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Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial

and temporal distribution of actinobacteria have been rarely documented. In this

study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites

lutea and in the surrounding seawater were examined every 3 months for 1 year on

Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria

were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which

demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described

families and 10 unnamed families were determined in the populations, and 12 genera

were firstly detected in corals. The Actinobacteria diversity was significantly different

between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by

the seawater and coral samples. Redundancy and hierarchical cluster analyses were

performed to analyze the correlation between the variations of actinobacteria population

within the divergent compartments of P. lutea, seasonal changes, and environmental

factors. The actinobacteria communities in the same coral compartment tended to

cluster together. Even so, an extremely small fraction of OTUs was common in all three

P. lutea compartments. Analysis of the relationship between actinobacteria assemblages

and the environmental parameters showed that several genera were closely related to

specific environmental factors. This study highlights that coral-associated actinobacteria

populations are highly diverse, and spatially structuredwithin P. lutea, and they are distinct

from which in the ambient seawater.

Keywords: actinobacteria, Porites lutea, diversity, temporal and spatial distribution, 16S rRNA gene

Introduction

Coral reef ecosystem is one of the most important tropical marine ecosystems, mainly distributed
in the Indo-West Pacific, Eastern Pacific, Western Atlantic, and the Eastern Atlantic (Moberg and
Folke, 1999). Corals provide habitats for numerous bacteria in theirmucus layer, tissue, and calcium
carbonate skeleton, as well as the dinoflagellates, fungi, archaea, and viruses (Rosenberg et al., 2007).
Coral-associated bacteria not only take part in carbon, nitrogen, and sulfur biogeochemical cycles
and provide necessary nutrient for coral, but also keep corals from being infected by pathogens
(Rosenberg et al., 2007; Raina et al., 2009; Bourne and Webster, 2013).

Highly diverse and heterogeneous bacterial communities have been revealed in different coral
species at various locations (Rohwer et al., 2002; Li et al., 2013). Actinobacteria is generally accepted
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as a ubiquitous major group in corals (Bourne and Munn,
2005; Carlos et al., 2013; Li et al., 2013, 2014a). Yang
et al. (2013) detected 19 Actinobacteria genera in soft coral
Alcyonium gracllimum and stony coral Tubastraea coccinea in
the East China Sea through analysis of 16S rRNA gene clone
libraries. Some actinobacterial genera were previously detected
in corals by using the culture-dependent method (Lampert
et al., 2006; Nithyanand and Pandian, 2009; Nithyanand
et al., 2011b; Zhang et al., 2013; Li et al., 2014b). Among
these culturable actinobacteria, Streptomyces, Verrucosispora,
Rhodococcus,Micromonospora, Nocardia, Jiangella, Nocardiopsis,
Pseudonocardia, and Salinispora showed antibacterial activities,
which were considered to contribute to coral health (Ritchie,
2006; Nithyanand et al., 2011a; Krediet et al., 2013; Zhang et al.,
2013; Li et al., 2014b).

Environmental conditions, coral species, colony physiology,
and seasonal variation are considerable influencing factors on
the coral-associated bacterial community (Hong et al., 2009).
Moreover, due to various microhabitats provided by corals’
biological structures, the spatial heterogeneity has been proved
in bacterial communities associated with a single coral colony
(Rohwer et al., 2002; Sweet et al., 2011; Li et al., 2014a). As amajor
coral-associated bacterial group, how actinobacteria is spatially
and temporally organized in corals, and what is the connection
between the actinobacteria communities in corals and in seawater
remains poorly understood. Comprehensive investigation of the
distribution of this ubiquitous group at spatial and temporal
scales will help understanding the variation of coral associated
bacteria and the potential function of actinobacteria, and will
contribute a lot to bioprospect the actinobacteria resources for
utilization as novel sources for bioactive natural products.

Coral reefs are widely distributed in the South China Sea
(Liu et al., 2009; Wang et al., 2014). Porites lutea is the
dominant, typical coral species in the Luhuitou fringing reef,
which is located in the south end of the Hainan province (Zhao
et al., 2008). In this study, the diversity and distribution of
actinobacteria were investigated in coral P. lutea and in the
surrounding seawater every 3 months for 1 year using culture-
independent method for the first time. We aimed to reveal the
coral-associated actinobacteria community structures in three
divergent coral compartments in different months, compare the
actinobacterial communities in the coral and in the surrounding
seawater, and research the actinobacteria community variation
responds to the environmental factors.

