts of the plant have been developed.
Many herbicides, insecticides and fungicides have been registered
for use in soil to control weed, soil-born diseases, and protect
plants from herbivore pests. The standard application methods
of soil pre- or post-emergence pesticides have been to be
applied in farrow during planting or spray directly to the soil.
Granular or liquid formulations were commonly used in the
past but have been discontinued due to resistance development,
environmental concerns, regulatory and cost reasons. Seed
coating with fungicides and insecticides is a well-established
young plants protection method form pathogens and pests.
Current seed coating technology requires much less active
ingredient (0.1–1.5 mg kernel−1 or 10–100 g ha−1) than the
respective soil application rates (Taylor et al., 2001; Pataky et al.,
2005; Girolami et al., 2009; Krupke et al., 2012). However,
a single kernel contains several orders of magnitude more
active ingredient than the toxicological endpoints of beneficial
organisms (e.g., pollinators). Arguably, however, it is the systemic
nature of soil applied pesticides and their long-lasting high
concentration that made them so admissible for prophylactic
applications mainly by seed coating technologies. Irrespective
of their main purpose of use and their mode of action, SPs
are translocated through plant and affect many physiological
processes (including but not limited to their main target sites).
Such collateral effects are well known in fungicides (Zhang
et al., 2010; Kumar et al., 2016) insecticides (Kaufman et al.,
1971; Dhungana et al., 2016) and herbicides (Fletcher et al.,
1996; Cedergreen, 2008). Seed microbiome and seed-associated
endophytes that might have co-evolved for millions of years

have recently been associated with the establishment of plant
microbiome (Johnston-Monje et al., 2016; Khalf and Raizada,
2016; Pitzschke, 2016). However, effects of seed processing and
seed coating with pesticides on seed microbiome and respective
colonization and establishment of plant microbiome have not
been studied yet (Figure 1).

Systematicity of pesticides can be increased with the co-
formulation with polymers (Dieckmann et al., 2010) or the use
of nanomaterials. Unlike conventionally pesticide formulations,
nanopesticides and targeted delivery techniques may enhance or
give new biological activity to an active ingredient (Figure 1).
Nanomaterials can cross plasma membrane, bind with
cytoplasmic organelles and interfere with metabolic processes
(Jia et al., 2005; Lin and Xing, 2008). Furthermore, there are
several studies demonstrating nanoparticle mediated alteration
of pesticide uptake and induction of genetic or cell physiological
effects (Racuciu and Creanga, 2007; De La Torre-Roche et al.,
2012; Hamdi et al., 2015). In addition, nanopesticides can
mediate the metabolic profile in root exudates affecting indirectly
the plant defense system (Zhao et al., 2016). The uptake and
translocation of nanoparticle across root cells involve active
and passive transport processes similar to those observed for
nutrients, plant exudates, pesticide molecules, and signaling
substances involved in plant defense.

Physicochemical properties of a pesticide and interaction
with soil, plant microbiome, water, and chemicals surrounding
the rhizosphere determine the behavior of pesticides within
plant (uptake, translocation, action, detoxification, and
excretion). The systemic action of most pesticides is the

FIGURE 1 | Research challenges and perspectives in developing new systemic pesticides.
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result of a balance between uptake and translocation and
the degree of those two processes will dictate the treatment
effectiveness.

Lipophilicity is the most important property that regulates
uptake and translocation of non-ionized pesticides. Pesticide
mobility and lipophilicity are negatively correlated. In general,
highly polar or highly lipophilic compounds are poorly
translocated. The optimum uptake by roots and translocation
to shoots occurs for pesticides of logKow values 1–3 (Bromilow
and Chamberlain, 1995; Sicbaldi et al., 1997). Uptake and
translocation of ionized pesticides within plant compartments
(pH ranges from 5 to 8) are also affected by pH values while ion
trapping is a well-studied mechanism of accumulation of weak
acids in cytoplasm (Briggs et al., 1987; Chamberlain et al., 1998).
The apoplastic and symplastic pathways have been proposed to
explain the rationality of pesticide root uptake and translocation
(Sicbaldi et al., 1997). In both cases, transmembrane movement
of pesticides happens by taking advantage of passive, active,
and facilitated diffusion, though ATP-powered pumps, channel
proteins and transporters (uni-, anti-, and sym-porters). The
movement of pesticides toward the top of the plant may occur
in both the xylem and the phloem. Moreover, lateral transport
has been observed in some cases. Nutrient and other carrier
systems are usually involved in pesticides transportation across
cell membranes and translocation within the plant (Chen et al.,
2001; Xia et al., 2014).

