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Background: The association between motor-related cortical activity and peripheral

stimulation with temporal precision has been proposed as a possible intervention

to facilitate cortico-muscular pathways and thereby improve motor rehabilitation after

stroke. Previous studies with patients have provided evidence of the possibility to

implement brain-machine interface platforms able to decode motor intentions and use

this information to trigger afferent stimulation and movement assistance. This study

tests the use a low-latency movement intention detector to drive functional electrical

stimulation assisting upper-limb reaching movements of patients with stroke.

Methods: An eight-sessions intervention on the paretic arm was tested on four chronic

stroke patients along 1 month. Patients’ intentions to initiate reaching movements were

decoded from electroencephalographic signals and used to trigger functional electrical

stimulation that in turn assisted patients to do the task. The analysis of the patients’ ability

to interact with the intervention platform, the assessment of changes in patients’ clinical

scales and of the system usability and the kinematic analysis of the reaching movements

before and after the intervention period were carried to study the potential impact of the

intervention.

Results: On average 66.3 ± 15.7% of trials (resting intervals followed by self-

initiated movements) were correctly classified with the decoder of motor intentions.

The average detection latency (with respect to the movement onsets estimated

with gyroscopes) was 112 ± 278ms. The Fügl-Meyer index upper extremity

increased 11.5 ± 5.5 points with the intervention. The stroke impact scale also

increased. In line with changes in clinical scales, kinematics of reaching movements

showed a trend toward lower compensatory mechanisms. Patients’ assessment

of the therapy reflected their acceptance of the proposed intervention protocol.
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Conclusions: According to results obtained here with a small sample of patients, Brain-

Machine Interfaces providing low-latency support to upper-limb reaching movements in

patients with stroke are a reliable and usable solution for motor rehabilitation interventions

with potential functional benefits.

Keywords: electroencephalography, motor-related cortical potentials, event-related desynchronization, functional

electrical stimulation, stroke, neurorehabilitation

INTRODUCTION

Upper-limb function recovery after a stroke is in many cases
insufficient despite intensive physical therapy. In order to actually
get meaningful functional changes in these patients, it has been
suggested that traditional physical therapies need to be paralleled
with brain modulation interventions aimed to guide plastic
changes in the brain (Belda-Lois et al., 2011).

Experimental neuromodulation paradigms using
electrophysiological acquisition and stimulation techniques
to produce long-term plastic changes at supraspinal and spinal
levels have been proposed to treat motor dysfunction in stroke
(Lefaucheur, 2006; Daly and Wolpaw, 2008). Among these,
paradigms using Brain-Machine Interfaces (BMI) linking
cortical motor-related activity with afferent information from
limbs have been used to efficiently induce cortical plastic changes
in healthy subjects (Xu et al., 2014b; Kraus et al., 2015) and in
patients (Ramos-Murguialday et al., 2013; Várkuti et al., 2013).

The electroencephalographic (EEG) activity over the
premotor and motor cortical areas presents characteristic
variations in the periods before self-initiated movements. Two
main motor related EEG patterns are known to reflect mental
states related to motor planning and execution processes: the
Bereitschaftspotential (BP; Shibasaki and Hallett, 2006) and the
Event-Related Desynchronization (ERD; Pfurtscheller and da
Silva, 1999). ERD and BP have been used in BMI experiments
aimed to improve motor neurorehabilitation (Bhagat et al., 2016;
Grimm et al., 2016; Lopez-Larraz et al., 2016). Previous studies
have used these cortical patterns to detect the onset of voluntary
movements in healthy subjects with temporal precisions of
200–500 ms with respect to the onset of muscle activations in
the limbs (Lew et al., 2014; Xu et al., 2014a). The possibility
of identifying this information of motor intentions allows
establishing a tight temporal association of movement-specific
cortical activations with proprioceptive afferent feedback from
the moved limbs for rehabilitation purposes. Based on this idea,
previous studies conditioned the cortico-muscular descending
tract to the lower-limbs in control subjects and stroke patients
by temporally associating motor intentions to perform analytical
ankle movements with electrical or mechanical stimuli (Xu
et al., 2014b). These studies showed that significant plastic
changes were visible after a single session intervention if small
latencies between the cortical activations and the peripheral
stimuli were maintained. Moreover, this intervention concept
has proven to be potentially beneficial for stroke rehabilitation
(Mrachacz-Kersting et al., 2016, 2017).

