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The role of intestinal microbiota and probiotics in prevention and treatment of infectious 
diseases, including diarrheal diseases in children and animal models, is increasingly rec-
ognized. Intestinal commensals play a major role in development of the immune system 
in neonates and in shaping host immune responses to pathogens. Lactobacilli spp. 
and Escherichia coli Nissle 1917 are two probiotics that are commonly used in children 
to treat various medical conditions including human rotavirus diarrhea and inflamma-
tory bowel disease. Although the health benefits of probiotics have been confirmed, 
the specific effects of these established Gram-positive (G+) and Gram-negative (G−) 
probiotics in modulating immunity against pathogens and disease are largely undefined. 
In this review, we discuss the differences between G+ and G− probiotics/commensals 
in modulating the dynamics of selected infectious diseases and host immunity. These 
probiotics modulate the pathogenesis of infectious diseases and protective immunity 
against pathogens in a species- and strain-specific manner. Collectively, it appears that 
the selected G− probiotic is more effective than the various tested G+ probiotics in 
enhancing protective immunity against rotavirus in the gnotobiotic piglet model.

Keywords: rotavirus, probiotics, Escherichia coli Nissle, Lactobacillus, immunity, children, diarrhea, gnotobiotic 
piglet disease model

iNTRODUCTiON

Intestinal commensals constitute more than 1,000 species of bacteria. These commensals are involved 
in nutrient metabolism, development, and functioning of the gastrointestinal (GI) immune system 
and protection of the host from pathogens (1–3). Colonization of the GI tract is a gradual process 
in which Escherichia coli and other enterobacteria colonize the intestinal tract early after birth, fol-
lowed by the subsequent establishment of anaerobes (4). The intestinal microbiota of children only 
becomes adult-like at 2–3 years of age (5). Perturbation of the intestinal microbiota, or dysbiosis, is 
associated with various diseases such as inflammatory bowel disease (6) and also affects the efficacy 
of various vaccines in children (7). Probiotics are widely used to restore gut homeostasis in various 
medical conditions in humans (8–10) and treat diarrheal diseases in children.
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Diarrheal disease is one of the leading cause of deaths in 
children and it accounts for the death an estimated of 700,000 
children annually worldwide (11). Specifically, rotavirus (RV) is a 
major cause of gastroenteritis in children worldwide. The protec-
tive efficacy of available RV vaccines is variable between regions 
and it is lowest in developing countries such as Southern Asia 
(50.0%) and sub-Saharan Africa (46.1%) (12). Additionally, lack 
of access to adequate health-care facilities to manage diarrhea is 
also associated with higher morbidity and mortality in children 
in low-income settings. Thus, enhancing vaccine efficacy, along 
with developing economical approaches to reduce the severity 
of RV diarrhea are effective strategies to ameliorate severe RV 
disease. Probiotics and intestinal commensals, crucial interacting 
partners of the gut immune system (13), are increasingly being 
considered for treatment of various enteric infections including 
human retrovirus (HRV) diarrhea (14), human norovirus gas-
troenteritis (15), antibiotic-associated diarrhea (16), and also to 
modulate protective antiviral immunity (17).

The beneficial effects of probiotics in reducing the severity of 
RV diarrhea and modulating viral immunity were observed in 
randomized clinical studies (18) and experimental studies in ani-
mal models (19) (Table 1). The Gram-positive (G+) Lactobacillus 
spp. were widely used to treat or prevent RV diarrhea in children. 
Specifically, prophylactic supplementation of Lactobacillus rham-
nosus GG (LGG) to children significantly reduced the incidence 
of HRV disease (20). In our studies, gnotobiotic (Gn) piglets 
were used to study HRV pathogenesis due to their susceptibility 
to HRV infection and also the greater anatomic and physiological 
and immunological similarities between pigs and humans. Dual 
colonization of Gn piglets with G +  LGG and Bifidobacterium 
lactis Bb12 resulted in a significant reduction in both fecal HRV 
shedding titers and diarrhea severity (21). Further, Lactobacillus 
strains have significant effects in reducing diarrhea severity in 
children affected by enteric diseases (22).