STORAGE, METABOLISM, AND ACTION
OF SOIL APPLIED PESTICIDES

The fate of pesticides varies in different plant parts. Storage
in cell organelle, metabolism, interaction with physiological,
and biochemical processes, signaling and action are the main
processes by which a pesticide interacts with the plant and target
organism tissues.

The detoxification process of many pesticides carried out
through conjugation by the plant constitutes such as glutathione,
glucose, carbohydrates, amino acids, and glucuronic acid.
The largest amounts of bound and conjugated pesticides are
frequently stored close to the point of uptake and in tissues
with intense metabolic activity (Norris, 1974). Pesticide storage
in specific cell organelles (vacuole) can be achieved actively
or passively through membranes. Both processes are reversible
and translocation to other plant compartments may occur
under different plant physiological conditions such as drought
stress, phytohormones effect and nutrients cross talk (Schröder
and Stampfl, 1999; Diekmann et al., 2004; Schröder et al.,
2007).

Metabolism is nearly always a detoxification process of
a pesticide for the target organism (plant, pathogen, and
pest), but many metabolites are biologically active and may
have physiological, ecological, and toxicological significance.
However, in other cases metabolism can activate propesticides
(e.g., indoxacarb, benomyl, benzobicyclon) and modify their
effectiveness and fate (uptake and translocation) within plants
(Jeschke, 2016).

Following the chemical pesticide revolution after the 1930s,
multitude of agrochemical became available and scientists all
over the world from industry, institutions, universities and
registration authorities, focused their research on the clarification
of the mechanism of their action on target sites of pests,
weed and pathogens (efficacy) and on non-target organisms
(toxicity). Today, more than 100 mechanisms of pesticides action
have been revealed among the approximately 900 currently
commercially available pesticides (Casida, 2009; Tomlin, 2009).
In many cases, the initial proposed main mechanism of action
was readjusted or new secondary site of action and biochemical
or physiological effects were interpreted later on. Moreover,
the acute, chronic, hypersensitive or delayed toxicity, of many
legacy pesticides, to not-target organisms had been revealed
after using them for decades. Most currently existing pesticides
interact with a vital biochemical process of the target organisms.
According to their chemical structure, herbicides, insecticides
and fungicides suppress fundamental biosynthetic processes
or deviate specific reactions. Most of pesticide target sites
and respective inhibited biochemical processes are located or
at least include biological membranes (Table 1). Biological
membranes support numerous cell functions which are targeted
by pesticides while simultaneously, the cell compartments affect
the behavior of pesticides the most (permeability, translocation,
and action of pesticides, signaling, interaction with root exudates
and microbiome produced substances; Table 1). Moreover,
genetic or epigenetic modifications on target organisms, leading
to biochemical and physiological differences on biological
membranes, are usually involved in the development of resistance
mechanisms against pesticides (R4P Network, 2016).

