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Motor dysfunction in Parkinson’s disease is believed to arise primarily from pathophysiol-
ogy in the dorsal striatum and its related corticostriatal and thalamostriatal circuits during
progressive dopamine denervation. One function of these circuits is to provide a filter
that selectively facilitates or inhibits cortical activity to optimize cortical processing, mak-
ing motor responses rapid and efficient. Corticostriatal synaptic plasticity mediates the
learning that underlies this performance-optimizing filter. Under dopamine denervation,
corticostriatal plasticity is altered, resulting in aberrant learning that induces inappropri-
ate basal ganglia filtering that impedes rather than optimizes cortical processing. Human
imaging suggests that increased cortical activity may compensate for striatal dysfunction
in PD patients. In this Perspective article, we consider how aberrant learning at corticostri-
atal synapses may impair cortical processing and learning and undermine potential cortical
compensatory mechanisms. Blocking or remediating aberrant corticostriatal plasticity may
protect cortical function and support cortical compensatory mechanisms mitigating the
functional decline associated with progressive dopamine denervation.

Keywords: corticostriatal plasticity, striatopallidal pathway, dorsolateral striatum, cortical compensation, basal
ganglia

As a primary site of dopamine denervation in Parkinson’s disease
(PD) (1–3), pathophysiology in the dorsolateral striatum (DLS,
equivalent to the posterior putamen in primates) is widely believed
to play a central role in motor symptoms associated with disease
progression. In the healthy brain, motor performance relies on
the interaction between automatic (habit) and goal-directed (voli-
tional) control of movement (4). Impairment in DLS function
arising from denervation may induce degradation of automatic,
implicit control of motor movements, and a compensatory shift to
goal-directed, cortical control (4, 5). Accumulating imaging stud-
ies demonstrate that subjects with PD exhibit altered patterns of
cortical activation [reviewed in Ref. (6, 7)]. Although pathophysi-
ological changes related to cortical pathology may also contribute,
it is believed that altered cortical activity reflects compensatory
cortical circuit changes related to striatal dysfunction observed in
early stages of disease progression (7–14). While the focus here
is on cortical compensation, alterations in other circuit activity,
including cerebellar circuits (15, 16), may also play an important
compensatory role in striatal dysfunction.

In this brief perspective, we consider the relationship between
the DLS and cortical function and outline a hypothesis suggesting
that aberrant corticostriatal plasticity under conditions of dopamine
denervation actively degrades cortical processing, gradually under-
mining cortical function and compensatory mechanisms. The
theme of this special topic focuses on plasticity in sensorimotor
circuitry involving the primary motor cortex, M1. The DLS and
M1 are reciprocally modulated through re-entrant cortical basal
ganglia-thalamo-cortical circuits (17, 18). The concepts described

will refer to cortex and basal ganglia generally as our focus is the
broader architectural and functional relationship between these
two neural structures composing a circuit.

THE DORSOLATERAL STRIATUM: OPTIMIZING CORTICAL
ACTIVITY
As the primary input nucleus of the sensorimotor cortico-basal
ganglia loop (19), the DLS of the basal ganglia contributes to
motor learning and execution (20–24). Associated with stimulus-
response learning, the DLS is believed to be a primary substrate
for the development of automaticity associated with implicit, pro-
cedural learning, particularly sequencing, critical for the fluid
execution of complex motor actions [reviewed in Ref. (25)]. M1
exhibits intrinsic activity-dependent synaptic plasticity, important
for motor skill and sequence learning (26). This activity is shaped
by both intracortical afferents and basal ganglia efferents (27).

The basal ganglia are comprised of GABAergic medium spiny
neurons (MSNs) of the striatonigral (direct) and striatopallidal
(indirect) projections. These striatal projections modulate inhi-
bition of cortical activity through the output nuclei of the basal
ganglia that provide tonic inhibition of excitatory thalamocortical
projections (17, 18). In turn, cortical glutamatergic afferents on
striatal MSNs can activate the striatonigral or striatopallidal path-
ways, disinhibiting or inhibiting cortical activity, respectively [(28,
29); Figure 1A]. The responsiveness of striatonigral and striatopal-
lidal MSNs to specific cortical synaptic inputs can be modulated
through synaptic strength (Figure 1B). Increased synaptic strength
is commonly defined by the emergence of long-term potentiation
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Beeler et al. Aberrant corticostriatal plasticity and cortical function

