
ORIGINAL RESEARCH ARTICLE
published: 16 December 2013

doi: 10.3389/fgene.2013.00279

Genome-wide association analysis confirms and extends
the association of SLC2A9 with serum uric acid levels to
Mexican Americans
Venkata Saroja Voruganti1,2*†, Jack W. Kent Jr.1†, Subrata Debnath3, Shelley A. Cole1, Karin Haack1,

Harald H. H.Göring1, Melanie A. Carless1, Joanne E. Curran1, Matthew P. Johnson1, Laura Almasy1,

Thomas D. Dyer1, Jean W. MacCluer1, Eric K. Moses1,4, Hanna E. Abboud3, Michael C. Mahaney1,

John Blangero1 and Anthony G. Comuzzie1

1 Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
2 Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
3 Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
4 Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, WA, Australia

Edited by:

Struan F. A. Grant, Children’s
Hospital of Philadelphia Research
Institute, USA

Reviewed by:

Cheryl L. Thompson, Case Western
Reserve University, USA
Lynette Phillips, Kent State
University, USA

*Correspondence:

Venkata Saroja Voruganti,
Department of Genetics, Texas
Biomedical Research Institute,
PO Box 760549, San Antonio,

Increased serum uric acid (SUA) is a risk factor for gout and renal and cardiovascular
disease (CVD). The purpose of this study was to identify genetic factors that affect
the variation in SUA in 632 Mexican Americans participants of the San Antonio Family
Heart Study (SAFHS). A genome-wide association (GWA) analysis was performed using
the Illumina Human Hap 550K single nucleotide polymorphism (SNP) microarray. We
used a linear regression-based association test under an additive model of allelic
effect, while accounting for non-independence among family members via a kinship
variance component. All analyses were performed in the software package SOLAR.
SNPs rs6832439, rs13131257, and rs737267 in solute carrier protein 2 family, member
9 (SLC2A9) were associated with SUA at genome-wide significance (p < 1.3 × 10−7).
The minor alleles of these SNPs had frequencies of 36.2, 36.2, and 38.2%, respectively,
and were associated with decreasing SUA levels. All of these SNPs were located in
introns 3–7 of SLC2A9, the location of the previously reported associations in European
populations. When analyzed for association with cardiovascular-renal disease risk factors,
conditional on SLC2A9 SNPs strongly associated with SUA, significant associations were
found for SLC2A9 SNPs with BMI, body weight, and waist circumference (p 3< 1.4 × 10− )
and suggestive associations with albumin-creatinine ratio and total antioxidant status
(TAS). The SLC2A9 gene encodes an urate transporter that has considerable influence
on variation in SUA. In addition to the primary association locus, suggestive evidence
(p < 1.9 × 10−6) for joint linkage/association (JLA) was found at a previously-reported urate
quantitative trait locus (Logarithm of odds score = 3.6) on 3p26.3. In summary, our GWAS
extends and confirms the association of SLC2A9 with SUA for the first time in a Mexican
American cohort and also shows for the first time its association with cardiovascular-renal
disease risk factors.
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INTRODUCTION
Hyperuricemia is a risk factor for gout, renal disease, and cardio-
vascular disease (CVD) (Cirillo et al., 2006; Nakagawa et al., 2006)
and is known to aggregate in families (Dixon, 1960; Friedlander
et al., 1988; Cameron and Simmonds, 2005). Variation in serum
uric acid (SUA) levels is controlled by both genetic and envi-
ronmental factors. Family-based studies have reported significant
heritabilities for SUA levels with estimates ranging from 25 to
73% (Rao et al., 1982; Rice et al., 1990; Wilk et al., 2000; Tang
et al., 2003; Yang et al., 2005; Nath et al., 2007; Voruganti et al.,
2009a,b).

