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It is thought that estrogen (neuroestrogen) synthesized by the action of aromatase in
the brain from testosterone activates male socio-sexual behaviors, such as aggression
and sexual behavior in birds. We recently found that gonadotropin-inhibitory hormone
(GnIH), a hypothalamic neuropeptide, inhibits socio-sexual behaviors of male quail by
directly activating aromatase and increasing neuroestrogen synthesis in the preoptic area
(POA). The POA is thought to be the most critical site of aromatization and neuroestrogen
action for the regulation of socio-sexual behavior of male birds. We concluded that GnIH
inhibits socio-sexual behaviors of male quail by increasing neuroestrogen concentration
beyond its optimal concentration in the brain for expression of socio-sexual behavior.
On the other hand, it has been reported that dopamine and glutamate, which stimulate
male socio-sexual behavior in birds and mammals, inhibit the activity of aromatase in
the POA. Multiple studies also report that the activity of aromatase or neuroestrogen
is negatively correlated with changes in male socio-sexual behavior in fish, birds, and
mammals including humans. Here, we review previous studies that investigated the role
of neuroestrogen in the regulation of male socio-sexual behavior and reconsider the
hypothesis that neuroestrogen activates male socio-sexual behavior in vertebrates. It is
considered that basal concentration of neuroestrogen is required for the maintenance of
male socio-sexual behavior but higher concentration of neuroestrogen may inhibit male
socio-sexual behavior.
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INTRODUCTION
Originally it was considered that males display male-typical
behavior because they are exposed to androgen secreted by the
testis, whereas females display female-typical behavior because
they are exposed to female sex hormones secreted by the ovary,
such as 17β-estradiol (E2) and progesterone (Reviewed in Beach,
1948; Balthazart et al., 2004). However, it was later discovered
that estrogen is able to activate male-typical behavior in castrated
male rats (Beach, 1942). As the male-typical behavior activated by
androgen can be blocked by concomitant antiestrogen treatment
(Beyer and Vidal, 1971) and because the anterior hypothala-
mus can synthesize estrogens (neuroestrogen) from androgens by
aromatization (Naftolin et al., 1972, 1975), it was hypothesized
that central actions of androgen in males require its aromati-
zation into neuroestrogen in the brain (aromatization hypothe-
sis; Yahr, 1979). It was confirmed that aromatizable androgens
such as testosterone or androstenedione can activate male sex-
ual behavior in castrates, but non-aromatizable androgen such
as 5α-dihydrotestosterone (5α-DHT) has little or no effect in
mammals (McDonald et al., 1970; Whalen and Luttge, 1971) and
birds (Adkins, 1977; Adkins et al., 1980; Harding et al., 1983).
Aromatase inhibitors, such as Fadrozole (FAD) and Vorozole,
inhibited or blocked the effect of testosterone on male sexual
behavior in mammals (Christensen and Clemens, 1975; Beyer

et al., 1976; Morali et al., 1977; Roselli et al., 2003) and birds
(Adkins et al., 1980; Walters and Harding, 1988; Balthazart et al.,
1990; Schlinger and Callard, 1990; Soma et al., 1999, 2000). It
was further shown that male copulatory behavior was severely
impaired in the aromatase knockout (ArKO) mouse (Fisher et al.,
1998; Honda et al., 1998; Toda et al., 2001b; Matsumoto et al.,
2003). Testosterone administration to castrated ArKO mice did
not rescue copulatory behavior, but combined treatment with
E2 and dihydrotestosterone (DHT) almost completely rescued it
(Bakker et al., 2004).