FIGURE 1 | Simplified schematic of cortico-basal ganglia circuitry and
corticostriatal filtering of cortical activity. (A) Dual corticostriatal
architecture showing the direct and indirect pathways that express D1 and
D2 dopamine receptors, respectively. Arrow colors reflect excitatory and
inhibitory neurotransmitters. (B) Schematic diagramming selective
facilitatory and inhibitory corticostriatal learning. LTP and LTD in the
striatonigral and striatopallidal pathways, respectively (middle panel),

facilitate cortical activity while the converse (LTD in striatonigral and LTP in
striatopallidal) inhibit cortical activity. Green/red arrows represent
striatonigral direct and striatopallidal indirect pathways, respectively.
Direction of plasticity (LTP vs. LTD) colored red/green to indicate functional
facilitation/inhibition of cortical throughput. The size/intensity of green circles
represent the increase/decrease in activity of a synapse-specific cortical
afferent induced by basal ganglia modulation.

(LTP) and decreased synaptic strength by long-term depression
(LTD). For example, a specific cortical synaptic input may be
potentiated (LTP) at striatonigral disinhibitory MSNs while a cor-
tical synaptic input on striatopallidal inhibitory MSNs is depressed
(LTD), leading to the combined facilitation of cortical activity
(30–34). Increasing evidence supports bidirectional plasticity at
corticostriatal synapses (35–41), suggesting the opposite pattern
can arise as well. For example, a specific cortical synaptic input
might be potentiated, increasing striatopallidal MSN activity in
response to that input and increasing cortical inhibition. The basal
ganglia, through selective synaptic potentiation and depression,
facilitate particular cortical activities while inhibiting others, thus
filtering cortical activity through cortico-basal ganglia-thalamo-
cortical loops. While the precise function of this filter remains
subject to debate, it is hypothesized that the purpose of this basal
ganglia filter is to select one action and suppress others (29, 42). An
alternative view is that the basal ganglia, by selectively facilitating
productive, task-relevant cortical activity and suppressing non-
productive and/or irrelevant activity, optimizes cortical processing
to increase speed and efficiency.

DOPAMINE REGULATES CORTICAL FILTERING THROUGH THE BASAL
GANGLIA
Bidirectional corticostriatal plasticity is regulated by dopamine
(31, 33, 34, 37, 43), widely believed to encode positive and neg-
ative reward prediction errors (RPEs) by firing bursts of action
potentials or pausing tonic activity, respectively (44, 45). This RPE
provides a teaching signal indicating positive and negative (bet-
ter or worse than expected) outcomes. By regulating bidirectional
corticostriatal synaptic plasticity, a dopamine-mediated teaching
signal selectively enhances or diminishes cortical inputs associ-
ated with positive and negative outcomes, respectively. Through

dopamine regulation, corticostriatal plasticity can selectively fil-
ter and highlight cortical activity determined to be relevant and
beneficial (Figure 2, top). The net result is that cortical activity
that is productive and yields a positive outcome will be selectively
processed and amplified to complete a motor task.

ABERRANT PLASTICITY AND LEARNING: INVERTING
OPTIMIZATION
Increasing evidence suggest that reduced dopamine may shift cor-
ticostriatal plasticity in striatopallidal synapses favoring LTP rather
than LTD, inverting plasticity such that conditions that would nor-
mally yield LTD produce LTP instead (38–41). The net effect of
this would be that everywhere a cortical afferent should be dis-
inhibited it would, instead, be further inhibited. Such a shift or
inversion in the directional control of plasticity – the aberrant
learning hypothesis – would transform an optimizing substrate
into an “anti-optimizing” one that impedes rather than facilitates
responding (25, 41, 46–48). Aberrant learning, then, transforms
the basal ganglia that normally functions to filter and facilitate
cortical activity into a disruptive filter that impedes motor activity.