Genome-wide studies conducted to identify significant
linkages for the variation in SUA have found quantitative trait

loci (QTL) on several chromosomes for different populations;
a QTL on chromosome 15 in Framingham Heart Study (Yang
et al., 2005); on chromosome 8 in the Genetic Epidemiology
Network of Arteriopathy (GENOA) (Rule et al., 2009); on chro-
mosome 4p15 in an Australian Cohort (Cummings et al., 2010).
However, none of them were in the same location as found
previously in this Mexican American Cohort (Voruganti et al.,
2009a). Similarly, genome-wide association (GWA) and candi-
date gene studies have found several genes to be associated
with SUA, mainly solute carrier protein 2 family, member 9
(SLC2A9) (Li et al., 2007; Brandstätter et al., 2008; Caulfield
et al., 2008; Dehghan et al., 2008; Döring et al., 2008; McArdle
et al., 2008; Stark et al., 2008; Vitart et al., 2008; Wallace et al.,
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2008; Kolz et al., 2009; Charles et al., 2011; Karns et al., 2012),
ATP-binding cassette, subfamily G, member 2 (ABCG2) (Kolz
et al., 2009; Woodward et al., 2009; Nakayama et al., 2011;
Karns et al., 2012; Zhang et al., 2013); solute carrier protein
22 family, members 11 and 12 (SLC22A11, SLC22A12) (Kolz
et al., 2009; Tin et al., 2011), solute carrier protein 16 family,
member 9 (SLC16A9), PDZ domain containing 1(PDZK1) (Kolz
et al., 2009). A large GWAS in another European cohort, Köttgen
et al. (2013), confirmed or replicated 28 previously reported
associations for SUA. However, most of these studies were con-
ducted in Caucasian, African American, or Asian populations. To
date no GWAS of SUA levels have been conducted in Mexican
Americans—a population affected with disproportionate bur-
den of CVD and type 2 diabetes (Flegal et al., 1991; Go, 2013;
http://www.diabetes.org/diabetes-basics/diabetes-statistics/).

SUA is a strong marker of risk for renal disease and is consid-
ered clinically relevant and of high significance. Its role as a major
risk factor in the development of kidney stones or nephrolithiasis
and gout is well-recognized. The relationship between uric acid
and kidney function seems to be two-sided. On one hand, decline
in glomerular filtration rate (GFR) (kidney function parameter)
may lead to elevation of uric acid, on the other hand, increase in
uric acid seems to alter glomerular function through renal vaso-
constriction and increased rennin expression (Sánchez-Lozada
et al., 2002). Hyperuricemia is also known to induce endothelial
dysfunction and inflammation indicating a role in atherosclero-
sis as well as chronic kidney disease (Ejaz et al., 2012). Rodent
Sánchez-Lozada et al., 2002; Ejaz et al., 2012 and human stud-
ies (Nakagawa et al., 2005; Liebman et al., 2007) have shown the
role of hyperuricemia in hypertension, atherosclerosis, CVD, ini-
tiation and progression of renal disease, and metabolic syndrome.
In fact, drugs that decrease SUA levels, mainly allopurinol, have
been shown to improve survival in chronic heart failure patients
(Gotsman et al., 2012), improve endothelial function in patients
with chronic kidney disease (Yelken et al., 2012), and reduce
oxidative stress and improve endothelial function in patients with
coronary artery disease (Rajendra et al., 2011). Elaborating on the
protective effects of reduced SUA levels on end-stage renal disease
(ESRD), Doria and Krolewski (2011) point out that lowering of
SUA may be a potential approach to treat ESRD in patients with
diabetes.

Here we present results of the first GWAS in Mexican
Americans of the San Antonio Family Heart Study (SAFHS) that
attempts to identify genetic factors that affect the variation in
SUA. We extend these findings to the analysis of association of
SLC2A9 with cardiovascular and renal factors given the role of
SLC2A9 in hypertension and renal urate transport.