It is widely accepted that the actions of neuroestrogen in the
brain are mediated by estrogen receptor α (ERα) and β (ERβ)
that belong to the nuclear receptor superfamily, leading to tran-
scriptional regulation of the target genes (Tsai and O’Malley,
1994). It has been shown that E2 can increase cAMP in the
uterus of ovariectomized mice within 15 s (Szego and Davis,
1967) suggesting non-genomic actions of E2. As genomic actions
of estrogens take hours for changes in protein expression to
occur, non-genomic actions of estrogens are defined as rapid
effects occurring within seconds to minutes that are generally
initiated at the plasma membrane, resulting in the activation of
signal transduction pathways, such as kinase activation or cal-
cium flux (Vasudevan and Pfaff, 2008). It is also becoming clear
that that the activity of aromatase itself is rapidly regulated by
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non-genomic mechanism, such as direct phosphorylation of the
enzyme (Balthazart et al., 2003; Roselli et al., 2009; Cornil et al.,
2012). These results suggest that some factors in the brain may
rapidly regulate socio-sexual behaviors of males by controlling
the activity of aromatase and neuroestrogen synthesis. Candidates
include glutamate and dopamine as they have been reported to
rapidly inhibit the activity of aromatase in the brain (Balthazart
et al., 2001a,b, 2002, 2006).

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic
neuropeptide that inhibits gonadotropin secretion from the pitu-
itary in birds and mammals (Tsutsui et al., 2000; Kriegsfeld et al.,
2006; Ubuka et al., 2006, 2009a, 2012a; for reviews, see Tsutsui,
2009; Tsutsui et al., 2009, 2010; Ubuka and Bentley, 2011; Tsutsui
and Ubuka, 2013; Ubuka et al., 2013c). GnIH expression is reg-
ulated by daily rhythm or melatonin (Ubuka et al., 2005), stress
or glucocorticoid (Kirby et al., 2009; Son et al., 2014), and social
environment (Tobari et al., 2014). In birds GnIH is synthesized
in the paraventricular nucleus (PVN) in neurons that project to
the median eminence (Tsutsui et al., 2000; Ubuka et al., 2003;
Ukena et al., 2003). Abundant GnIH-immunoreactive (ir) fibers
are observed in the preoptic area (POA) and the periaqueductal
central gray (PAG) (Ubuka et al., 2008), where mRNA of the cog-
nate G protein-coupled receptor (GPR147) for GnIH is expressed
(Yin et al., 2005; Ubuka et al., 2008). As the POA and PAG are
brain areas that regulate socio-sexual behaviors such as aggres-
sion and sexual behavior (Absil et al., 2001; Cornil et al., 2012),
GnIH released in these brain areas may modify socio-sexual
behaviors (Ubuka et al., 2012b, 2013b,c). The medial preoptic
area (MPOA) is thought to play an important role in the reg-
ulation of male sexual behavior, because damage to the MPOA
impairs sexual behavior (Klaric and Hendricks, 1986; Liu et al.,
1997; Paredes et al., 1998), whereas MPOA stimulation enhances
behavior (Malsbury, 1971; Paredes et al., 1990; Rodríguez-Manzo
et al., 2000). The major efferent projections from the MPOA
are to hypothalamic, midbrain, and brain stem nuclei that regu-
late autonomic or somatomotor patterns and motivational states
(Simerly and Swanson, 1988).

Male socio-sexual behavior of birds is androgen dependent
because it is reduced by castration and restored by androgen treat-
ment (Selinger and Bermant, 1967; Mills et al., 1997), however
there is no correlation between the order of aggressiveness and
peripheral testosterone concentration (Tsutsui and Ishii, 1981).
It is thought that the complete expression of testosterone action
requires its aromatization into E2 in the brain, because socio-
sexual behaviors of reproductively inactive male birds are only
activated by aromatizable androgen, such as testosterone and
androstenedione, or E2, but not by non-aromatizable andro-
gen, such as DHT. Indeed the co-administration of aromatase
inhibitors blocks testosterone-induced aggression in male quail
(Tsutsui and Ishii, 1981; Schlinger and Callard, 1990). Ubuka
et al. (2014) hypothesized that GnIH may inhibit socio-sexual
behaviors of male quail by regulating aromatase activity and neu-
roestrogen synthesis in the brain. Their findings suggest that
GnIH inhibits socio-sexual behaviors of male quail by directly
activating aromatase and increasing neuroestrogen concentration
in the POA beyond its optimal concentration (Ubuka et al., 2014;
Ubuka and Tsutsui, 2014).