Mostly, studies of low-latency detectors of motor intentions
with the upper limb have only been carried out in offline

conditions. Moreover, no interventions so far have tested BMI
platforms decoding pre-movement BP and ERD patterns online
in patients with brain damage due to a stroke. While BP
detections online in healthy subjects doing ankle dorsiflexions
have demonstrated to be reliable for BMI approaches, BPs
in upper-limb movements (Hadsund et al., 2016; Martínez-
Expósito et al., 2017), and specially in stroke patients (Daly
et al., 2006) present particularities that make them less reliable
for BMI applications, which may limit their usability in BMIs.
Recently, it was demonstrated that an appropriate combination
of BP- and ERD-based classifiers could lead to reliable and
low-latency estimation of stroke patients’ upper-limb motor
intentions (Ibáñez et al., 2014a,b). In addition, it was shown
that the use of Functional Electrical Stimulation (FES) can assist
patients to perform functional complex (multi-joint) movements
(Resquin et al., 2016). Here it is hypothesized that, in patients
with a stroke and chronic arm motor dysfunction, the possibility
of timely matching motor intentions with FES assisting specific
motor functions opens a window for targeted neuromodulation
interventions aimed at improving function-specific motor neural
circuits. The simultaneous neuromodulation of ERD and BP
phenomena might induce changes in cortical activity related
to both motor planning and execution, unlike the existent
approaches, thus boosting neurorehabilitation. To achieve this,
it needs to be assessed the feasibility and impact of EEG-based
(ERD + BP) low-latency decoder of motor intentions triggering
FES in upper-limbs in patients along a certain period of time.

In this study, the ability of a BMI system to assist upper-
limb functional movements of stroke patients based on their
pre-movement cortical changes decoded online and on a single-
trial basis was tested for the first time. Moreover, the study
reports results of a multisession intervention (eight sessions
during 1 month) using FES to assist upper-limb reaching
movements of four chronic stroke patients when EEG-based low-
latency estimations of motor intentions are detected. The BMI
system performance, patients’ functional changes as well as their
subjective reports regarding the received intervention are used to
discuss on potential benefits of the proposed intervention.

MATERIALS AND METHODS

Patients
Four chronic stroke patients (age 54 ± 12 years, mean ±

SD; all males) with a lesion in the territory of the middle
cerebral artery and a predominance of brachial hemiparesis
were recruited for this study (see details in Table 1). Patients
met the following inclusion criteria: (i) ability to manipulate
most objects; (ii) spasticity less than or equal to two in the
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TABLE 1 | Patients’ clinical data.

Pat. Code Age Gender Stroke type Upper limb affected Years since stroke Fügl-Meyer index Stroke impact scale Rh. sessions /week

P1 54 Male Ischem. L 3 61 64 2

P2 54 Male Hemorr. R 4 83 66 2

P3 69 Male Hemorr. L 4 65 44 0

P4 40 Male Hemorr. L 5 81 73 2

Modified Ashworth Scale; (iii) ability to understand instructions
and actively participate in tasks. Patients with cognitive
decline, sensory aphasia, visual impairment, behavioral disorders,
articular rigidity, irreversible contractures and dysmetria, and
those who had been treated with botulinum toxin or baclofen
<6 months before the start of the study were excluded from the
study.

The experimental protocol for this study was approved by
the Ethical Committee of the “Universidad Rey Juan Carlos”
(Alcorcón, Spain) and warranted to be in accordance with the
Declaration of Helsinki. All patients signed a written informed
consent.

Study Protocol
All experiments were carried out in a sound- and light-attenuated
ward of a clinical university. During BMI interventions, patients
were seated on comfortable seats and with their arms resting on
a desk and movements were performed with the affected upper
limbs of the patients.

Patients participated in 10 sessions carried out in different
days during 1 month (see Figure 1). The whole intervention
with each patient consisted of eight BMI-FES sessions (two
sessions per week). Two additional sessions, right before and
after the intervention phase, were scheduled to assess patients’
functional evolution and their subjective evaluation of the
received intervention (the latter only being carried out at the end
of the whole process).

Assessment Sessions
Clinical Scales
Clinical experts performed functional tests in the first and last
sessions to analyse possible patients’ improvements.

Upper-extremity sensorimotor function was assessed using
Fügl-Meyer Assessment for Upper Extremities (FMA-UE).
The four domains evaluated included: upper-extremity motor
function (maximum score = 66), sensory function (maximum
score = 12), passive joint motion (maximum score = 24), and
joint pain (maximum score = 24). Items were scored on a 3-
point ordinal scale from 0 (cannot perform) to 2 (performs fully).
Summative scores were generated for each domain, scores ranged
between 0 and 126 (Duncan et al., 1992; Wagner et al., 2008).