MATERIALS AND METHODS
Population characteristics: The San Antonio Family Heart Study
(SAFHS) was initiated in 1991 to identify genes influencing
the risk of CVD in Mexican Americans. Study subjects have
been recalled up to three times to acquire longitudinal data;
the analysis reported here is based on the second recall, 2002–
2006. Individuals were recruited from large Mexican American
families, residing in San Antonio, TX without regard to dis-
ease status. Participants in this study were recruited from 40

extended families, with probands between 40 and 60 years of age
(MacCluer et al., 1999; Mitchell et al., 1999). Eligibility criteria
required the proband to have at least six first-degree relatives
(excluding their parents) 16 years or older and who resided
in San Antonio, TX. At each recruitment phase, subjects were
brought to a research clinic at the University of Texas Health
Science Center—San Antonio (UTHSCSA) for interview and
examination by trained recruiters and nurses. Anthropometrics
including height, weight, and waist circumference; blood pres-
sure; and self-reported information regarding medical history
and socio-demographic status were obtained in all phases of
SAFHS data collection. Blood samples were collected from all
participants after an overnight fast and plasma and serum were
prepared and stored at −80◦C until analyzed. Blood samples
were also drawn at 2 h after a standard oral glucose toler-
ance test; diabetes was diagnosed if the 2 h glucose level was
11.1 mmol/l or higher, or if the subject had been prescribed
antidiabetic medication. The final analysis sample with complete
phenotype and genotype data included 632 SAFHS participants.
Written informed consent was obtained from all participants
to participate in this study. All research and consenting pro-
tocols were approved by the Institutional Review Board of the
UTHSCSA.

PHENOTYPING
Uric acid was measured in serum by a colorimetric assay using
uricase and peroxidase (Domagk and Schlicke, 1968). Serum
creatinine was estimated by the modified kinetic Jaffe reaction
(Beckman Synchron LX System). GFR was estimated by the
MDRD equation: eGFR (ml/min/1.73 m2 body surface area) =
186 × serum creatinine × age × (−0.203) × (0.742 if female) ×
(1.210 if black) (Arar et al., 2008). Cardiovascular risk factors
included blood pressure, weight, waist circumference as well as
fasting plasma levels of glucose, insulin, lipids, and cytokines
measured by standardized reference procedures (Arar et al., 2008;
Voruganti et al., 2009a). A single-void morning urine sample
was collected from each participant for measuring albumin and
creatinine and estimating albumin to creatinine ratio (UACR).
Description of their measurement techniques are given in Arar
et al. (2008). Indicator variables were coded for diabetes diagno-
sis and for data from self-report and medical history on current
use of blood pressure medication, alcohol consumption, and
smoking. Covariates of SUA were included in analysis models as
described below and in the Results.

GENOME-WIDE ASSOCIATION (GWA) ANALYSIS
GWA analysis was conducted in the SAFHS based on SNP geno-
types obtained using the Illumina HumanHap550 BeadChip
(Illumina, San Diego, CA). Our experimental error rate (based on
duplicates) was 2 per 100,000 genotypes. The average call rate per
individual sample was 97%. Approximately 1 per 1000 genotypes
was blanked due to Mendelian errors. Specific SNPs were removed
from analysis if they had call rates <95% (about 4000 SNPs) or
deviated from Hardy–Weinberg equilibrium at 5% false discov-
ery rate (FDR) (12 SNPs). Missing genotypes were imputed from
pedigree data using MERLIN (Abecasis et al., 2002). SNP geno-
types were checked for Mendelian consistency using the program
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SimWalk2(Sobel and Lange, 1996). The estimates of the allele fre-
quencies and their standard errors were obtained using SOLAR
(Almasy and Blangero, 1998).

MEASURED GENOTYPE ANALYSIS
Each SNP genotype was converted in MERLIN (Abecasis et al.,
2002) to a covariate measure equal to 0, 1, or 2 copies of the
minor allele (or, for missing genotypes, the weighted covari-
ate based on imputation). These covariates were included in the
variance-components mixed models for measured genotype anal-
yses (MGA; Boerwinkle et al., 1986) vs. null models that incorpo-
rated the random effect of kinship. For the initial GWA screen,
SUA levels were regressed on selected covariates (see Results)
and the association of the inverse-normalized residuals with each
SNP covariate was tested independently as a 1 degree of freedom
likelihood ratio test. Empirical thresholds for genome-wide sig-
nificant and suggestive evidence of association were based on the
distribution of p-values from 10,000 simulated null GWAS (i.e.,
simulations of a heritable trait with no modeled SNP covariate
effects using the SAFHS pedigree and genotypes). The threshold
for significance (p < 1.3 × 10−7) was defined as the cutoff for the
lower 5% tails of the empirical distribution, and the threshold for
suggestive evidence (p < 1.6 × 10−6) was the minimum p-value
obtained not more than once per genome scan.