Here we review previous studies that investigated the role
of neuroestrogen in the regulation of male socio-sexual behav-
iors and reconsider the hypothesis that neuroestrogen activates
male socio-sexual behaviors in vertebrates. It is proposed that
basal concentration of neuroestrogen is required for the main-
tenance of male socio-sexual behaviors but higher concentration
of neuroestrogen may inhibit male socio-sexual behaviors in
vertebrates.

MOLECULAR MECHANISMS REGULATING THE ACTIVITY OF
AROMATASE AND MALE SOCIO-SEXUAL BEHAVIOR IN
BIRDS AND MAMMALS
ACTION OF DOPAMINE IN MAMMALS
Dopamine facilitates sexual behavior in a number of species
including humans (Bitran and Hull, 1987; Melis and Argiolas,
1995). Male estrogen receptor α knock-out (ERαKO) mice
do not exhibit male-typical sexual behaviors (Wersinger
et al., 1997), but treating ERαKO males with apomorphine,
a non-selective dopamine agonist which activates both
D1-like and D2-like dopamine receptors, stimulated male-
typical copulatory behavior (Wersinger and Rissman, 2000a).
Dopamine is thought to enhance sensorimotor integration
by removing tonic inhibition (Chevalier and Deniau, 1990).
Dopamine is not thought to directly elicit behavior, but it
is thought to allow hormonally primed output pathways to
have easier access to sexually relevant stimuli (Hull et al.,
1999).

Three major integrative systems, the nigrostriatal system,
the mesolimbic system, and the medial preoptic system, are
thought to control sexual motivation and genital and somatomo-
tor responses in male rats. Sensory input from a receptive female
and/or copulation elicits the release of dopamine in each of these
three integrative systems (Hull et al., 1999). The nigrostriatal sys-
tem enhances both the readiness to respond to stimuli and motor
integration; the mesolimbic system is critical for appetitive behav-
ior and reinforcement, a motivational aspects of behavior but
not only sexual motivation; and the medial preoptic system may
focus the male’s motivation on sexually relevant stimuli, coordi-
nate the genital reflexes necessary for erection and ejaculation,
and enhance species-typical motor patterns of copulation (Hull
et al., 1999).

Dopaminergic input to the MPOA arises from the periven-
tricular system, including cell bodies in the medial portion of
the MPOA and the anterior portion of the incertohypothala-
mic tract (Simerly et al., 1986). The MPOA is one site where
dopamine may promote sexual behavior, because dopamine ago-
nists microinjected into the MPOA facilitate sexual behavior
(Hull et al., 1986; Markowski et al., 1994), whereas microin-
jections of a dopamine antagonist impair copulation, gen-
ital reflexes, and sexual motivation to some extent (Pehek
et al., 1988; Warner et al., 1991). Extracellular dopamine
increases in the MPOA of male rats during precopulatory
exposure to an estrous female and during copulation (Hull
et al., 1995) and it is thought that both dopamine recep-
tor subtypes (D1 and D2 receptors) are involved in the ini-
tiation and rate of copulatory behavior (Blackburn et al.,
1992).
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ACTION OF DOPAMINE IN BIRDS
Kleitz-Nelson et al. (2010a) developed an in vivo microdialy-
sis system to measure dopamine release in the MPOA of quail.
Males failed to copulate with a female in the absence of a pre-
copulatory rise in dopamine. In contrast, males that showed a
substantial increase in MPOA dopamine during pre-copulatory
interactions copulated with females. As there was no difference
in dopamine during periods when the quail were copulating as
compared to when the female was present but the males were
not copulating, dopamine action in the MPOA was thought to
be linked to sexual motivation rather than copulatory behavior
(Kleitz-Nelson et al., 2010a). Kleitz-Nelson et al. (2010b) inves-
tigated the role of D1 and D2 receptors on male sexual behavior
by examining how intracerebroventricular (i.c.v.) injections and
microinjections of D1 and D2 agonists and antagonists into the
MPOA influenced sexual behavior in male quail. I.c.v. injections
of D1 or D2 agonists and antagonists indicated that D1 recep-
tors facilitated consummatory male sexual behavior, whereas D2
receptors inhibited both appetitive and consummatory behavior.