Materials and Methods

Sample Collection
The coral and surrounding sea water samples were collected in
four differentmonths (February,May, August, andNovember) in
2012 from the Luhuitou fringing reef (109◦28′E, 18◦13′N). Coral
fragments (approximately 10 × 10 cm) were collected from the
side of three healthy P. lutea colonies at the depth of 3–5m each
time using punch and hammer. Coral mucus, tissues and skeleton
were separated and stored according to the method described
previously (Li et al., 2014a). One liter of seawater adjacent to

the coral colonies was collected, and filtered through 0.22µm-
pore-size filter membrane (Millipore). The filter membranes
were stored at −80◦C until DNA extraction. As the samples
were collected at the same time, environmental parameters
including water temperature, salinity, dissolved oxygen, pH
value, ultraviolet radiation intensity, and rainfall were cited from
the published data (Li et al., 2014a).

DNA Extraction and PCR Amplification
The coral tissue and skeleton samples were homogenized
thoroughly in liquid nitrogen with sterile mortar and pestle
before added to the PowerBead Tubes. The filter membranes with
adsorbed microbial cells were cut into pieces, and then added
to the PowerBead Tubes. Total DNA was extracted using the
PowerSoil DNA Isolation Kit (MoBio, Solana Beach, CA, USA)
according to the manufacturer’s instruction.

16S rRNA genes were nest PCR amplified, the first
PCR reactions using the combination of universal bacterial
primers 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R
(5′-TACGGYTACCTTGTTACGACTT-3′). PCR amplifications
were performed in a Mastercycler pro (Eppendorf, Hamburg,
Germany) in a final volume of 50µL, containing 2µL (10µM)
each primer, 1µL (10–20 ng) template DNA and 25µL premix
Ex Taq mixture (Takara, Dalian). The PCR conditions were
as follows: 94◦C for 5min; 30 cycles of 94◦C for 30 s, 54◦C
for 30 s, 72◦C for 90 s; followed by 72◦C for 10min. In the
second PCR reactions, the actinobacteria-specific primer pairs, S-
C-Ac-0325-a-S-20 (5′-CGCGCCTATCAGCTTGTTG-3′) and S-
C-Act-0878-a-A-19 (5′-CCGTATCCCCAGGCGGGG-3′), were
used to amplify the V3-V5 regions (about 640 bp) of the
actinobacteria 16S rRNA gene (Stach et al., 2003). In the PCR
reactions, 5µL of 1: 10 dilution of the first round PCR product
was used as DNA template, the PCR mixture (50µL) contain
2µL (10µM) each primer, 25µL premix Ex Taq mixture, the
PCR conditions were as follows: 95◦C for 5min; 30 cycles of
95◦C for 45 s, 68◦C for 45 s, 72◦C for 60 s; followed by 72◦C for
10min. Each genomic DNA sample was amplified in triplicate
PCR reactions. Amplicons from the same sample were pooled
and purified using the E.Z.N.A. R© Gel Extraction Kit (Omega
Bio-Tek, China).

Gene Library Construction and Sequencing
Sixteen clone libraries of actinobacterial 16S rRNA genes
were constructed using the pMD18-T Vector Cloning Kit
and E. coli DH5α competent cells (Takara, Dalian) following
the manufacturer′s instructions. The positive clones from
each library inoculated on MacConkey agar with ampicillin
(100µg/ml) were randomly picked and sequenced using M13F
(−47) primer on ABI 3730xl capillary sequencers (Applied
Biosystems, USA).

Libraries Analysis
The vector sequences were screened by the VecScreen
tool provided in NCBI (http://www.ncbi.nlm.nih.gov/tools/
vecscreen/). Chimeras were checked by running chimera.uchime
packaged in Mothur (Schloss et al., 2009), and potential chimeras
were removed. All valid sequences were deposited in GenBank
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(accession numbers were shown in Data S1). All qualified
sequences were identified by using the classify.seqs command
in Mothur with Silva reference alignment database (http://
www.mothur.org/wiki/Silva_reference_files, Release 119) at a
confidence level of 80%. The sequences, which do not belong to
Actinobacteria, were removed from further analysis. Sequences
were clustered into operational taxonomic units (OTUs) with
a 97% threshold using the cluster command in Mothur. The
relationships among actinobacterial communities associated
with different coral compartments and in the ambient seawater
in different months were analyzed by hierarchical cluster
analysis. Based on Bray-Curtis similarity estimated from the
OTU matrix, clustering was generated by using the complete
linkage method with the PRIMER 5 software (Clarke, 1993). The
shared OTUs were determined by using the online tool venny
(Oliveros, 2007–2015, http://bioinfogp.cnb.csic.es/tools/venny/
index.html).