The effectiveness of probiotics in preventing or treating a 
disease is dependent on several factors such as class or strains of 
probiotics, the dosage of probiotics, and heterogeneity of study 
subjects (40, 41). Several past studies showed strain-specific 
differences of probiotics in modulating host immune responses 
(42). Thus, comparative analysis of the health benefits of different 
classes of probiotics is essential to tailor an effective regimen of 
probiotic treatment for a disease condition. Specifically varia-
tions in microbe-associated molecular patterns between G+ and 
Gram-negative (G−) bacteria have been attributed to differential 
induction of innate immunity in a host (43, 44). However, lim-
ited studies have been conducted to decipher if differences exist 
between G+ and G− probiotics in modulating host responses to 
infectious diseases. In our recent studies (31, 32), we compared the 
beneficial effects of G+ and G− probiotics in modulating virulent 
HRV infection as well as host immunity. Specifically, LGG was 
selected as a G+ probiotic because of its well-documented effects 
in reducing the severity of RV diarrhea in children (24). For the 
G− probiotic, we selected Escherichia coli Nissle 1917 (EcN) due 
to its proven effects in attenuating inflammatory disorders and 
modulating immunity in humans (45). In this review, we focused 
on the comparisons of the health benefits of G+ and G− probiot-
ics in modulating microbial infections and immunity.

eFFeCTS OF G+ veRSUS G− 
PROBiOTiCS ON eNTeRiC iNFeCTiONS 
AND DiARRHeA

Probiotics have been successfully used to prevent or treat enteric 
infections in children and animals (Table 1). One notable finding 
is the difference between G+ and G− probiotics in modulating 
host immunity against microbial diseases. In one study (31), the 
comparative efficacy of LGG and EcN probiotics in ameliorat-
ing HRV disease was assessed in Gn piglets. The EcN colonized 
piglets had reduced diarrhea severity and also lower mean peak 
virus shedding titers compared with LGG or uncolonized piglets 
post-virulent human RV (VirHRV) challenge (31, 32). Both EcN 
and LGG showed similar colonization patterns as indicated by 
comparable fecal shedding of each bacterium and also detection 
of similar levels of each probiotic bacteria in various sections of 
GI tract. Similarly, EcN supplementation to children with enteric 
infections resulted in reduced duration of diarrhea (26). Further, 
supplementation of EcN to infants for the first 5 days immediately 
after birth resulted in persistence of the probiotic for 6 months 
as indicated by fecal shedding of EcN (29). Similar to the higher 
beneficial effects of EcN than LGG on ameliorating HRV infec-
tion, higher protective effects against Salmonella were observed 
in EcN compared with Bifidobacterium choerinum-supplemented 
Gn piglets (30). The higher protective effect of EcN against 
Salmonella was associated with increased expression of ZO-1 
and occludin in ileal epithelial cells and decreased inflammatory 
TNF-α cytokine levels in the EcN colonized Gn piglets (30). 
Consistent with these findings, higher TNF-α levels were induced 
by G+ commensals as compared with G− commensals using 
in  vitro mononuclear cultures (43). EcN supplementation also 
attenuated lipopolysaccharides (LPS) or trinitrobenzene sulfonic 
acid-induced inflammatory conditions in a mouse model (46). In 
summary, the higher ability of G− compared with G+ probiotics 
in reducing the levels of inflammatory mediators during enteric 
infections may be major contributing factor in reducing diarrhea 
severity.

G+ and G− Probiotic impacts on 
Modulation of B Cell Responses
Microbial colonization of the GI tract has a significant effect on 
the maturation of neonatal immune system (47). Consistent with 
this observation, administration of EcN enhanced serum EcN-
specific IgA antibody and polyclonal IgM antibody responses in 
infants as compared with placebo group (28). Also, mono EcN 
or dual EcN + LGG colonization significantly increased serum 
total IgA and IgG responses compared with LGG colonized or 
uncolonized piglets (31) (Figure 1). Similar to systemic immu-
noglobulin responses, EcN colonization resulted in higher small 
intestinal total IgA responses compared with LGG colonization in 
Gn pigs. Thus, EcN had more potent immunostimulatory effects 
than LGG in terms of inducing mucosal and systemic B  cell 
responses. The underlying mechanism for differential induction 
of antibody responses by G+ and G− bacteria might be due to 
variation in IgA inducing factors such as IL-10 cytokine. In fact, 
G−, but not G+ probiotics, induced higher IL-10 responses in 
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TABLe 1 | effects of G+ and G− probiotics on diarrheal diseases and immunity in children and animal models.