Immunohistochemical studies have demonstrated that there
are dense networks of tyrosine hydroxylase (TH)-ir fibers in brain
areas that contain aromatase-ir neurons, such as the sexually
dimorphic MPOA or the bed nucleus striae terminalis (BNST) in
quail. Double-labeling has confirmed that aromatase-ir cells are
in close association with TH-ir fibers in quail (Balthazart et al.,
1998). Therefore, the possible existence of a direct modulation of
aromatase activity by dopamine and/or norepinephrine was sys-
tematically investigated by in vitro incubations of quail hypotha-
lamic homogenates (Balthazart et al., 2002). Aromatase activity
was quantified by the production of tritiated water from [1β-3H]
androstenedione (Baillien and Balthazart, 1997). Norepinephrine
had no or very limited effects on aromatase activity. In contrast,
dopamine and several D1 and/or D2 receptor agonists [apomor-
phine (for both D1/D2), SKF-38393 (for D1) and RU-24213 (for
D2)] depressed aromatase activity. As the inhibitory effect of the
agonists was not antagonized by the D1 antagonist SCH-23390 or
the D2 antagonist spiperone, the inhibitory effects of dopamine
or dopaminergic compounds were thought not to be medi-
ated through binding to dopamine receptors. Instead dopamine
was thought to act as an alternative substrate for aromatase to
compete with testosterone and prevent its transformation into
neuroestrogens (Balthazart et al., 2002). Accordingly, dopamine
should be transported into the aromatase cells in the MPOA by
dopamine transporter or internalization of dopamine receptors to
inhibit the activity of aromatase existing in the cytosol (Figure 1).

REGULATION OF AROMATASE ACTIVITY BY PHOSPHORYLATION
Several consensus sites of phosphorylation are present in aro-
matase sequences in mammals and birds (Corbin et al., 1988;
Harada, 1988; Harada et al., 1992; McPhaul et al., 1988; Means
et al., 1989; Shen et al., 1994), so it was hypothesized that phos-
phorylation may regulate the aromatase activity (Balthazart et al.,
2001a,b). Balthazart et al. (2001a) demonstrated that aromatase
activity in quail hypothalamic homogenates was rapidly down-
regulated by adding Ca2+, Mg2+, ATP, conditions that enhance
protein phosphorylation, and this inhibition of aromatase activity
was blocked by kinase inhibitors (Balthazart et al., 2001b).