The correlations between Actinobacteria assemblages of coral
samples and the environmental factors were analyzed by using
the software package CANOCO 4.5.1 (ter Braak and Šmilauer,
2002). Redundancy analysis (RDA) was carried out to determine
the relationship between the actinobacteria community and
the environmental factors including temperature, salinity,
dissolved oxygen, pH value, rainfall, and UV radiation and in
combination with two nominal variables including the coral
divergent compartments and the different sampling months. The
significance of the relation between the explanatory variables and
the actinobacterial community compositions was tested using
Monte Carlo permutation tests (9999 unrestricted permutations,
P < 0.05).

Results

Coral-associated Actinobacteria Diversity
A total of 2403 sequences were obtained from sixteen 16S rRNA
gene clone libraries, resulting in 395 OTUs (stringency at 97%).
The rarefaction analysis result showed that most of the curves did
not flatten to asymptote, but climbed less steeply (Figure 1). The
coverages ranged from 0.69 to 0.97 in 16 libraries, and the average
coverage was 0.83 (Table 1). The highest number of OTUs was
found in the tissue collected in May, while the lowest OTUs
was found in the skeleton collected in November (Table 1). The

Shannon indices in mucus collected in different months ranged
from 2.32 to 3.44, from 2.45 to 3.55 in tissues, from 1.82 to 3.35
in skeleton, and from 1.53 to 2.82 in sea water (Table 1), and
the diversity in the actinobacterial community associated with
P. lutea was higher than which in the surrounding sea water
(P = 0.045).

Coral-associated Actinobacterial Community
Composition
At a confidence threshold of 80%, 2403 qualified reads were
assigned to four classes, i.e., Acidimicrobiia, Actinobacteria,
Thermoleophilia, and KIST-JJY010. Among them, Acidimicrobiia
and Actinobacteria were ubiquitous and dominant in P. lutea
and in the seawater samples. Thermoleophilia was not detected in
corals collected in February, in the mucus and seawater in May,
and in the mucus in August, while accounted for 0.5–48.8% in
all other samples. KIST-JJY010 was detected only in the mucus in
November (0.6%), and in the skeleton in August (2.6%).

Twenty-five described families and 10 unnamed families
were detected in the 16 libraries (Figure 2). OM1_clade
and Propionibacteriaceae (genera Friedmanniella and
Propionibacterium) were ubiquitous, major groups in P. lutea.
Meanwhile, OM1_clade was not detected in the seawater in

FIGURE 1 | Rarefaction curves of Actinobacteria 16S rRNA gene

sequences.

TABLE 1 | Number of sequences and OTUs (97%) and diversity estimates of the Actinobacteria libraries in P. lutea and in the ambient seawater.

Index A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4

No. of Seq. 153 133 150 185 105 151 134 181 132 146 153 179 149 109 172 171

OTUs 56 42 41 25 46 66 31 29 37 41 54 44 40 33 17 43

Chao 343.00 147.60 69.88 34.43 108.14 201.13 44.00 55.25 63.86 64.75 124.13 106.14 55.83 48.17 19.50 66.00

ACE 600.00 756.54 131.72 56.36 194.33 388.96 61.80 63.38 535.51 93.22 182.95 108.04 68.08 46.83 21.10 114.38

Shannon 3.33 2.45 3.08 1.53 3.44 3.55 2.70 1.89 2.32 3.07 3.35 2.68 2.89 3.11 1.82 2.84

Coverage 0.73 0.75 0.85 0.94 0.71 0.69 0.90 0.92 0.79 0.86 0.78 0.83 0.87 0.87 0.97 0.86

A1, mucus in February; A2, tissue in February; A3, skeleton in February; A4, seawater in February; B1, mucus in May; B2, tissue in May; B3, skeleton in May; B4, seawater in May; C1,

mucus in August; C2, tissue in August; C3, skeleton in August; C4, seawater in August; D1, mucus in November; D2, tissue in November; D3, skeleton in November; D4, seawater in

November.
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FIGURE 2 | Actinobacteria composition profiles. Taxonomic classification of actinobacteria sequences in to family identified by using the classify.seqs command

in Mothur using Silva reference alignment database (http://www.mothur.org/wiki/Silva_reference_files, Release 119) with a confidence level of 80% were applied for

classification. A1, mucus in February; A2, tissue in February; A3, skeleton in February; A4, seawater in February; B1, mucus in May; B2, tissue in May; B3, skeleton in

May; B4, seawater in May; C1, mucus in August; C2, tissue in August; C3, skeleton in August; C4, seawater in August; D1, mucus in November; D2, tissue in

November; D3, skeleton in November; D4, seawater in November.