Gram-positive 
probiotic/
commensal 
bacteria

Gram-negative 
probiotic/
commensal 
bacteria

Humans/
animal 
model/in vitro 
study

indication Conclusion(s) Reference

L. rhamnosus GG 
(6 × 109 CFU/dose)

None Children Prophylaxis against diarrheal diseases Significant reduction in incidence of HRV 
disease in LGG-supplemented group

(20)

L. rhamnosus GG 
(1010–11 CFU)

None Children Effect of LGG on immune responses to 
HRV in children

LGG significantly enhanced RV-specific IgA 
antibody responses

(23)

L. rhamnosus GG 
(1010 CFU)

None Children Treating diarrhea Reduced duration of diarrhea (24)

Lactobacillus 
paracasei strain ST11 
(1010 CFU)

None Children Treating diarrhea Reduced severity of non-rotavirus induced 
diarrhea but no effect on rotavirus diarrhea

(25)

None Escherichia coli 
Nissle 1917 (EcN) 
(108 CFU)

Children Treat acute diarrhea in children Reduced duration of diarrhea by 2.3 days (26)

None EcN (3 × 108 CFU) Infants To assess effects on total IgA responses 
in infants

Increased serum and stool IgA responses (27)

None EcN (108 CFU) Infants Assess impact on cellular and humoral 
immunity in infants

Probiotic increased both cellular proliferative 
and serum total IgA responses

(28)

None EcN (108 CFU) Infants Prophylactic administration against 
bacterial pathogens

Significant reduction in bacterial pathogens in 
fecal samples

(29)

Bifidobacterium 
choerinum 
(5 × 108 CFU/ml)

EcN (5 × 108 CFU/
ml)

Gn piglets Protection against Salmonella enterica 
serovar Typhimurium infection

EcN conferred higher protection against 
disease than Bifidobacterium choerinum

(30)

L. rhamnosus GG 
(105 CFU/ml)

EcN (105 CFU/ml) Gn piglets Compare G+ and G− bacteria effect on 
HRV infection and immunity

EcN was more effective than LGG in 
ameliorating HRV disease and enhancing total 
IgA and NK cell responses

(31, 32)

L. rhamnosus 
GG (105 CFU/ml), 
Bifidobacterium lactis 
Bb12 (105 CFU/ml)

None Gn piglets To study effects on HRV disease Reduced fecal virus shedding and diarrhea 
severity in probiotic colonized piglets

(21)

Enterococcus faecium 
NCIMB 10415 
(4.2–4.3 × 106/g CFU)

None Sows and their 
offspring

Effect on fecal shedding of enteric 
viruses

Reduced fecal shedding of rotavirus 
and increased rotavirus specific IgA 
responses. No effect on hepatitis E virus, 
encephalomyocarditis virus, and norovirus 
shedding in feces

(33)

None EcN (1010 CFU/ml) Pigs To prevent enterotoxigenic Escherichia 
coli induced diarrhea

Ameliorated clinical signs of diarrhea (34)

None EcN (108 CFU/ml) Neonatal calf Prevention and treatment of diarrhea Reduction in incidence of diarrheal diseases 
in prophylactic group. Ameliorated severity of 
diarrhea in calves with enteric diseases

(35)

Lactobacillus 
acidophilus A9 (108/
ml CFU)

Escherichia coli 
13-7 (106/ml CFU)

Mice Compare G+ and G− bacteria effect on 
cytokine responses in mice

E. coli 13-7 induced higher IL-12 cytokine 
compared to L. acidophilus A9

(36)

None EcN 
(1.5–2 × 108 CFU)

Mice Assess impact on intestinal barrier 
function in acute dextran sodium sulfate-
induced colitis

Strengthened intestinal barrier function (37)

Lactobacillus casei 
Shirota

EcN In vitro Investigate effects on innate immunity Higher IL-10 and IL-12 induction by EcN than 
L. casei Shirota

(38)

L. plantarum, L. 
rhamnosus, L. 
paracasei ssp. 
paracasei

Escherichia coli 
O6:K13:H1, 
Escherichia coli 
MS101

In vitro Compare G+ and G− bacteria effect on 
cytokine responses of monocytes

Lactobacilli-induced higher level of IL-12 (39)
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FiGURe 1 | Schematic representation of the G+ and G− probiotics-induced immunomodulatory effects and proposed potential immune interactions.
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prior studies (31, 48, 49). IL-10 is one of the cytokines that medi-
ates the induction of IgA antibody responses at mucosal sites 
through enhancing antibody class switching (50). Differences in 
the microbe-associated molecular patterns between the probiot-
ics might be a potential reason for the differential induction of 
IL-10 by G+ and G− bacteria. Indeed, both the LPS portion of 
EcN and whole EcN lysate were identified as potent inducers of 
IL-10 production in peripheral blood mononuclear cells (51). 
Further, induction of total IgA responses is at least partially 
mediated by IL-10 in vitro (31). These studies demonstrate that 
modulation of the cytokine milieu, such as enhanced IL-10 
levels, might be a potential mechanism to account for the higher 
antibody responses observed in G− compared with G+ probiot-
ics groups.