Aberrant learning arising from reduced striatal dopamine con-
tributes significantly to impaired motor performance over and
above the direct motor effects of diminished dopamine (41,
48). The correction of aberrant learning and abnormal corti-
costriatal plasticity may represent an important component of
L-DOPA treatment in PD and underlie the poorly understood
long-duration response (LDR), where the benefits of dopamine
replacement on motor performance persists beyond the pharma-
cokinetic half life of L-DOPA (25, 41, 48–50). Given the number
of potential modulators of synaptic plasticity within the stria-
tum, that include but are not limited to adenosine, glutamater-
gic and cholinergic neurotransmission, decreasing inappropriate
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FIGURE 2 | Role of corticostriatal plasticity and learning in basal
ganglia filtering of cortical activity. (top) Conceptual illustration of basal
ganglia filtering of cortical activity through corticostriatal plasticity and
learning. The naïve, pre-learning state is represented in the left panel and
processing through the basal ganglia is undifferentiated (gray arrow loop).
After appropriate corticostriatal learning (middle panel), task-related
elements are sharpened and highlighted (racquet, ball, arm, other players),
represented in the corticostriatal loop as a combination of facilitation and
inhibition with strong, task-relevant facilitation (sharp, dark green arrow
loop). Under aberrant learning (right panel), inappropriate LTP in the
inhibitory striatopallidal pathway induces inappropriate inhibition (red
shaded arrow loops) and diminished facilitation (green shaded arrow loops)
in the corticostriatal filter causing task-related elements become
increasingly noisy and less distinct against background compared even to

naïve processing (left panel). (bottom) Schematic showing rudimentary
architecture for basal ganglia filter of cortical activity highlighting the
general loop architecture. Large green arrows represent cortical inputs to
the striatum and re-entrant projections returning to the cortex via the
thalamus. The intrabasal ganglia circuitry has been collapsed to highlight
the basic loop architecture. The cortical schematic has been expanded to
represent the two primary intracortical information flows mediating action
selection and motor control. The left cortical box represents traditional
frontal motor control where information flows rostral to caudal from the
prefrontal cortex to M1. The right cortical box represents parietal
processing where information flows caudal to rostral mediating
sensorimotor transformations specifying movements. These two are
intricately interconnected, represented by reciprocal gray arrows. Image
used in top panel licensed from Polka Dot Images/Thinkstock.

potentiation at corticostriatal synapses in the striatopallidal path-
way may serve as an important therapeutic target for facilitating
motor learning and recovery of function in PD. For example,
correction of aberrant learning may be an important therapeutic
mechanism of adenosine antagonists (36, 41).

The aberrant learning hypothesis can be understood as an
extension of the classic model of PD where there is an imbal-
ance between the direct and indirect pathways (28, 29, 51–53).

With aberrant learning, this imbalance is structurally encoded as
inappropriate synaptic strengths [i.e., inverted corticostriatal plas-
ticity; (25, 41, 46–48, 54)]. Thus, even if dopamine is restored, the
inappropriate learning that has already been established will con-
tinue to degrade motor performance until appropriate synaptic
plasticity and learning has replaced the inappropriate (41). Con-
versely, if dopamine is reduced (e.g., discontinuation of L-DOPA),
performance will initially be partially protected as the appropriate
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synaptic strengths will facilitate corticostriatal throughput; how-
ever, as aberrant plasticity and learning return, synaptic structure
will again become inverted and anti-optimal and initially retained
function will deteriorate (48).

RECIPROCAL RELATIONSHIP BETWEEN CORTICAL AND
STRIATAL PLASTICITY AND LEARNING
Learning is the encoding of information through alterations in
synaptic strengths that underlie memory formation and skill
acquisition. Though the cortex and striatum both exhibit learn-
ing and synaptic plasticity, how learning in each substrate affects
learning in the other is poorly understood.

CORTICAL LEARNING SHAPES BASAL GANGLIA ACTIVITY AND
LEARNING
As the cortex is a primary afferent to the striatum, alterations in
synaptic plasticity that occurs in the cortex will change the afferent
input to the basal ganglia, affecting both information flow through
the basal ganglia and activity-dependent corticostriatal synaptic
plasticity. For example, if the cortex learns to enhance the activity
of one ensemble of neurons and diminish the activity of others,
this differential will be reflected in the pattern of MSNs activation
and the altered synaptic inputs may induce changes in corticostri-
atal synaptic strength. In this case, alterations in synaptic plasticity
of the cortex may directly influence downstream synaptic plasticity
within the striatum.

STRIATAL LEARNING SHAPES CORTICAL ACTIVITY AND LEARNING
Though cortical activity and learning shape activity in the stria-
tum, evidence suggests that the striatum may learn earlier and
faster and may shape cortical learning (55), consistent with the
idea that the basal ganglia provide a filter for cortical activity.
By selectively altering cortico-basal ganglia throughput of specific
cortical afferents, corticostriatal plasticity shapes cortical activity;
by modulating cortical activity, the basal ganglia can influence
activity-dependent cortical learning.