FIGURE 1 | Model of the intracellular mechanism of GnIH and its

receptor (GPR147), glutamate and its receptor, dopamine that may

control male socio-sexual behavior by regulating the activity of

aromatase and neuroestrogen synthesis in the brain. GPR147 is
expressed on aromatase immunoreactive cells in the brain. GPR147 is
coupled to Gαi protein that inhibits the activity of adenylate cyclase (AC) and
decreases cAMP production and the activity of protein kinase A (PKA).
Inhibition of AC/cAMP/PKA pathway may thus decrease phosphorylated
aromatase and increase dephosphorylated aromatase. 17β-estradiol (E2)
synthesized from androgen such as testosterone (T) by aromatase in the
brain especially in the preoptic area (POA) regulates male aggression. It has
been previously demonstrated that aromatase activity is rapidly
down-regulated by phosphorylation, and this down-regulation is blocked by
kinase inhibitors. The administration of GnIH activates aromatase by
decreasing phosphorylated aromatase, and stimulates neuroestrogen
synthesis in the brain. Aromatase activity and estrogen concentration in the
brain especially in the POA are low in the morning when the birds are
active, but aromatase activity and E2 concentration gradually increased until
the evening when the birds became inactive. E2 release in the POA also
increased in the evening. Finally, centrally administered E2 at higher doses
in the morning inhibited aggressive behavior. These results suggest that
GnIH inhibits aggressive behavior by directly activating aromatase and
increasing neuroestrogen synthesis in the brain beyond its optimum
concentration for the expression of aggressive behavior. Glutamate was
shown to decrease the activity of aromatase by phosphorylation, and
dopamine may act as an alternative substrate for aromatase to compete
with testosterone and prevent its transformation into estrogens. Glutamate
and dopamine may thus facilitate male socio-sexual behavior by decreasing
the activity of aromatase and maintaining the optimum concentration of
neuroestrogen for the expression of male socio-sexual behavior.

ACTION OF GLUTAMATE IN BIRDS
Balthazart et al. (2006) further showed that aromatase activity
in quail hypothalamic explants was decreased within minutes
by glutamate agonists (kainate, AMPA or NMDA), possibly by
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enhancing intracellular Ca2+ concentration and phosphorylation
of aromatase. Cornil et al. (2000) visualized the distribution of
the major ionotropic glutamate receptors in the quail brain by
using primary antibodies raised against rat glutamate receptor 1
and receptors 2–3 (GluR1, GluR2/3: AMPA subtype), glutamate
receptors 5–7 (GluR5–7: kainate subtype), and NMDA receptors
(NMDAR1). The four types of receptors were broadly distributed
in the brain. In particular immunoreactive cells are identified
within the major aromatase cell groups located in the MPOA, ven-
tromedial hypothalamus, nucleus striae terminalis, and nucleus
taeniae. Dense populations of glutamate receptor-ir cells were
also present with a receptor subtype-specific distribution in broad
areas of the telencephalon (Cornil et al., 2000).

ACTION OF GLUTAMATE IN MAMMALS
Dominguez et al. (2006) measured glutamate in microdialysate
samples from the MPOA before, during, and after copulation
by male rats. There was a slight rise in extracellular gluta-
mate when the female was presented, a significant increase dur-
ing periods of mounting and intromitting, and a very large
increase in samples collected during ejaculation with a precip-
itous fall in the first post ejaculatory sample. Dominguez et al.
(2006) also administered a mixture of glutamate uptake inhibitors
into the MPOA before and during mating by retromicrodialy-
sis. The mixture increased extracellular glutamate and increased
the number of ejaculations in the 40 min test, decreased ejac-
ulation latency, and decreased the post ejaculatory latency to
resume copulation. These results strongly suggest that MPOA
glutamate is a major facilitator of copulation and the post ejac-
ulatory fall in glutamate regulates the post ejaculatory interval
(Dominguez et al., 2006). The results obtained in several species
suggest that glutamate facilitates male sexual behavior by decreas-
ing the activity of aromatase by phosphorylation in the MPOA
(Figure 1).

ACTION OF GNIH IN BIRDS
Ubuka et al. (2014) first measured daily changes in the frequency
of aggressive behavior of male quail and tested the effect of i.c.v.
administration of GnIH on the frequency of aggressive behav-
ior of male quail in the morning when its natural expression is
high. I.c.v. administration of GnIH rapidly inhibited the number
of male-typical aggressive behaviors of quail.