The Stroke Impact Scale 16 (SIS-16) was used to assess
patients’ health status following stroke. Duncan et al. (2003)
developed the SIS-16 to assess physical function in patients with
stroke using items from the composite physical domain of the
Stroke Impact Scale (SIS) version 3.0. The SIS-16 can differentiate
lower levels of disability. The SIS-16 consists of 16 items: seven

activities of daily living items, eight mobility items, and a single
hand function item. Each item is rated in a 5-point Likert scale in
terms of the difficulty the patient has experienced in completing
each item. Summative scores are generated for each domain.
Scores range from 16 to 80 (Duncan et al., 2003).

Kinematics Analysis
To analyse kinematics, patients performed five repetitions of
the reaching task while being measured with a motion capture
platform based on the optoelectronic system Vicon Motion
(Oxford Metrics, Oxford, UK). Patients sat on a comfortable
chair close to a desk. The patient-to-desk distance was 8-10
cm and the angle of the chair was 90◦–100◦. In the starting
position the patient’s trunk rested firmly against the back of the
chair. Patients were asked to put their hands on the desk (palms
down) with shoulder at around 20◦ of abduction and elbow at
around 95◦ of flexion. A hard plastic glass (diameter = 5.5 cm,
height = 15 cm) was used as target. The glass was placed on
the desk in line with the patient’s sternum and at a distance
equal to 75% of the maximum reachable distance with the paretic
arm.

Patients were instructed to reach the glass from the starting
position using their paretic hand. All patients practiced the
reaching task before motion capture trials. Once this phase was
completed, a static calibration recording was performed. Using
this recording, it was checked that each marker was visible from
the scanning cameras and analyzed movements were registered.
In these, after the verbal instruction “Get ready...go,” patients had
to lift the arm and reach and grasp the glass at a comfortable
speed (similar to the one used in the BMI-FES interventions).
Three seconds after reaching the target patients had to move back
to the initial position. The time needed to perform the movement
was defined as the time interval between the hand movement
onset until the hand reached the glass. We analyzed the
shoulder, elbow and thorax positions when the hand reached the
glass.

Satisfaction Assessment
We evaluated patients’ perceived comfort and acceptability of
the BMI-FES platform. Five items are rated on a Likert-type
scale from 1 to 5 (strongly disagree—strongly agree): (1) “you
are satisfied with the intervention”; (2) “this intervention has
been useful in order to carry out activities of daily living”; (3)
“you would recommend this intervention to other subject in the
same situation”; (4) “The instrumentation is uncomfortable.” The
arithmetic mean across all items provides the total satisfaction
score.
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FIGURE 1 | Structure of the intervention carried out with each patient.

Intervention Sessions
BMI-FES Platform
During the intervention sessions movements of the paretic
arm were measured with solid-state gyroscopes, which allowed
easy and robust recordings of transitions between resting
and movement phases (Ibáñez et al., 2014a). Two gyroscopes
(Technaid S.L., Madrid, Spain) were placed on the distal third of
the forearm, and themiddle of the arm. Data were sampled at 100
Hz and stored in a PC running a real-time OS (QNX Software
Systems, Ottawa, Canada).

EEG signals were recorded from 31 positions (AFz, F3, F1, Fz,
F2, F4, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6,
CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, P4, PO3, PO4, and
Oz, all according to the International 10–20 system) with active
Ag/AgCl electrodes (Acticap, Brain Products GmbH, Germany).
The reference was set to the voltage of the earlobe contralateral
to the arm moved. AFz was used as ground. The signal was
amplified (gUSBamp, g.Tec GmbH, Austria) and sampled at 256
Hz. A standard PC was used to acquire and process the EEG
data using a custom-made Simulink model (TheMathworks Inc.,
NatickMA, USA). This PC sent digital signals to the real-time PC
using a USB DAQ (USB-6008, National Instruments, Austin TX,
USA).

FES was delivered at the anterior deltoids, triceps and wrist
extensors with a multichannel monopolar neurostimulator with
charge compensated pulses (UNA Systems, Belgrade, Serbia).
Traditional surface electrodes (Pals Platinum—rectangle 5 ×

5 cm) were used. The common electrode was located on the
oleocranon. Pulse width and frequency were set to 350 µs and
30 Hz, respectively. FES current was adapted in each session
with each patient to achieve comfortable stimulation levels that
elicited muscle contractions. Current values ranged between 20
and 50 mA (depending on the motor threshold of each muscle
and to the patients’ acceptance of the received stimulation).
Due to the FES configuration and to the weight of the patients’
arms, FES alone was not able to lift the arm unless it was
successfully triggered by the BMI when patients attempted to

perform the reaching task (in which case it provided assistance
to the attempted movement). The stimulator was controlled by
the PC storing gyroscopic data, which in turn received activation
commands from the computer recording the EEG activity via
a digital signal. Each time FES was activated it was done in a
sequential manner (first deltoids and 250 ms later triceps and
wrist extensors) so that the arm could first be lifted from the table
and then extended toward the target.