LINKAGE AND JOINT LINKAGE/ASSOCIATION ANALYSIS
Multipoint linkage analysis (Almasy and Blangero, 1998) was
performed in SOLAR using estimates of locus-specific allele shar-
ing based on genotypes for 461 STR markers. In addition, we
employed a novel joint linkage/association (JLA) analysis for
each SNP that tested each saturated model (including linkage
and the fixed effect of the SNP) against a null model in which
both effects were constrained to zero. Regression parameters for
selected covariates (see Results) were estimated simultaneously
with the linkage and association parameters. Because the linkage
variance parameter was tested on its lower boundary, the dis-
tribution of the likelihood ratio test statistic is distributed as a
1:1 mixture of chi-square distributions with 1 and 2 degrees of
freedom, respectively (Self and Liang, 1987).

ANALYSIS OF CARDIOVASCULAR AND RENAL DISEASE RISK FACTORS
FOR ASSOCIATION WITH SLC2A9 SNPs
Cardiovascular and renal disease risk factors that were included in
the analysis were anthropometric measures such as body weight,
BMI, waist circumference, circulating levels of lipids such as
triglycerides, high, low-density lipoprotein and total cholesterol,
glucose, insulin, and kidney function phenotypes (serum crea-
tinine, eGFR, and UACR). For these analyses, the appropriate
significance level was determined to be 1.4 × 10−3 based on the
number of SNPs investigated in SLC2A9. This significance value
was computed taking into account the linkage disequilibrium
(LD) pattern of these SNPs (Figure 1).

RESULTS
The mean ± SE age and SUA levels of participating individuals
(n = 632) were 47.87 ± 14.8 yrs and 5.35 ± 1.38 mg/dl, respec-
tively, with men having higher levels of SUA than women (6.1 ±

FIGURE 1 | Linkage disequilibrium pattern of SLC2A9 SNPs

investigated in this study.

1.7 vs. 4.94 ± 1.6 mg/dl). Significant heritability was detected for
SUA levels (h2 = 0.39, p = 2.3 × 10−8) with age, sex, age2, inter-
action between age and sex, waist circumference, systolic blood
pressure, plasma triglyceride, plasma high-density lipoprotein,
serum creatinine, and indicator variables for use of blood pres-
sure medication, alcohol use, smoking status, and diabetic status
as covariates.

GENOME-WIDE LINKAGE/ASSOCIATION ANALYSIS
Association and JLA tests were performed using a custom
script for SOLAR (Almasy and Blangero, 1998) as described
in methods. All models included the random kinship as well
as fixed effects of SNPs. Prior to analysis, SUA levels were
regressed on age, sex, age2, interaction between age and sex,
waist circumference, systolic blood pressure, plasma triglyc-
eride, plasma high-density lipoprotein, serum creatinine, blood
pressure medication, alcohol intake, smoking status and dia-
betic status, and the residuals were inverse-normal trans-
formed. The distribution of p-values from GWAS of SUA
showed no evidence of inflation due to population stratification
(Figure 2).

SNPs rs6832439, rs13131257, and rs737267 in SLC2A9 were
associated with SUA levels at genome-wide significance (p <

1.3 × 10−7) (Table 1, Figures 3, 4). The minor alleles of these
SNPs had frequencies of 0.36, 0.36, and 0.38, respectively, and
were associated with decreasing SUA levels. One additional SNP
rs6449213 showed suggestive association (p < 1.6 × 10−6) with
SUA levels. All these SNPs are located in introns 3–7 of SLC2A9.
The allele frequencies of SNPs that had significant association
with SUA are shown in Table 1. Minor alleles of the main
four SNPs were associated with lower SUA levels (Table 2). We
had previously reported significant evidence of linkage for SUA
(LOD = 3.5) on chromosome 3p (Voruganti et al., 2009a). Using
the JLA test, there was suggestive evidence of association of SUA
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with SNPs in CNTN4, a gene within the 1-LOD support interval
of our peak linkage signal (Table 1, Figure 5).