It is also well established that strain-dependent variations 
in immunomodulatory properties are observed within G+  
probiotics (52). Thus, individual probiotic strains within G+ 
or G− probiotic classes may differ in modulating antibody 
responses. Consequently, screening of the beneficial effects of 

individual probiotics is essential to elucidate their impacts on 
antibody responses.

impact of innate immunity on igA 
Responses to G+ versus G− Probiotics
Innate immunity plays an integral role in priming the adaptive 
immune responses. Thus, probiotics may induce specific changes 
in innate immunity that may be involved in synergistically enhanc-
ing IgA responses. Dual colonization of a G− and G+ probiotic 
enhanced serum total IgA responses in Gn piglets compared with 
mono-colonization of the probiotics (31). Thus, G+ and G− bac-
teria synergistically enhanced the systemic total IgA responses. In 
fact, combinations of G+ and G− probiotics had additive effects 
on induction of maturation markers in DCs as well as levels of 
IL-10 cytokines (53). Thus, considering the known function of 
DCs in induction of IgA responses (54, 55), the positive effects 
of combinations of G+ and G− bacteria in modulating DCs may 
play a role in enhancing IgA responses. Additionally, a previous 
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study (56) also showed that LPS, a TLR4 ligand, synergistically 
interacted with TLR1/2 ligands which in turn enhanced class-
switch recombination in B cells. Thus, synergistic interactions of 
microbe-associated molecular patterns from G− and G+ pro-
biotics might also play a role in enhancing antibody responses. 
Apart from DCs, it appears that intestinal epithelial cells also 
respond differently in terms of producing IgA mediators such as 
TGF-β and thymic stromal lymphopoietin (TSLP). Specifically, 
G− commensals induce higher production of TGF-β and TSLP as 
compared with G+ commensals (57). Further, higher frequencies 
of splenic TLR9+ mononuclear cells were detected in EcN + LGG 
colonized compared with the monocolonized EcN or LGG Gn 
piglets (32). TLR9 recognizes CpG DNA and LGG has a high 
GC percentage in its genomic DNA (58). Thus, we speculate that 
higher systemic TLR9 expression in EcN + LGG compared with 
EcN or LGG monocolonized piglets might be a contributing 
factor in enhancing immunoglobulin responses as reported in 
several earlier studies (59, 60).

One unanswered question is the involvement of total IgA lev-
els in modulating immunopathology during microbial infections. 
Previous studies have shown the involvement of IgA in moder-
ating inflammatory responses through modulating dendritic 
cells and regulatory T cell functions (61, 62). Further, secretory 
IgA-commensal complexes were shown to reduce inflammatory 
responses in intestinal epithelial cells (63). Thus, the role of secre-
tory IgA in mitigating infection-induced inflammatory responses 
is intriguing and requires further investigation.

Differential effects of G+ versus G− 
Probiotics in Modulating innate immunity
Probiotics may elicit their beneficial effects against pathogens 
through modulating innate immunity. A role for innate immu-
nity in mediating host defenses against enteric diseases includ-
ing RV infection has been elucidated in recent studies (64–67). 
Specifically, functions of dendritic cells are modulated by vari-
ous probiotics. It appears that DC populations in the intestine 
can be modulated by intestinal commensals. This concept is 
supported by results of an investigation in which depletion of 
intestinal microbiota resulted in a reduction in DCs numbers 
in mucosal compartments as well as impaired resistance 
against influenza virus infection in mice (68). Additionally, 
G− commensal bacteria have higher immunostimulatory 
effects on DCs as compared with G+ commensals (69). For 
example, G− EcN increased frequencies of total plasmacytoid 
dendritic cells (pDCs) and activated pDCs, more than the G+ 
LGG probiotic in Gn piglets (32). Also, G− commensals were 
highly potent in the induction of maturation markers in DCs 
as compared with G+ commensals (53). Importantly, greater 
variation was observed among G+ commensals in modulating 
DC responses, compared with less variation among G− com-
mensals (53). Thus, the distinct ability of G− bacteria such as 
EcN in modulating frequencies and functions of DCs may have 
beneficial impacts on induction of protective immunity against 
pathogens.