EEG-Based Detection of the Motor Intentions with

Low Latencies
The classifier used to detect movement intentions from EEG
was based on the one presented in Ibáñez et al. (2014a). A
logistic regression was used to detect the onset of the voluntary
movements based on the characterization of the ERD and BP
cortical patterns observed in patients (Figure 2).

Detection of the onsets of movements from gyroscopes
Locations of onsets of voluntary movements were estimated
based on the gyroscopic signals. For this, gyroscopic recordings
were low-pass filtered (Butterworth, order 3, <10Hz). For
each patient, the sensor that first showed changes during the
execution of reaching movements (between the one placed on
the forearm and the one on the arm) was used. The peak
amplitude performing the movements was estimated in each
session. A threshold amplitude for the detection of the onsets
of the movements was set to 5% of this peak amplitude. Finally,
visual correction of the detected onsets was carried out to ensure
that involuntary and residual movements were not taken into
account for training and BMI validation purposes.

Feature extraction
EEG signals recorded in the pre-intervention calibration trials
in each session were used to extract the best features for the
posterior online decoder.

For the ERD detection, band-pass filtering (Butterworth, 3th
order, 6 Hz < f1, 35 > f2) and small Laplacian filtering were
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FIGURE 2 | Movement onset decoder scheme. Left, calibration; Right, online decoding.

applied to the EEG signal. Power values in segments of 1.5 s
and in the frequency range 7–30Hz (with steps of 1 Hz) were
obtained from the frontal, fronto-central, central, centro-parietal,
and parietal channels. The Welch’s method was used to get
power estimations (Hamming windows of 1 s; 50% overlap).
The estimations in the training trials from –3 to –0.5 s (with
respect to the movement onsets) were labeled as examples of the
resting state. Estimations at the movement onsets were labeled
as examples of the movement state. The Bhattacharyya distance
was used to select the 10 best channel-frequency pairs to build the
classifier, i.e., the 10 with the largest distance between the resting
state and the movement onset estimations.

For BP, a Butterworth low-pass filter (1 Hz> fc, 1st order) was
applied to extract the low-frequency components of EEG signals.
A modified version of the large laplacian filter using as reference
the average information from eight peripheral channels in the
EEG electrode layout was used in order to minimize the weight of
individual reference channels (Ibáñez et al., 2014a). Three virtual
channels were generated by subtracting the average recordings
of channels F3, Fz, F4, C3, C4, P3, Pz, and P4 to channels C1,
Cz, and C2. These three de-referenced central channels were
considered since the late part of the BP typically presents a

lateralization in upper-limb movements (Shibasaki et al., 1980)
and the spatial distribution of motor cortical activations in stroke
patients may be altered due to their brain lesions (Serrien et al.,
2004). The average BP of the resulting channels was obtained
using the training data. The channel showing the highest
peak at the movement onset relative to the average amplitude
in the interval [−3,−2] s (with respect to the movement
onset) was selected for BP-based detection of movement
onsets.

Classifier construction
Anaïve Bayes classifier of independent features was used to detect
the ERD pattern preceding the onset of the reaching movements
by using 10 channel-frequency pairs previously selected.

Amatched filter of length 1.5 s was designed using the selected
channel for BP detection. The filter was obtained by removing the
baseline level (first 500 ms) of all 1.5 s trials in the training dataset
and then averaging the BPs.

To train the logistic regression classifier that combined
ERD- and BP-based estimations of motor intentions, training
examples of the resting condition were taken from outputs of
both classifiers (ERD and BP) between −3 s and −0.5 s, and
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estimations between ± 125ms with respect to the onsets of
movements were used to model the movement state.

Online decoding
In the online decoding phase, the logistic regression classifier
generated estimations of movement intentions every 100ms.
The decoder yielded a binary output depending on whether the
probabilistic output from the logistic regression classifier was
over or under a certain threshold, which in turn activated the
FES. The threshold was obtained from the training dataset and,
if needed, it was further adjusted based on the reports of the
patient in a few number of pre-intervention calibration trials. The
threshold was initialized following the criterion of maximizing
the percentage of good trials (GT), i.e., trials with a true positive
(TP), and with no false positives (FP). TP were movements
detected by the BMI with a detection latency within the range of
±750 ms with respect to the reference onsets estimated with the
gyroscopes. EEG-based movement intention detections during
resting phases were considered FPs. The precision of the detector
was characterized by computing the number of FP per minute
(FP/min). The percentage of GT was obtained by counting the
amount of trials with no FP and a TP. Finally, latencies of the
TP with respect to the onsets of movements were computed to
analyse the temporal accuracy of the system. The definition of all
these metrics is further elaborated in Ibáñez et al. (2014a).