February and May, and rare in the other two seawater libraries,
and Propionibacteriaceae was absent in all the seawater libraries.
Micromonosporaceae was the most abundant group in the tissue
in February (47.4%) and in the mucus in August (46.2%), in
which most of the reads were affiliated with an unclassified
group. Nonetheless, Micromonosporaceae was absent in all
other coral and seawater samples. Sva0996_marine_group was
detected in all coral samples (5.2–50%) except in the skeleton
collected in November, and which also was abundant in the
ambient sea water (21.9–80%). Micrococcaceae was absent in
the coral skeleton collected in August and in November, and
in the sea water samples. Group 480-2 was abundant in the
coral tissue in August (24.7%), as well as in the skeleton in May
(26.9%) and in November (48.8%), but it was nearly absent in

the surrounding seawater. In reverse, Microbacteriaceae and
Ilumatobacter were major groups in sea water, while they were
less abundant in P. lutea.

Spatial and Temporal Distribution of
P. lutea-associated Actinobacteria
Results of hierarchical cluster analysis showed that the
actinobacteria communities were significantly different between
in the coral and in the surrounding seawater samples (p = 0.01,
R = 0.993). The actinobacterial communities associated with the
same coral compartments tended to cluster together (Figure 3).
The season factor did not significantly influence the variation in
the actinobacteria communities. The RDA results indicated that
38.9% of the total variance in the coral-associated actinobacterial
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FIGURE 3 | Hierarchical cluster analysis of actinobacteria communities associated with P. lutea. Clustering was based on Bray-Curtis similarity estimated

from the OTUs matrix by using the complete linkage method.

composition was explained by the environmental, spatial
and temporal factors (Figure 4). The first and second axes
differentiated the actinobacteria assemblages in the distinct coral
compartments (Figure 4, Table S1). This result was consistent
with the hierarchical cluster analysis. None of the environment
parameters analyzed in this study was determined as the
significant influencing factor in the variation of the P. lutea
associated actinobacteria communities. A triplot map illustrated
the relationship between major actinobacterial groups, with
abundance more than 1%, and the environmental parameters
(Figure 4). Friedmanniella and Micrococcus were positively
related with the salinity. Microbacterium, Propionibacterium,
and group 480-2 were positively correlated with seawater
temperature, but negatively correlated with dissolved oxygen.

To investigate the distribution of OTUs in the three divergent
coral compartments (mucus, tissue, and skeleton) and in
the surrounding seawater, a venn diagram was constructed.
The results showed that only 5 OTUs were present in all of
P. lutea mucus, tissue and skeleton, and in sea water, which
were identified as Sva0996_marine_group, Ilumatobacter,
Corynebacterium, OM1_clade and Microbacterium (Table 2,
Figure S1A). Another 17 OTUs, which were identified as
Candidatus_Microthrix, Corynebacteriales, Friedmanniella,
Micrococcus, Mycobacterium, OM1_clade, Propionibacterium,
Sva0996_marine_group, Yonghaparkia and 480-2 were common
in mucus, tissue, and skeleton (Table 2, Figure S1A). Twelve
OTUs distributed in Propionibacterium, Friedmanniella,
OM1_clade, Sva0996_marine_group, Kocuria, Mycobacterium,
Corynebacteriales, Brevibacterium, and Brachybacterium were
present in coral libraries in all four different months (Table 3,
Figure S1B). The most abundant OTU0003, which was classified
as Propionibacterium, was present in all coral samples with
a high abundance (128 out of total 1687 reads in the coral

libraries, 7.6%). The secondary abundance OTU0004 affiliated
with Friedmanniella was present in all libraries except in skeleton
collected in November.