PROSPECTS AND CHALLENGES

Our knowledge concerning the fate of SPs within plant and
target organisms is limited due to previous decades results, based
mainly on experiments concerning their mode of action and
the potential of using plants for phytoremediation purposes
(Casida, 2011; Vymazal and Brezinova, 2015). Plants as meta-
organisms create numerous new perspectives for pesticide
science. Awareness of recently acquired insights related to
the plant “metaphysiology,” rhizosphere, plant microbiome,
and their interplay with pesticides should now be taken
under consideration (Berg et al., 2015). The metabolism
and morphology of plants, their microbiota and pesticides
innately interact with each other and can contribute to the
proper function of the holobiont. For many pesticides we
do not yet have a complete picture of the mechanisms that
underlie the pesticide uptake and traverse the plant root,
delivery to target sites and storage, or detoxification processes
(Hurtado et al., 2016). The recently acquired knowledge on
drug delivery systems, studied nowadays in medicine, has
not far attempted in pesticide uptake and delivery to target
sites. Based on the increasingly available body of evidence
discussed in this article, the use of nanopesticides combined
with knowledge on membranes biochemistry can give new
perspectives to next-generation SPs (Cho et al., 2008; Pan
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et al., 2012). Uptake and delivery of pesticides to various plants
and target organisms’ organelles and biological membranes
should not only be studied in relation to their mode of action
but also in the light of metaorganismal interactions and
chemical ecology (Figure 1). The side or collateral effects of
SPs on plant “metaphysiology” and not only on their target
sites is another interesting research task related to SPs. This
kind of side effects are more obvious if we consider the
hormone-like action of many pesticides and that membrane
functions, apart from pesticides, are usually regulated by
effectors, elicitors, and hormones (Gerbeau-Pissot et al., 2014).
As mentioned above, mode of action of most currently used
pesticides involves or interacts with biological membranes.
Thus, pesticide translocation and action should be studied
in combination with transmembrane crosstalk and signal
transduction pathways among membranous cell compartments
(Figure 1). The appropriate structural modification of the active
ingredient, the synthesis of propesticides and plant extract
analogs, the development of nanopesticides and pesticide
delivery systems, the introduction of new formulation for the
combined application of pesticides with biocontrol agents (e.g.,
PGPR and pesticides in seed coating technology) are the most
important concepts to design modern agrochemicals. Target-
specific delivery and activation of propesticides, biopesticides
and biotech-pesticides exactly at the target side or only in the
presence of pest or pathogen could reduce largely the application
dose of pesticides and minimize the adverse effects. Moreover,
structure-optimized effects on transporters, transmembrane
proteins, and enzymes could be the substantial functions
of the next-generation SPs (Jeschke, 2016). Polymer-lipid
and other hybrid nanomaterials possessing different material
properties such as hydrophobicity and water solubility should
also be studied for SPs (Byrappa et al., 2008; Wu et al., 2012).
Although the effect of soil applied pesticides on soil microbial
community structure and rhizo-epiphytic microorganisms has
been extensively studied, the effects on endophytic consortium
and seed microbiome have to be studied further (Karpouzas
et al., 2016; Rousidou et al., 2016). Knowledge on the interaction
of SPs with endophytic microorganisms and their enzymatic
activity can improve the efficacy of existing or new pesticides.
Further studies are needed to better understand the interplay
of simultaneous application of pesticides, biological agents
(e.g., PGPR, transfer of bespoke core-microbiome) and
other compounds affecting biological membranes and target
organisms’ physiology, biochemistry, ecology, and ethology
(metabolites, elicitors, semiochemicals, signal transducers,
hormones, growth regulators, and nutrients). The application
of innovative instrumental analysis in combination with
bioinformatics and metabolomics can be used to study the
reciprocal interaction between SPs and plant microbiome.

CONCLUDING REMARKS

All the phyto-microbial effects listed above open new windows
for the next-generation SPs. A “scientific dialog” and research
are required in order to reclaim all acquired knowledge and
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take advantage of progress in sciences related to pesticides,
pharmaceutical, xenobiotics, medicine, plant physiology and
signaling, microorganisms and pests. We should therefore try
to study the physiological responses of target organisms to
pesticides in a wider context. Pesticides will continue to play an
important role in plant protection for the next decades under the
concept of integrated pest management. Consequently, scientific
advances discussed above could give the opportunity to deal
with thoroughly the plant health and lustily instead of plant
protection. Moreover, the expansion of the increasing pesticides
related knowledge, which is usually acquired at a single organism
scale (plant, pathogen, pests), to the agroecosystem scale is the
fundamental challenge for the next-generation pesticides and
plant hygiene in general.
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