To achieve a stable BMI system, outputs of the BMI were
processed by a block ensuring that consecutive FES stimuli were
separated by at least 5 s of time.

BMI-FES Intervention and FES Configuration
Once the BMI system had been calibrated, the intervention
phase of the session begun. Patients performed 60–80movements
assisted with FES triggered by the BMI. The specific amount
of trials performed in each session depended on the patients’
arousal and their willingness to continue. Patients were allowed
to rest and talk in the middle of the sessions if they needed
to. Throughout the intervention trials, patients were asked to
concentrate and have the FES activated with their movements.

Each time a trigger from the BMI was received by the PC
controlling the FES system, the stimulation pattern described in
Section BMI-FES Platform was triggered.

Validation of the BMI Performance
In order to validate the performance of the EEG-based decoder
of motor intentions during the interventions, the GT and the
detection latencies during the intervention trials were computed.
To facilitate the evaluation of the BMI system, patients were
instructed not to perform movements when FES stimulation
arrived before they have planned to start the movement. The
times at which FES stimuli were triggered were compared to the
onsets of movements according to the data from gyroscopes.

Statistical Procedures
All statistical analyses were performed using SPSS 17.0 (IBM
Corp., New York USA) and Matlab2011 (The Mathworks Inc.,
NatickMA,USA). Due to the small sample size, Shapiro-Wilk test
was applied to check normality of BMI performance and clinical

scores. Given that all analyzed samples violated the statistical
normality, Wilcoxon signed-rank test was used to compare the
clinical scales scores before and after the intervention. The
Friedman test for repeated measures was used to compare the
BMI performance scores between sessions. Only the sessions with
data from all patients were included in the analysis. A linear
least square fitting was applied to estimate the tendency of the
BMI performancemeasures along sessions, obtaining the squared
error R2 and the gradient of the linem.

All results are reported as the mean ± SD, and considered
significant if P < 0.05.

RESULTS

Patients’ ERD and BP
ERD and BP patterns were used by the BMI platform to control
FES assistance. Figure 3 shows the average (across sessions) ERD
and BP patterns of each patient taking part in the experiments.
Fieldtrip’s ft_multiplotER and ft_multiplotTFR functions were
used to obtain the patterns (Oostenveld et al., 2011). As shown
in the figure, there is a large variability between patients in terms
of the magnitude of the ERD and BP patterns and in terms of
their spatial, frequency, and temporal distributions. In all cases,
ERD and BP start before the onset of the movements. In addition,
it is observed that in all cases, the BP minimum peak is delayed
several hundreds of milliseconds with respect to the movement
onset. Neither the laterality nor the degree of change of the
ERD/BP patterns showed a correlation with the patients’ upper
limb function.

BMI Performance
Average percentages (across sessions) of GT for P1, P2, P3, and
P4 were 67.4 ± 15.5, 52.8 ± 6.7, 81.1 ± 12.1, and 66.1 ± 14.8%,
respectively (left panel in Figure 4). In the best session for each
patient (green bars in the left panel of Figure 4), GT results
were 80.9% (P1), 64.4% (P2), 91.7% (P3), and 81.2% (P4). The
average TP rate and number of FP per session (considering all
stored sessions and patients) were 71.1 ± 19.5% and 8.1 ± 4.9
FP/session, respectively. No statistically significant differences in
any measure were found between sessions for all patients [GT:
χ
2
(5)

= 5.875, p = 0.320; TP: χ2
(5)

= 4.000, p = 0.549; FP: χ2
(5)

=

5.109, p= 0.403].
Results improved along sessions in three cases (see Table 2).

TP and GT showed an increasing tendency along sessions for all
patient, especially P1, P4, and less markedly in the first sessions of
P2. On the contrary, FP showed increasing tendency for P1 and
P2 and decreasing for P3 and P4 (see Table 2).

The average detection latencies (considering all sessions) were
202 ± 266 ms (P1), 130 ± 316 ms (P2), 3 ± 190 ms (P3), and
103± 254ms (P4). No pair of sessions differed statistically in the
average detection latency [χ2

(5)
= 7.587, p= 0.164].

A tendency toward smaller detection latencies could be
observed in all patients (P3, P4, and less in P1, P2) when analysing
the evolution along the different sessions (Table 2; right panel,
Figure 4).