Discussion

Highly Diverse Actinobacteria Associated with
P. lutea
In comparison with previously reported results (Lampert
et al., 2006, 2008; Bruck et al., 2007; Kageyama et al., 2007;
Santiago-Vázquez et al., 2007; Ben-Dov et al., 2009; Nithyanand
and Pandian, 2009; Seemann et al., 2009; Shnit-Orland and
Kushmaro, 2009; de Castro et al., 2010; Thomas et al., 2010;
Nithyanand et al., 2011a,b; Cardenas et al., 2012; Chiu et al.,
2012; Sun et al., 2012, 2014; Zhang et al., 2012, 2013; Yang
et al., 2013; Chen et al., 2014; Li et al., 2014a,b; EIAhwany
et al., 2015; Sarmiento-Vizcaíno et al., 2015), 12 genera
including Actinopolyspora, Blastococcus, Candidatus_Aquiluna,
Demetria, Fodinicola, Friedmanniella, Geodermatophilus,
Iamia, Modestobacter, Ornithinimicrobium, Tersicoccus, and
Yonghaparkia were firstly detected in corals in this study
(Table 4). Furthermore, many unclassified groups were detected
in P. lutea, including even the group at the class taxon level.
These results suggested that highly diverse and abundant
known actinobacteria were associated with P. lutea as well as
unknown groups. It was also noticed that many actinobacterial
groups were only detected by the culture-independent method
(Table 4), and some of them were ubiquitous and abundant,
such as Friedmanniella, Ilumatobacter, and OM1_clade. Their
physiological properties and ecological significance are worthy of
deep research. For this purpose, the development and innovation
of the isolation and cultivation methods in order to obtain pure
cultures from the coral holobiont is particularly important.
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FIGURE 4 | RDA ordination triplot showing the relationship among the environmental variables, coral samples, and actinobacterial components.

Correlations between environmental variables and the first two RDA axes are represented by the lengths and angles of the arrows (environmental-factor vectors). Only

abundant actinobacterial groups (>1%) were showed in the triplot. UV, ultraviolet radiation intensity; Temp, seawater temperature; DO, dissolved oxygen.

According to our summary (Table 4), genera Agrococcus,
Amycolatopsis, Arthrobacter, Brachybacterium, Brevibacterium,
Candidatus_Microthrix, Corynebacterium, Cellulosimicrobium,
Cellulomonas, Dermatophilus, Dietzia, Gordonia, Janibacter,
Jiangella, Kocuria, Kytococcus, Microbacterium,Micromonospora,
Micrococcus, Mycobacterium, Nocardioides, Nocardiopsis,
Propionibacterium, Pseudonocardia, Rhodococcus, Rothia, and
Streptomyces were detected in diverse coral species including
scleractinian corals, such as Acropora digitifera (Nithyanand and
Pandian, 2009; Nithyanand et al., 2011b), P. lutea (Li et al., 2014b;
Sun et al., 2014) and Galaxea fascicularis (Li et al., 2014b), and
gorgonian corals, Siderastrea sidereal (Cardenas et al., 2012) and
Platygyra carnosus (Chiu et al., 2012). Most of them were present
also in other marine organisms, such as sponges (Kim and
Fuerst, 2006; Zhang et al., 2006; Selvin et al., 2009; Abdelmohsen
et al., 2010, 2014; Schneemann et al., 2010; Sun et al., 2010;
Webster and Taylor, 2012; Vicente et al., 2013), mollusks
(Romanenko et al., 2008; Peraud et al., 2009), fishes (Sheeja et al.,
2011), seaweeds (Lee, 2008; Singh and Reddy, 2013), seagrasses
(Ravikumar et al., 2012), and sea cucumber (Kurahashi et al.,
2009). Moreover, some of these widely distributed groups were

considered as the bioactive compounds producers (Fiedler et al.,
2005; Tabares et al., 2011; Margassery et al., 2012; Vicente et al.,
2013; Manivasagan et al., 2014; Valliappan et al., 2014; EIAhwany
et al., 2015), and probably take part in nitrogen (Su et al., 2013)
and phosphorus (Sabarathnam et al., 2010) biogeochemical
cycles. Whether they play these functional roles in corals in situ
need to be further investigated.

Comparison of Actinobacterial Communities in
the Corals and in the Ambient Seawater
Comparing the actinobacteria communities between in P. lutea
and in the surrounding seawater will help us to understand the
source of coral associated actinobacteria, and the interaction
between the bacteria in sea water and in corals. Consisted with
previous study on bacteria communities (Li et al., 2014a), the
P. lutea associated actinobacteria communities were significantly
different from which in the ambient seawater (Figure 3).
Groups such as Propionibacteriaceae, Micromonosporaceae, and
Micrococcaceae, were specifically associated with the corals rather
than in the ambient seawater, where they originated from
should be in doubt. Whether the wide distributed groups such
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TABLE 2 | OTUs presented in all of the coral and seawater libraries, or

presented in all three divergent compartments of P. lutea.