ASSOCIATION OF SLC2A9 SNPs WITH CARDIOVASCULAR AND RENAL
DISEASE RISK FACTORS
In addition to SUA, we also tested the association of SLC2A9
SNPs with several renal and CVD-related risk factors such as
anthropometrics, glucose, insulin, lipids, cytokines, and renal
function phenotypes. Of these, SNPs in the SLC2A9 gene were
significantly associated with body weight, BMI, waist circum-
ference, total antioxidant status (TAS) and urinary albumin-
creatinine ratio (UACR) (Table 3). However, the SNPs associated
with SUA levels were not the same as those associated with
body weight, BMI, waist circumference, or ACR. Interestingly,
the two SNPs associated with TAS were also associated with SUA
levels.

FIGURE 2 | A Q-Q plot showing the absence of inflation due to

population stratification.

When association was conducted, conditional on SNPs
associated with SUA, SLC2A9 SNPs showed evidence of signifi-
cant association with BMI, waist circumference and body weight,
and suggestive association with TAS and UACR (data not shown).

FIGURE 3 | Genome-wide association analysis of serum uric acid.

FIGURE 4 | Association of serum uric acid with SLC2A9 SNPs.

Table 1 | Joint linkage-association analysis of serum uric acid (Empirical genome-wide significance: p < 1.3 × 10−7).

Gene SNPa Coordinates (bp) MGAb (p-value) JLAc(p-value) Minor allele/frequency

SLC2A9d rs6832439 9924319 6.0 × 10−9 2.7 × 10−8 A/0.36

SLC2A9 rs13131257 9981889 2.0 × 10−8 8.1 × 10−8 T/0.36

SLC2A9 rs737267 9934744 4.2 × 10−8 1.7 × 10−7 A/0.38

SLC2A9 rs6449213 9994215 1.6 × 10−6 5.7 × 10−6 C/0.22

CNTN4e rs7652782 2821616 3.4 × 10−4 7.1 × 10−7 A/0.06

CNTN4 rs6786387 2822150 2.6 × 10−4 7.6 × 10−7 A/0.03

CNTN4 rs6786174 2982630 6.1 × 10−4 1.2 × 10−6 C/0.08

CNTN4 rs17586876 2964182 1.3 × 10−3 2.0 × 10−6 G/0.09

aSNP, Single Nucleotide Polymorphism.
bMGA, Measured Genotype Analysis.
cJLA, Joint linkage association analysis.
d SLC2A9: solute carrier protein 2 family, member 9.
eCNTN4: Contactin 4.
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DISCUSSION
Our GWAS found polymorphisms in SLC2A9 to be signifi-
cantly associated with SUA levels in Mexican Americans. This
is the first GWAS for SUA in Mexican Americans and replicates
results from several studies conducted in European populations

Table 2 | Association of the most significant SNPs in solute carrier

protein 2 family, member 9 (SLC2A9) gene with serum uric acid

(mg/dl).

SNP Mean effect 11b 12 22

size (%)a

rs6832439 5.3 5.6 (1.4)c 5.3 (1.4) 4.8 (1.3)

rs13131257 4.9 5.6 (1.4) 5.3 (1.4) 4.8 (1.4)

rs737267 5.0 5.6 (1.4) 5.3 (1.4) 4.8 (1.3)

rs6449213 4.5 5.5 (1.4) 5.2 (1.4) 4.2 (1.2)

aProportion of the residual phenotypic variance that is explained by the minor

allele of the SNP.
b1 – major allele; 2 – minor allele.
cgenotype-specific mean (standard deviation) of serum uric acid levels (mg/dl).