Unsuccessful results of the BMI-FES intervention were only
observed in the sixth session with patient P2 (unreliable
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FIGURE 3 | Patients’ ERD (8–30Hz) and BP (0.05–1Hz) patterns. To optimize visualization, baseline was defined within [−3,−2] s and [−5,−3] s for BP and ERD,

respectively. Average referencing was used for BP. Small Laplacian filters were used for ERD. BP and ERD of the most reactive EEG channels are shown in rows 1

and 3.

estimations of motor intentions were generated in that case). As
a result of this unreliable BMI function, this intervention session
was interrupted since the patient reported an uncomfortable
interaction with the FES.

Figure 4 also includes information on how patients were
able to control the BMI-FES interface by performing imaginary
instead of actual movements (left panel, blue bars). This
condition was tested at the end of the experimentation to
ascertain that motor-related activity was robust enough to
trigger FES regardless of whether it was accompanied by overt
movements. In all cases, GT for motor imagery condition were
similar but lower than GT for non-imagined movements.

Changes in Functional Scales
Table 3 summarizes the observed changes in the two evaluated
functional scales (FMA-UE and SIS) after the intervention
period. The FMA-UE score increased in 11.5 points after the
intervention, with increases in all patients being observed. All
patients showed improvements in the passive range of motion
and sensation in FMA-UE scores. In addition, three patients
(P1, P2, and P4) showed increases in motor function scores.
The SIS score presented an average 10.5 points increase after the
intervention. No significant differences in any of the two scales
were observed (p = 0.114 and Z = −1.826 for SIS changes; p =

0.068 and Z = −1.461 for FMA-UE).

Analysis of the Kinematics
Table 4 reports joint positions (degrees) when the affected
hand reached the glass during the kinematics assessments. On
average, after the interventions shoulder flexion was slightly

increased (0.7◦) and shoulder abduction was reduced (5.45◦).
Additionally, elbow and thorax flexion were reduced (2.09 and
4.97◦, respectively). There were no significant differences after
the intervention in any of the joint angular rotations measured (p
= 0.465 and Z = −0.730 for shoulder and elbow flexion changes;
p = 0.273 and Z = −1.095 for shoulder abduction changes, p =
0.068 and Z = −1.826 for thorax flexion changes).

Usability Assessment
The perceived comfort and acceptability of the intervention
platform proposed here varied across patients. Three patients
(P1, P2, P3) “agreed or strongly agreed” with the intervention,
while P4 “neither agreed nor disagreed” with it. One patient (P2)
reported that the intervention was useful in order to carry out
activities of daily living (“strong agreement”), but the other three
patients reported “strong disagreement” (P3, P4) or “neither
agreement nor disagreement” (P1) in this regard. Regarding
the degree of recommendation of the received intervention; all
participants declared to “agree or strongly agree.” Finally, two
participants (P1 and P4) reported to be in “agreement or strong
agreement” with the instrumentation process carried out during
the intervention; however, the other two participants indicated to
be in “disagreement or strong disagreement.”

DISCUSSION

This study has tested for the first time the ability of a BMI system
to assist upper-limb functional movements of stroke patients
based on their pre-movement cortical changes decoded online
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TABLE 2 | Linear least square fitting parameters (m, slope; R2, squared

error) of the BMI performance measures along sessions.

Pat. Code TP FP GT Latency avg.

m R2 m R2 m R2 m R2

P1 5.54 0.460 1.21 0.480 4.50 0.388 −4.99 0.016

P2 1.88 0.397 0.61 0.166 1.06 0.157 −4.13 0.043

P3 0.25 0.001 −0.37 0.029 0.89 0.029 −10.09 0.125

P4 5.64 0.506 −1.66 0.434 4.80 0.564 −38.79 0.636

and on a single-trial basis. Such use of anticipatory EEG activity
allows the timely assistance of patients during the motor tasks
performed. The study aimed to evaluate the usability of the
proposed technology and its potential effects when applied in a
prolonged in time intervention. Overall, patients could reliably
control the interface by spontaneously performing movements
and low average detection latencies (<200ms) were obtained.
Moreover, measured FMA-UE changes were higher than the
minimal clinically important difference.

Most BMI interventions involving patients with a stroke
have used synchronous paradigms, that is, patients performed
movements paced by an external signal, and ERD patterns were
used to characterize the movement phases (Ang et al., 2014;
Kraus et al., 2015; Bhagat et al., 2016; Irimia et al., 2016).