OTUs Observed in samples Abundance Phylogenetic affiliation

OTU0001 Mucus, Tissue,

Skeleton, Sea water

303 Sva0996_marine_group

OTU0007 Mucus, Tissue,

Skeleton, Sea water

63 Ilumatobacter

OTU0011 Mucus, Tissue,

Skeleton, Sea water

46 Corynebacterium

OTU0017 Mucus, Tissue,

Skeleton, Sea water

33 OM1_clade

OTU0020 Mucus, Tissue,

Skeleton, Sea water

24 Microbacterium

OTU0002 Mucus, Tissue, Skeleton 186 480-2

OTU0003 Mucus, Tissue, Skeleton 128 Propionibacterium

OTU0004 Mucus, Tissue, Skeleton 122 Friedmanniella

OTU0009 Mucus, Tissue, Skeleton 52 Candidatus_Microthrix

OTU0012 Mucus, Tissue, Skeleton 43 OM1_clade

OTU0013 Mucus, Tissue, Skeleton 40 OM1_clade

OTU0014 Mucus, Tissue, Skeleton 40 Sva0996_marine_group

OTU0023 Mucus, Tissue, Skeleton 21 Micrococcus

OTU0025 Mucus, Tissue, Skeleton 18 OM1_clade

OTU0027 Mucus, Tissue, Skeleton 18 Mycobacterium

OTU0028 Mucus, Tissue, Skeleton 17 Corynebacteriales

OTU0030 Mucus, Tissue, Skeleton 15 Propionibacterium

OTU0032 Mucus, Tissue, Skeleton 13 Mycobacterium

OTU0034 Mucus, Tissue, Skeleton 12 Sva0996_marine_group

OTU0035 Mucus, Tissue, Skeleton 12 Sva0996_marine_group

OTU0042 Mucus, Tissue, Skeleton 8 Sva0996_marine_group

OTU0056 Mucus, Tissue, Skeleton 5 Yonghaparkia

as Sva0996_marine_group, OM1_clade, Microbacteriaceae and
Ilumatobacter travel between the ambient seawater and the corals
need to be investigated.

When researchers make a general observation of the
whole bacterial communities, which were observed significantly
different in coral mucus, tissue, and skeleton (Rohwer et al.,
2002; Bourne and Munn, 2005; Sweet et al., 2011; Lee
et al., 2012). However, it is unclear whether actinobacteria
has a similar distribution pattern. In this study, both the
hierarchical cluster analysis (Figure 3) and the RDA analysis
(Figure 4) showed that the actinobacteria communities from
the same compartment tended to cluster together. The distinct
physiochemical microenvironments provided by corals probably
is one of the causes (Le Tissier, 1990; Brown and Bythell,
2005; Sweet et al., 2011; Tremblay et al., 2011). Only a
small fraction of OTUs (22 out of 299 OTUs in the coral
libraries) was common in the coral mucus, tissue, and skeleton
libraries in this study (Table 2). This result suggested that these
members might have capabilities to adapt to different micro-
environments in divergent compartments of P. lutea. A large
amount of the OTUs was specifically associated with a certain
coral compartment. Whether and how the properties of distinct
actinobacteria assemblages in different coral compartments
actually contribute to the close relationship constructed between

TABLE 3 | OTUs presented in P. lutea collected in four different months.

OTUs Coral samples Abundance Phylogenetic affiliation

OTU0003a Feb, May, Aug, Nov 128 Propionibacterium

OTU0004 Feb, May, Aug, Nov 122 Friedmanniella

OTU0013 Feb, May, Aug, Nov 40 OM1_clade

OTU0014 Feb, May, Aug, Nov 40 Sva0996_marine_group

OTU0015 Feb, May, Aug, Nov 39 Kocuria

OTU0017 Feb, May, Aug, Nov 33 OM1_clade

OTU0022 Feb, May, Aug, Nov 21 Sva0996_marine_group

OTU0025 Feb, May, Aug, Nov 18 OM1_clade

OTU0027 Feb, May, Aug, Nov 18 Mycobacterium

OTU0028 Feb, May, Aug, Nov 17 Corynebacteriales

OTU0033 Feb, May, Aug, Nov 13 Brevibacterium

OTU0059 Feb, May, Aug, Nov 5 Brachybacterium

aOTU0003 was present in all 12 libraries. The other OTUs listed in this table were present

in either of the compartment mucus, tissue and skeleton of corals collected in four different

months.

these associates and corals should be addressed from a functional
perspective.