FIGURE 5 | A joint linkage-association approach shows a significant

LOD score for serum uric acid on chromosome 3.

from the UK, Germany, Croatia and Sardinia. Recent GWAS
have shown consistently that single nucleotide polymorphisms
(SNPs) in the SLC2A9 gene are associated with SUA levels (Li
et al., 2007; Döring et al., 2008; McArdle et al., 2008; Stark
et al., 2008; Vitart et al., 2008; Zemunik et al., 2009; Yang
et al., 2010). A study conducted in a Croatian sample found that
SLC2A9 variants were associated with SUA with SNPs explain-
ing 1.7–5.3% of the variance in SUA levels. In the same study,
this association was replicated in a sample from the island of
Orkney (Vitart et al., 2008). Two of the three SNPs associated
with SUA in this study were the same as shown in our study
(rs6449213 and rs737267). In addition, the effect sizes (propor-
tion of residual phenotypic variance explained by the SNP) of
our significant association are in the same range (4–5% of total
phenotypic variance). Similarly, in a cohort from Germany, SUA
levels were associated with SLC2A9 variants (19). Of the several
SNPs that were associated only rs6449213 was common between
our two studies. They also showed sex-specific effects of vari-
ants in SLC2A9 on SUA levels. This finding was replicated by
Brandstätter et al. (2008). Other studies that showed association
of polymorphisms in SLC2A9 with SUA were conducted in indi-
viduals from Sardinia (Li et al., 2007), Germany (Stark et al.,
2008), and the United Kingdom (Wallace et al., 2008; Kolz et al.,
2009) as well as in Asian (Matsuo et al., 2008; Cummings et al.,
2010; Tabara et al., 2010; Tu et al., 2010; Guan et al., 2011)
and African American populations (Dehghan et al., 2008; Rule
et al., 2011). To investigate the functional aspects of the SLC2A9
gene, Caulfield et al. (2008) showed that SLC2A9 was a high-
capacity urate transporter and can exchange glucose for urate
in the process of secretion of urate into the urine. They also
confirmed the previously reported association of SLC2A9 with
SUA in six different cohorts of European ancestry. Several other
loci have also been reported to be associated with serum uric

Table 3 | Solute carrier protein 2 family, member 9 (SLC2A9) SNPs (chromosome 4) associated with cardiovascular or renal disease risk factors.

Trait SNPb MGAc (p-value) SNP coordinates Minor/major allele Minor allele frequency Effect size(%)d

Body weight rs938553 5.5 × 10−6 9925526 A/G 0.12 2.8

BMI rs10003001 9.8 × 10−4 9984475 A/G 0.07 2.1

rs10008035 9.1 × 10−4 9999335 A/C 0.13 2.0

rs938553 7.3 × 10−4 9925526 A/G 0.12 2.3

Waist circumference rs10003001 5.0 × 10−4 9984475 A/G 0.07 2.2

rs10008035 8.0 × 10−4 9999335 A/C 0.13 2.0

rs938553 2.0 × 10−4 9925526 A/G 0.12 2.6

Albumin/creatinine ratio rs1014290 4.0 × 10−4 10001861 G/A 0.33 2.1

rs10805346 6.0 × 10−4 9920347 A/G 0.41 2.0

rs13129697 3.0 × 10−4 9926967 C/A 0.48 2.2

rs7660895 6.0 × 10−4 9985445 A/G 0.46 2.0

Total antioxidant status rs6832439 1.4 × 10−6 9924319 A/G 0.36 2.9

rs737267 1.4 × 10−6 9934744 A/C 0.38 2.9

aEmpirical significance based on number of SNPs analyzed in SLC2A9 gene (p < 1.4 × 10−3).
bSNP, Single Nucleotide Polymorphism.
cMGA, Measured Genotype Analysis.
d Proportion of the residual phenotypic variance that is explained by the minor allele of the SNP.

www.frontiersin.org December 2013 | Volume 4 | Article 279 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Voruganti et al. SUA GWAS in Mexican Americans

acid levels in GWAS as well as candidate gene association studies
(Table 4).