This approach allows a more reliable function of BMIs (FP
can be avoided), but it can underestimate the relevance of the
temporal coupling between patients’ intentions of movements
and the perceived afferent feedback. In a series of studies
by Mrachacz-Kersting et al., the temporal association between
motor intentions and peripheral stimuli proved to be relevant
in order to efficiently guide cortical changes related to ankle
movements (Mrachacz-Kersting et al., 2012, 2016). While some
of these studies involved BMI approaches with healthy subjects,
interventions with stroke patients typically used visual cues and
fixed (patient-specific, according to BP) stimulation onsets. Such
offline BMI-like approach is an excellent solution for practical
and robust EEG-based neuromodulation interventions, but it
assumes that movements are always performed in identical
conditions with respect to the external cues, and hinders the
demands on patients for planning movements actively. Being
able to have a BMI system asynchronously providing reliable and
timely estimations of motor intentions allows higher adaptability
to inter-trial changes in movement-related cortical activities
and gives rise to using ecological rehabilitation scenarios where
patients cannot automatize the task performance according to
external guides. In this regard, the present study is an original
attempt to demonstrate the suitability of purely asynchronous
BMIs for motor neurorehabilitation after a stroke.

Importantly, although a small sample is considered here,
results are comparable (and better in some cases) to those
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TABLE 3 | Changes in FMA-UE and SIS between pre- and post-intervention assessments.

Code FMA-UE SIS

Motor function Sensation Passive joint motion Joint pain Total Total

Pre- Post- Pre- Post- Pre- Post- Pre- Post- Pre- Post- Pre- Post-

P1 12 26 9 10 16 16 24 24 61 76 64 74

P2 31 32 7 8 21 24 24 24 83 88 66 79

P3 24 22 10 12 7 24 24 24 65 82 44 63

P4 28 32 9 10 20 24 24 24 81 90 73 73

Avg. ± SD 72 ± 11 84 ± 6 62 ± 12 72 ± 6

Functional scales Before After

FMA-UE 72 ± 11 84 ± 6

SIS 62 ± 12 72 ± 6

TABLE 4 | Analysis of reaching movement kinematics before and after the

intervention (values represent joints’ rotations in degrees).

Joint position (degrees) Before After

Shoulder flexion 43.8 ± 17.7 44.5 ± 18.4

Shoulder abduction 62.5 ± 42.1 57.1 ± 36.6

Elbow flexion 85.1 ± 16.9 83.0 ± 20.2

Thorax flexion 12.1 ± 4.3 7.1 ± 4.1

obtained in previous similar studies with healthy subjects (Ibáñez
et al., 2014a; Xu et al., 2014b; Lin et al., 2016), and are the first
demonstration of an online low-latency BMI system tested with
patients. The average detection latencies obtained in this study
are slightly higher than those obtained in a previous study using
the same EEG-based classifier in patients with stroke (112 ± 278
vs. 35.9 ± 352.3 ms). This is probably due to the fact that the
previous study was carried out offline while this present study
used the BMI online to trigger FES. Since FES was programmed
to support patients’ movements, it likely had a priming effect
on forthcoming movements, i.e., a stimulus arriving when the
patient was about to move but with anticipation would in turn
anticipate the patients’ generation of the intended movement. In
any case, detection latencies were in general low enough in order
to expect facilitatory effects in the motor cortex (Xu et al., 2014b).

Importantly, the potential impact of motor-related artifacts in
the obtained BMI performances, although possible, is estimated
to be small. Muscle artifacts, on the one hand, lead to increases of
the cortical activity in frequencies within the beta band, which
are in the opposed direction to ERD changes learned from
the pre-movement EEG signals in the training stage. On the
other hand, post-movement low frequency components in the
EEG are typically spread along the scalp (which allows spatial
filtering techniques to cancel them) and also they typically start
with positive changes of the EEG amplitudes (Shibasaki et al.,
1980). Furthermore, results obtained with the motor imagery
condition tested in the last intervention session are comparable
(although smaller) to those obtained with actual movements,
which implies that patients with very limited motor capabilities

could have the possibility to interact with the proposed BMI-FES
platform.

Patients’ ERD and BP were marked and started around 0.5–

1 s before movements could be observed from gyroscopes. Both

patterns showed alterations compared to ERD and BP patterns

in healthy subjects in terms of spatial and temporal distributions
and in line with previous findings (Serrien et al., 2004; Daly
et al., 2006; Fang et al., 2007). ERD patterns tended to show
a higher involvement of cortical areas around the vertex (P3
and P4) or of contralesional areas (P2). Regarding the temporal
characteristics, BP in patients showed a delayed peak hundreds
milliseconds after the actual onset of the movement, in line with
previously published studies (Daly et al., 2006). This delayed peak
makes it more challenging to generate estimations of intentions
to initiate voluntary movements with temporal accuracy. In
this study, only the BP part that preceded the movements
and finished at t = 125ms was used to model the movement
intention class. However, the implications of this decision in the
hypothesis that afferent stimulation has to be triggered at the
BP peak are not clear, and therefore further research should be
carried out to describe the role of post-movement BP parts in
patients with stroke. In this study, the validity of the stimuli
timings was given not only by their comparison with the actual
movements (recorded with gyroscopes) but also by patients’
reports indicating that, in most cases, they perceived FES in time
with their attempts to perform the reaching task.