Relationship of environmental factors and the
P. lutea-associated Actinobacteria
It is different from previous conclusion of the distribution of
coral-associated bacteria (Chen et al., 2011; Li et al., 2014a),
actinobacteria associated with P. lutea did not show the apparent
seasonal dynamic variations. We suggest that the actinobacteria
compositions are relatively stable in distinct compartments in
P. lutea. In addition, none of the environmental factors analyzed
in this study was determined as the most significant influence
on the actinobacteria communities. Even so, some genera were
found closely correlated with specific environmental factors. For
instance, Propionibacterium showed negatively correlation with
dissolved oxygen, probably due to its capability of living in the
anaerobic conditions (Patrick and McDowell, 2012). Moreover,
the OTUs0003 and 0004 affiliated with Propionibacteriaceae
was present in almost all 12 clone libraries with a very high
abundance.Whether they are true symbionts, and what functions
they play are worth further research.

Conclusion

The diversity and distribution of coral-associated actinobacteria
were first comprehensively investigated in this study. Highly
diverse actinobacteria was revealed in the 16S rRNA gene clone
libraries of scleractinian coral P. lutea in the South China Sea.
Twelve Actinobacteria genera were detected in corals for the
first time as well as a large number of unclassified groups.
The actinobacterial community compositions were distinct in P.
lutea and in the surrounding seawater. Furthermore, the higher
similarity of actinobacteria composition was observed in the
same compartment (i.e., mucus, tissue, or skeleton) of P. lutea.
This study will help attracting the attentions on the ecological
role of actinobacteria in corals besides the natural products
bioprospecting.
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TABLE 4 | Summary of the Actinobacteria associated with corals.

Family Genus Source coral Isolate/clone References

Acidimicrobiaceae Ilumatobacter Porites lutea Clone Chen et al., 2014

Porites lutea Clone This study

Iamiaceae Iamia Porites lutea Clone This study

Actinopolysporaceae Actinopolyspora Porites lutea Clone This study

Actinospicaceae Actinospica Zoanthid Palythoa australiae Clone Sun et al., 2014

Brevibacteriaceae Brevibacterium Acropora digitifera Isolate Nithyanand and Pandian,

2009

Tubastraea coccinea Clone Yang et al., 2013

Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Porites lutea Clone This study

Dermacoccaceae Demetria Porites lutea Clone This study

Dermacoccus Tubastraea coccinea Clone Yang et al., 2013

Kytococcus Fungia scutaria Isolate Lampert et al., 2006

Porites lutea Clone This study

Dietziaceae Dietzia Leptogorgia minimata Isolate Bruck et al., 2007

Scleronephthya sp. Isolate Sun et al., 2012

Alcyonium gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Zoanthid Palythoa australiae Clone Sun et al., 2014

Porites lutea Clone This study

Geodermatophilaceae Blastococcus Porites lutea Clone This study

Geodermatophilus Porites lutea Clone This study

Modestobacter Porites lutea Clone This study

Intrasporangiaceae Janibacter Acropora gemmifera Isolate Kageyama et al., 2007

Alcyoniu gracllimum Clone Yang et al., 2013

Acropora gemmifera Isolate Valliappan et al., 2014

Porites lutea Clone This study

Ornithinimicrobium Porites lutea Clone This study

Serinicoccus Tubastraea coccinea Clone Yang et al., 2013

Mycobacteriaceae Mycobacterium Sinularia sp. Isolate Thomas et al., 2010

Scleronephthya sp. Isolate Sun et al., 2012

Alcyoniu gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Porites lutea Isolate Li et al., 2014b

Porites lutea Clone This study

Nocardiaceae Rhodococcus Iciligorgia schrammi Isolate Bruck et al., 2007

Scleronephthya sp. Isolate Sun et al., 2012

Tubastraea coccinea Clone Yang et al., 2013

Nocardioidaceae Nocardioides Palythoa caribaeorum Isolate Seemann et al., 2009

Scleronephthya sp. Isolate Sun et al., 2012

Tubastraea coccinea Clone Yang et al., 2013

Porites lutea Clone This study

Nocardiopsaceae Nocardiopsis Platygyra lamellina Clone Lampert et al., 2008

Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Porites lutea Clone This study

(Continued)
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TABLE 4 | Continued

Family Genus Source coral Isolate/clone References

Propionibacteriaceae Friedmanniella Porites lutea Clone This study

Propionibacterium Cirrhipiathes lutkeni Isolate Santiago-Vázquez et al., 2007

Mussimilia hispida Isolate de Castro et al., 2010

Acropora digitifera Isolate Nithyanand et al., 2011b

Zoanthid Palythoa australiae Clone Sun et al., 2014

Porites lutea Clone This study

Tessaracoccus Porites lutea Clone Chen et al., 2014

Pseudonocardiaceae Pseudonocardia Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Zoanthid Palythoa australiae Clone Sun et al., 2014