In our recently published study (32), we observed higher NK 
cytotoxic function and increased frequencies of pDCs in EcN 
colonized compared with LGG colonized or uncolonized piglets. 

The enhanced NK cell activity coincided with higher serum IL-12 
levels in vivo in EcN colonized piglets (Figure 1) and also DC 
production of IL-12 in vitro (32). Similar to our studies, treat-
ment of murine bone marrow-derived DCs (BMDCs) with EcN 
resulted in induction of IL-12 and IL-10 cytokines and induction 
of activation markers in BMDCs (70). In the same study, EcN 
administration reduced the development of allergen-specific Th2 
responses (70). Thus, our results showed that NK cell function 
can be modulated by probiotics, and more importantly, only 
G− EcN but not G+ LGG, enhanced NK  cell function. These 
findings were further corroborated by an earlier study in which 
the germ-free condition impaired the priming of NK cell func-
tion by microbial ligands (71). Further, the reduced NK  cell 
function in microbiota-depleted mice was correlated with higher 
mouse cytomegalovirus titers post-viral challenge (71). A recent 
study (72) also showed the potential role of the outer membrane 
vesicles from EcN in induction of IL-22 cytokine responses. 
IL-22, along with IFN-λ, has been shown to effectively reduce 
RV replication in a mouse model (66). These results underscore 
not only the importance of intestinal commensals in regulating 
innate immunity against viral infections, but also the differential 
abilities of distinct known G+ or G− probiotics in regulating 
innate immune cells.

interactions between Commensals and 
viruses That Alter Their Pathogenesis
Direct interactions between viruses and bacteria are being 
increasingly investigated in recent studies (73–75). Specifically, 
direct binding of commensal microbiota is associated with 
either increased or decreased viral infections (76). The ability of 
mouse mammary tumor virus to bind with LPS was associated 
with increased virus pathogenicity (77). Similarly, poliovirus 
stability and viral attachment to target host cells were also 
enhanced by interaction with bacterial LPS or peptidoglycan 
(78). Further, EcN binds to HRV ex vivo but no such inter-
action was found between LGG and HRV (31). Also, in this 
study, prior treatment of epithelial cells with EcN, but not LGG, 
resulted in a significant reduction in the epithelial attachment 
of HRV in vitro. Further studies are required to elucidate the 
potential role of physical interactions between EcN and viruses 
in terms of altering the course of viral infection and patho-
genicity. Expression of histo-blood group antigens (HBGA) 
was observed in some G− intestinal commensal bacteria (79) 
and certain of those HBGA-expressing bacteria were shown 
to enhance (73) enteric viral infection. Considering the direct 
interactions between the commensals and pathogens, any 
disturbances in microbiota compositions may lead to altered 
susceptibility or resistance to a particular enteric pathogen. 
Thus, further studies are required to assess whether any differ-
ence exists between G+ and G− bacteria in binding properties 
with various enteric viruses and the impact on the course of 
viral pathogenicity.

CONCLUSiON

Comparison of the beneficial effects of G+ and G− probiotics and 
intestinal commensals indicated that the selected G− probiotic 
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had higher beneficial effects in inducing protective immunity 
against enteric pathogens such as HRV as compared with the 
selected G+ probiotics in humans and animal models. In our 
simplified in  vivo Gn piglet model system, it appears that the 
induced beneficial effects of G− EcN against HRV disease may 
be accomplished by the integrated interaction of DCs, NK cells, 
and immunoglobulins as well as direct binding of EcN to virus 
(Figure 1). Most of the initial studies showed that G− probiotics 
have higher immunostimulatory effects and better protective 
effects against HRV as compared with G+ probiotics. It remains 
to be determined whether these findings can be generalized to all 
G− commensals. Further, the potential ability of different G+ and 
G− probiotics to alter the composition as well as functionalities of 
the intestinal microbiota, and the consequences of these changes 
on microbial infections and vaccines is unclear. Identification of 
the essential components of probiotics that induce the beneficial 

effects against pathogens may also be useful in identifying probi-
otics or their products as novel adjuvants for vaccines.
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