The solute carrier protein 2 family, member 9 (SLC2A9) gene
was recently cloned and identified as a member of the solute
carrier protein 2 family (Le et al., 2008). Originally thought to
be only a facilitated hexose transporter, it was found to be pri-
marily involved in uric acid transport. Its two forms SLC2A9a
and SLC2A9b are expressed in the basolateral and apical mem-
branes of the kidney while SLC2A9a is also expressed in liver.
Their amino acid sequences are identical, except that SLC2A9b
has a shorter and modified N-terminus (Preitner et al., 2009).
Both forms are involved in renal urate transport (Le et al., 2008;
Cheeseman, 2009). Caulfield et al. (2008) proposed that extracel-
lular glucose and intracellular urate are exchanged by the SLC2A9
transporter. In the kidney SLC2A9 maintains uric acid reab-
sorption independent of other uric acid transporters (Preitner
et al., 2009). On one hand SLC2A9 mutations are associated with
hypouricemia and hyperuricosuria, while on the other, muta-
tions in SLC2A9 that alter the protein impair urate secretion into
the urine resulting in hyperuricemia (Le et al., 2008; Cheeseman,
2009).

Given the ubiquity of evidence for association of SUA with
SLC2A9 polymorphisms and the relatively large effect size of
these associations reported in other studies, it is not surpris-
ing that we could identify this locus in our study despite its
modest sample size. In addition, our joint-linkage association
approach has the potential to maximize the information in a sam-
ple of related individuals, thus amplifying a signal taking into

account fixed effects of marker genotypes (association) and the
random effects of shared sequence identity (linkage). With this
approach we found suggestive evidence of association on chro-
mosome 3p25-p26 as we showed in our prior linkage analysis
(Voruganti et al., 2009a). Associated SNPs were found within the
contactin 4 (CNTN4) gene, which is located in the one-LOD sup-
port interval in our previous linkage scan for SUA levels. The
CNTN4 gene codes for a member of the contactin subgroup of
cell adhesion molecules of the immunoglobulin (Ig) superfamily.
This family has an important role in the formation and func-
tioning of the neuronal networks; specifically, CNTN4 is known
to play a key role in development of the central nervous system.
The possible functional relationship of this gene to SUA levels is
unknown.

Our association and JLA results are especially interesting
given the recent attention to the relative importance of common
and rare genetic variants for risk of common complex diseases
(Maher, 2008; Manolio et al., 2009). Common marker variants
like those in SLC2A9 (minor allele frequency 36–38% in our
cohort) should, in theory, be in LD with one or more common
functional variants whose effect on the trait of interest should be
similar in different lineages. On the other hand, low-frequency
functional variants (and low-frequency marker alleles in LD with
them) are expected to appear in only a subset of lineages; these
pedigree-specific effects are more likely to be identified by linkage
than by association. In this context, it is interesting that our repli-
cation of association at SLC2A9 is not matched by a linkage signal,
while the SNPs identified by joint linkage and association within

Table 4 | Previously reported association of serum uric acid levels with genes other than SLC2A9.

SNP Joint link-

age/association

(JLA) in our

study (p-value)

Gene name Gene symbol Population References

rs2231142 0.24a ATP-binding cassette family
G, member 2

ABCG2 Mexican Americans,
African Americans,
European Americans,
American Indians

Köttgen et al., 2013;
Zhang et al., 2013

European Americans Kolz et al., 2009

Japanese Tabara et al., 2010

Whites and Blacks Dehghan et al., 2008

rs1471633 0.79 (rs1967017)b PDZ domain containing 1 PDZK1 European Americans Köttgen et al., 2013

rs12129861 0.17 (rs1298954)c PDZ domain containing 1 PDZK1 European Americans Kolz et al., 2009

rs1171614 0.11 (rs1171617)b Solute carrier protein family
16A, member 9

SLC16A9 European Americans Kolz et al., 2009;
Köttgen et al., 2013

rs12800450 0.05 (rs505802)c Solute carrier protein family
22A, member 12

SLC22A12 African Americans Tin et al., 2011

rs2078067 0.02
(rs10792438)c

Solute carrier protein family
22A, member 11

SLC22A11 European ancestry Yang et al., 2010

rs1165205 0.92 (rs9393672)b Solute carrier protein family
17A, member 3

SLC17A3 Whites and Blacks Dehghan et al., 2008

aSNP typed on our array.
bProxy SNP on our array.
cNo proxy SNP available; strongest evidence of JLA in our study annotated to this gene.