Changes in patients as a result of the intervention were
observed in terms of changes in the BMI performance across
sessions. GT in patients P1, P2, and P4 improved in the first 3–4
sessions, and remained high in P3. In addition, average detection
latencies decreased with sessions in P3, P4, and less consistently
in P2. These results indicate that patients were able to modulate
preparatory cortical activity that released the movements, and
therefore reinforces the idea that asynchronous BMI approaches
as the one here are suited to reinforce and maximize motor
planning in stroke.

Apart from changes in BMI performance, no other
neurophysiological changes are described here. Using ERD
and BP phenomena simultaneously gives raise to the hypothesis
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that the intervention might induce changes in both motor
planning and execution concurrently, contrasting the existing
approaches that singled only one of the former phenomena out.
However, despite changes in EEG due to the intervention period
were explored, no consistent results were found in terms of ERD,
BP, or power in motor cortical rhythms during rest (results not
included here). Such changes, if they exist, should be derived
from a larger sample of patients, given the high intra-patient
variability in EEG information across days (Shenoy et al., 2006).
Changes in cortical excitability derived from non-invasive brain
stimulation are not reported here either. Such changes have
been observed in other neuromodulation interventions with
muscles having large cortical representation areas, but not
with proximal muscles as the ones here stimulated. From the
authors’ perspective, the variability obtained in responses to
brain stimuli targeting proximal upper-limb muscles requires
further investigation in order to use these metrics to validate
BMI systems as the one proposed here.

Regarding functional changes, the analysis of reaching
kinematics led to small but consistent results. Reaching
movements need an adequate range of motion toward thorax
extension, shoulder flexion, and elbow extension. The altered
kinematic of reaching movements in stroke are typically
characterized by compensatory trunk and shoulder movements
(Roby-Brami et al., 2003a,b). Taken together, the positions of
joints observed after the intervention pointed to an improved
reaching movement execution, with higher shoulder flexion
(increased 0.7◦), lower elbow and thorax flexion (2.09 and 4.97◦,
respectively). In addition, patients showed a reduction of 5.45◦

in the compensatory shoulder abduction after the intervention
period. In general, a more symmetrical reaching pattern could be
observed in most cases. Additionally, FMA-UE scores obtained
immediately after the intervention were higher than the minimal
clinically important difference (MCID) established for the FMA-
UE in chronic stroke patients, which ranged from 4.25 to 7.25
points (Page et al., 2012). All participants showed improvements
in the total score in FMA-UE. Improvements were found in
passive joint motion scores, which may be related to the repeated
training of specific movements with assistance. Additionally,
motor function and sensation in FMA-UE scores improved, likely
reflecting a favorable effect of repeated motor activity using FES
to assist upper-limb reaching (Wang, 2007). These results are in
line with previous reports suggesting that combined modulation
of voluntary movement, proprioceptive sensory feedback, and
electrical stimulation can play a relevant role in improving
impaired sensory-motor integration by FES therapy (Hara, 2010).
The SIS-16 after the intervention was also increased in the
patients (10.5 points). This increment was between the MCID
range established for the SIS-16 (9.4–14.1 points; Fulk et al.,

2010). These results point to a positive effect of the intervention
in the participants’ health status.

With respect to the satisfaction assessments, according to
the patients two aspects should be improved in order to carry
out this intervention in further studies. First, it is necessary to
carry out more sessions and more arm movements to achieve
a better learning transfer. Second, the instrumentation has to
be simplified because this aspect may generate fatigue and
discomfort in the participants.

This study was carried out with a small sample of patients.
This implies that, despite consistent changes could be observed
across patients, no statistically significant changes were observed
in the clinical or functional metrics, likely due to the small
statistical power. To demonstrate the benefits of the intervention
proposed here as compared to (or in conjunction with) more
traditional therapies, future studies in line with the present
manuscript should involve larger groups of patients, with sample-
matched control groups and blind assessments to avoid observer’s
bias. Moreover, the analysis of the proposed intervention in
subacute stroke would also be relevant to test if the functional
impact is larger in patients more susceptible to neuromodulation
interventions.

CONCLUSIONS

This manuscript represents an approach to BMI-FES
interventions for the upper limb in stroke patients, exploiting the
predictive properties of EEG signals related to motor processes.
Results show a potentially beneficial effect of the BMI-FES
intervention in terms of clinical scales and kinematic analysis. In
addition, the study demonstrates the suitability of the proposed
EEG-based decoding algorithms for their use with patients.
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