Porites lutea Clone This study

Amycolatopsis Galaxea fascicularis Isolate Li et al., 2014b

Zoanthid Palythoa australiae Clone Sun et al., 2014

Prauserella Galaxea fascicularis Isolate Li et al., 2014b

Saccharomonospora Antipathes dichotoma Isolate Seemann et al., 2009

Streptomycetaceae Streptomyces Iciligorgia schrammi Isolate Bruck et al., 2007

Acropora digitifera Isolate Nithyanand et al., 2011b

Antipathes dichotoma Isolate Zhang et al., 2012

Scleronephthya sp. Isolate Sun et al., 2012

Alcyonium gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Zoanthid Palythoa australiae Clone Sun et al., 2014

Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Sarcophyton glaucum Isolate EIAhwany et al., 2015

Porites lutea Clone This study

Cellulomonadaceae Cellulomonas Scleronephthya sp. Isolate Sun et al., 2012

Alcyomum gracllimum Clone Yang et al., 2013

Zoanthid Palythoa australiae Clone Sun et al., 2014

Dermatophilaceae Dermatophilus Fungia scutaria Isolate Lampert et al., 2006

Alcyonium gracllimum Clone Yang et al., 2013

Zoanthid Palythoa australiae Clone Sun et al., 2014

Micromonosporaceae Micromonospora Fungia scutaria Clone Lampert et al., 2008

Platygyra lamellina Clone Lampert et al., 2008

Antipathes dichotoma Isolate Zhang et al., 2012

Tubastraea coccinea Clone Yang et al., 2013

Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Scleronephthya sp. Isolate Sun et al., 2012

Porites lutea Clone This study

Verrucosispora gorgonian corals Isolate Zhang et al., 2013

Salinispora Nephthea sp. Isolate Ma et al., 2013

Acidimicrobiales_Incertae_Sedis Candidatus_Microthrix Alcyonium gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Porites lutea Clone This study

(Continued)
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TABLE 4 | Continued

Family Genus Source coral Isolate/clone References

Corynebacteriaceae Corynebacterium Fungia granulose Isolate Ben-Dov et al., 2009

Alcyonium gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Zoanthid Palythoa australiae Clone Sun et al., 2014

Porites lutea Clone This study

Cryptosporangiaceae Fodinicola Porites lutea Clone This study

Dermabacteraceae Brachybacterium Acropora digitifera Isolate Nithyanand and Pandian,

2009

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Porites lutea Clone This study

Microbacteriaceae Agrococcus gorgonian corals Isolate Zhang et al., 2013

Porites lutea Clone This study

Candidatus_Aquiluna Porites lutea Clone This study

Curtobacterium Acropora digitifera Isolate Nithyanand et al., 2011b

Leucobacter Siderastrea sidereal Isolate Cardenas et al., 2012

Microbacterium Siderastrea sidereal Isolate Cardenas et al., 2012

Tubastraea coccinea Clone Yang et al., 2013

Porites lutea Isolate Chen et al., 2014

Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Clone This study

Yonghaparkia Porites lutea Clone This study

Micrococcaceae Arthrobacter Stony coral Isolate Shnit-Orland and Kushmaro,

2009

Porites lutea Clone This study

Kocuria Acropora digitifera Isolate Nithyanand et al., 2011b

Porites lutea Isolate Chen et al., 2014

Zoanthid Palythoa Australia Clone Sun et al., 2014

Porites lutea Clone This study

Micrococcus Acropora digitifera Isolate Nithyanand et al., 2011b

Galaxea fascicularis Isolate Li et al., 2014b

Porites lutea Clone This study

Rothia Platygyra carnosus Isolate Chiu et al., 2012

Porites lutea Clone This study

Tersicoccus Porites lutea Clone This study

Gordoniaceae Gordonia Scleronephthya sp. Isolate Sun et al., 2012

Alcyonium gracllimum Clone Yang et al., 2013

Tubastraea coccinea Clone Yang et al., 2013

Galaxea fascicularis Isolate Li et al., 2014b

Acropora millepora Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Jiangellaceae Jiangella Acropora millepora Isolate Li et al., 2014b

Galaxea fascicularis Isolate Li et al., 2014b

Promicromonosporaceae Cellulosimicrobium Acropora millepora Isolate Li et al., 2014b

Porites lutea Isolate Li et al., 2014b

Myceligenerans Fam. Caryophillidae Isolate Sarmiento-Vizcaíno et al.,

2015

Tsukamurellaceae Tsukamurella Galaxea fascicularis Isolate Li et al., 2014b

The genera firstly reported in this study were shown in bold.
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