RECIPROCAL LEARNING PROVIDES A GAIN MECHANISM FOR
LEARNING
Cortical activity that is facilitated through the basal ganglia fil-
ter will be more likely to undergo activity-dependent, Hebbian
synaptic plasticity, strengthening those particular patterns of cor-
tical activity in the future. Conversely, cortical activity inhibited by
the basal ganglia will have lower probability of activity-dependent
plasticity (or favor synaptic depression), diminishing that activ-
ity in the future. In turn, this altered pattern of cortical afferents
to the striatum will differently activate MSNs and further modify
corticostriatal synaptic strengths, which further modifies cortical
activity and learning.

THE DOMINO EFFECT: ABERRANT LEARNING AND
DISRUPTED CORTICAL FILTERING
Reduction in cortical activity in cortical regions that participate
in the dorsal striatal sensorimotor loop (e.g., M1, PMC, poste-
rior parietal) as well as reduced activity in regions associated with
the cognitive loop (e.g., DLPFC) have been well documented in

PD (6, 56). Reduced cortical activity in these regions is consistent
with the classic model of an imbalance between the direct and
indirect pathway that results in increased inhibitory tone on cor-
tical activity. However, numerous studies have observed increased
activity in these same regions associated with task performance (8–
13, 15, 16, 57–62). While task-related increases in cortical activity
may be construed as compensatory, it may reflect reduced pro-
cessing efficiency. With the acquisition of automaticity, healthy
normal controls exhibit decreased cortical activity while PD sub-
jects do not show such reductions, consistent with increased
cortical load arising from dysfunction in corticostriatal circuits
(58). Such increased cortical activity may arise from the loss of
appropriate corticostriatal filtering. In a recent study, Ng et al.
(57) have shown spatially greater cortical activation (i.e., more
spread out) in unmedicated PD subjects performing a simple
motor task compared to healthy controls; this spatially greater
activation is normalized by L-DOPA, which the authors charac-
terize as a “focusing effect.” In the view adopted here, the increased
cortical activity could reflect both compensatory cortical circuits
and pathophysiology in the basal ganglia filter. First, denervation
in the DLS induces greater inhibitory tone, diminishing cortical
activity, which in turn leads to compensatory functional connec-
tivity that increases intracortical and cerebellar drive on cortical
activity. Second, this increased activity lacks the filter that“focuses”
cortical activity, resulting in overall greater, less efficient cortical
activation. The net result is that the cortex has to work harder to
maintain behavior and does so with less efficiency.

PROPAGATION OF ABERRANT LEARNING
As functional connectivity shifts to drive cortical activity and
maintain behavior, cortical mechanisms of activity-dependent
synaptic plasticity continue to facilitate learning to refine and cali-
brate cortical networks and ensembles to adapt to new patterns of
afferent inputs. In effect, the cortex has to learn the adaptations.
If the filtering or “focusing” effect of the DLS and the sensorimo-
tor basal ganglia loop were merely absent, learning might simply
be slower and less efficient. From the perspective of the aber-
rant learning hypothesis, however, the problem is more insidious.
Dopamine denervation induces inverted corticostriatal plastic-
ity in the striatopallidal pathway that actively inhibits precisely
those high activity cortical afferents that should be facilitated,
providing an anti-optimizing filter. Instead of increasing signal-
to-noise ratio – enhancing productive and diminishing non-
productive/irrelevant cortical activity – aberrant learning would
actively diminish signal. Thus, as activity-dependent cortical learn-
ing adjust cortical synaptic strengths to improve performance and
adapt to shifted functional connectivity, the resulting changes in
cortical activity are subsequently opposed by aberrant learning in
the DLS effectively filtering out such learning by inappropriately
inhibiting precisely those activities the cortex has just learned to
enhance. It is not difficult to imagine a progression where inappro-
priate filtering in conjunction with continued aberrant learning
leads to further compensatory cortical activity that is less effi-
cient and, in turn, also degraded by aberrant learning resulting
in a vicious cycle of increasingly greater but less efficient cortical
activity to maintain motor function.
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CLINICAL IMPLICATIONS AND FURTHER RESEARCH
Aberrant corticostriatal plasticity, from the perspective of the aber-
rant learning hypothesis, represents more than a simple loss of
function. Rather, it is an active, insidious process that hijacks
corticostriatal plasticity, not only impeding the role of the basal
ganglia as an effective filter of cortical activity, but structurally
encoding inappropriate learning as synaptic strengths that can
actively disrupt cortical function. Such aberrant learning will
gradually unravel and invert a lifetime of learning – and the
millions of finely calibrated synaptic strengths that support that
learning – accelerating functional deterioration associated with
neurodegeneration.