Proxy SNPs identified with SNAP (SNP Annotation and Proxy Search) Version 2.2: https://www.broadinstitute.org/mpg/snap/
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a strong linkage peak on chromosome 3 have low minor allele fre-
quencies (3–9%)—both findings being consistent with theoretical
expectation. These results may also explain why our chromosome
3 QTL has apparently not been reported by other studies, which
are primarily population-based; however, the current upsurge in
analysis of next-generation sequencing data and improved meth-
ods for rare variant detection may provide opportunities to test
our findings in the near future.

Since SUA is associated with obesity, type 2 diabetes and CVD
risk and is advocated by many to be included as a component
of the metabolic syndrome, we conducted a measured geno-
type analysis for SLC2A9 SNPs and these risk factors. We found
evidence of significant associations of SLC2A9 SNPs with body
weight, BMI and waist circumference and suggestive associations
with TAS. In the same study we also reported significant genetic
correlations between SUA and waist circumference in the same
study (Voruganti et al., 2009a). Variants in the uric acid trans-
porter gene (SLC2A9) that have been associated with lower SUA
were also associated with decreased blood pressure (Parsa et al.,
2012). Similarly, another SLC2A9 variant (rs1014290), associ-
ated with lower SUA were also associated with decreased risk for
diabetes mellitus (Liu et al., 2011) in Han Chinese. In a study
by Brandstätter et al. (2008), the association between SLC2A9
SNPs and SUA was significantly modified by BMI. They showed
stronger effect size in individuals with higher BMI. However, the
precise mechanism that may explain this association is not clear.
In contrast, Vitart et al. (2008) found no association between
SLC2A9 SNPs and metabolic syndrome components. Caulfield
et al. (2008) explored the association of SLC2A9 SNPs and blood
pressure traits and found no significant association. We also
observed that the SNPs associated with body weight, BMI, or
waist circumference were different than those associated with
SUA levels. However, the two SNPs associated with TAS were also
associated with SUA levels. SUA is known to act as a free rad-
ical scavenger (Pasalic et al., 2012) and combat oxidative stress
(Johnson et al., 2011). Therefore, the possible link between them
may be the role of SUA as an “antioxidant.”

In addition, we found suggestive association between SLC2A9
SNPs and the renal disease development marker UACR. Knock
out rodent studies have shown that SLC2A9 knockout mice
develop urate nephropathy characterized by intra-tubular urate
lithiasis, interstitial inflammation and fibrosis and tubular atro-
phy (Preitner et al., 2009). SUA levels in humans are primar-
ily determined by renal uric acid clearance, with two-thirds of
uric acid turnover being accounted for by its urinary excre-
tion. Hyperuricemia is predictably associated with a decrease
in GFR (Culleton, 2001; Johnson et al., 2003; Feig, 2009) and
90% of clinically-recognized hyperuricemia results from impaired
renal excretion of uric acid (Le et al., 2008). Abnormal renal
urate handling can promote both uric acid and calcium oxalate
nephrolithiasis by distinct mechanisms; low urine pH favors uric
acid crystallization while mixed uric acid- or sodium urate-
calcium oxalate stones develop by epitaxy, “salting out” of cal-
cium oxalate or adsorption of crystal growth inhibitors (Liebman
et al., 2007). Hyperuricemia has also been implicated in the
development of hypertension, a major risk factor for the devel-
opment and progression of chronic kidney disease (Feig, 2009).

Micropuncture studies have shown that elevated uric acid levels
cause cortical vasoconstriction and increase glomerular capil-
lary pressure leading to progressive glomerular injury (Sánchez-
Lozada et al., 2002). Given the role of SLC2A9 in renal urate
transport, the association between SLC2A9 SNPs and UACR
assumes pathogenic significance.

To summarize, this is the first study to report the association of
polymorphisms in the SLC2A9 gene with SUA levels in a genome-
wide analyses in Mexican Americans. In addition, this is first
time that any association between SLC2A9 SNPs and BMI, body
weight, waist circumference, UACR, and TAS has been reported.
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