As dopamine denervation progresses, cortical compensatory
activity is engaged. The reciprocal relationship between cortical
and basal ganglia structures, however, suggests that aberrant cor-
ticostriatal plasticity may increase the burden placed on the cortex
while simultaneously interfering with its compensatory capacity.
If true, this means that therapeutic agents that ameliorate aber-
rant learning would have the additional advantage of supporting
cortical compensation. In particular, decreasing an inappropriate,
“anti-optimizing” basal ganglia filter may facilitate improved cor-
tical learning and adaptation. Therapeutic strategies specifically
targeted at correcting or blocking aberrant learning may slow func-
tional deterioration associated with neurodegeneration as well as
support adaptive, compensatory mechanisms, providing a form
of disease-modifying neuroprotection that may mitigate the func-
tional decline associated with disease progression. Thus, targeting
subcellular signaling pathways and cellular mechanisms specific to
striatopallidal synaptic plasticity to either diminish inappropriate
LTP or enhance appropriate LTD may offer an avenue for the
development of alternative disease-modifying, neuroprotective
therapeutics (25, 41, 50).

An important aspect of aberrant learning is that it introduces
a delay between the pathophysiology (or its correction) and the
resulting functional effects on behavior. That is, aberrant learning
that occurs now will affect performance in the future. Conversely,
improvement associated with corrected aberrant learning will be
observed gradually over time as restored corticostriatal plastic-
ity relearns and recalibrates synapses. It is precisely this delay
in observing the effects of corrected aberrant learning that we
have proposed underlies the LDR to L-DOPA (25, 48). If aber-
rant corticostriatal plasticity degrades cortical learning, a delay
might be expected in the correction of impaired cortical functions
as the cortex also undergoes relearning. Interestingly, it has been
observed that several cognitive symptoms of PD do not appear
to be improved with L-DOPA administration [e.g., Ref. (63)].

Why this might be is unclear, but one possibility is that cognitive
symptoms associated with cortical functions may, at least par-
tially, arise from impaired cortical learning induced by aberrant
corticostriatal plasticity. If so, L-DOPA would not immediately
correct previously degraded or inappropriate cortical learning;
however, similar to the LDR, such symptoms might improve grad-
ually over time as cortical learning is protected from the deleterious
effects of aberrant corticostriatal plasticity. Conversely, Kishore et
al. (64, 65) have recently observed a deficit in plasticity in M1 in
newly diagnosed, untreated patients that is corrected under opti-
mal medication (absent fluctuations or dyskinesia). This corrected
plasticity is sustained even during the OFF state, suggesting it may
represent a LDR (64). The degree to which these findings relate to
dopamine replacement and a potential LDR action directly in M1
versus arising secondary to the correction of aberrant corticostri-
atal plasticity and its effects on cortical processing and learning
remain to be determined.

This hypothesis has potentially significant implication for reha-
bilitative treatments in PD. Rehabilitation fundamentally involves
repetition, i.e., practice, and is premised on mechanisms of learn-
ing and plasticity. If those underlying mechanisms are not only
impaired, but potentially induce counter-productive, aberrant
learning and plasticity, the efficacy of rehabilitation could be com-
promised. Rehabilitative strategies might be most beneficial, then,
when conducted under optimal medication to maximally support
cortical compensatory learning. The success of physical therapy
programs, including programs which patients practice indepen-
dently (eg., Big and Loud), may be contingent on training and
practice being performed during the ON medication state.

In conclusion, agents that target and ameliorate aberrant corti-
costriatal plasticity in the striatopallidal pathway may represent an
important avenue for the development of new therapeutics, poten-
tially yielding a protective LDR-like treatment independent of
dopamine replacement with its attendant complications. Remedi-
ating an insidious process of inappropriate corticostriatal synaptic
plasticity may mitigate circuit deterioration and support corti-
cal compensatory mechanisms, modifying the rate and severity
of functional decline associated with disease progression. Further
research on aberrant learning and its potential effects on cortical
function and learning are needed and may yield new insights and
treatment strategies.
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