As previous studies suggested that full expression of testos-
terone action in the brain requires its aromatization in birds
(Yahr, 1979; Tsutsui and Ishii, 1981; Balthazart and Surlemont,
1990; Schlinger and Callard, 1990; Panzica et al., 1996; Balthazart
et al., 2009, 2011), Ubuka et al. (2014) hypothesized that
GnIH may inhibit aggressive behavior of male quail by regu-
lating neuroestrogen synthesis in the brain. Abundant GnIH-
ir neuronal fibers and aromatase-ir cells were observed in
the POA, BNST, mediobasal hypothalamus (MBH), and PAG,
where aromatase mRNA is distinctively expressed in the quail
brain (Voigt et al., 2007). Merged image of GnIH-ir neu-
ronal fibers and aromatase-ir cells showed close appositions
of GnIH-ir neuronal fibers in the vicinity of aromatase-
ir cells in these brain areas (Ubuka et al., 2014). In situ
hybridization for GPR147 mRNA combined with aromatase

immunohistochemistry in the POA further showed that almost
all aromatase-ir cells observed in the POA expressed GPR147
mRNA.

The effect of GnIH administration on aromatase activity and
E2 synthesis in the POA in vitro and in vivo was examined by
Ubuka et al. (2014). GnIH increased the activity of aromatase
and E2 in an organ cultured brain block including the POA
in a dose dependent manner. Ubuka et al. (2014) have also
shown that the administration of a GnIH receptor antagonist
RF9 (Simonin et al., 2006; Pineda et al., 2010) or an aromatase
inhibitor FAD (Steele et al., 1987; Wade et al., 1994) canceled
the stimulatory action of GnIH on E2 synthesis. Together these
results indicate that GnIH increases neuroestrogen concentra-
tion by increasing the activity of aromatase after binding to
GPR147 expressed on aromatase cells in the POA (Ubuka et al.,
2014).

It was previously demonstrated that aromatase activity in
hypothalamic homogenates of male quail is rapidly down-
regulated by phosphorylation, and this inhibition is blocked by
kinase inhibitors (Balthazart et al., 2001a,b, 2003, 2006; Charlier
et al., 2011a). In order to investigate if GnIH activates aromatase
by dephosphorylation of phosphorylated aromatase, Ubuka et al.
(2014) measured phosphorylated aromatase by the Phos-Tag
SDS PAGE method (Kinoshita et al., 2006) in the brain block
including the POA of birds that were centrally administered
with GnIH or vehicle in the morning. I.c.v. administration of
GnIH reduced phosphorylated aromatase in the POA 30 min after
administration (Ubuka et al., 2014).

Aromatase activity is not only controlled in the long term
(hours to days) by transcription of the aromatase gene by
steroids, but also in the short term (minutes) by phosphoryla-
tion by neurotransmitters, such as glutamate (Balthazart et al.,
2006). GnIH was shown to be the first neuropeptide that can
stimulate aromatase activity in the medium term (minutes to
hours) (Ubuka et al., 2014). GnIH receptor GPR147 has been
shown to couple predominantly through the Gαi protein to
inhibit cAMP production in mammals (Hinuma et al., 2000;
Ubuka et al., 2009b, 2012c, 2013c; Son et al., 2012). Son et al.
(2012) investigated the cell signaling process of GPR147 using
LβT2 cells, a mouse gonadotrope cell line, and it was shown
that GnIH inhibits gonadotropin-releasing hormone (GnRH)
induced gonadotropin subunit gene transcriptions by inhibit-
ing adenylate cyclase (AC)/cAMP/PKA dependent ERK phos-
phorylation. As mentioned above, the action of GnIH on E2
synthesis in the POA was prevented by concomitant adminis-
tration of RF9, a potent GPR147 antagonist, or FAD, an aro-
matase inhibitor (Ubuka et al., 2014). Ubuka et al. (2014) fur-
ther demonstrated that i.c.v. administration of GnIH reduces
phosphorylated aromatase in the POA. Previous studies have
shown that aromatase activity is inhibited by phosphorylation
in hypothalamic and ovarian homogenates of quail (Balthazart
et al., 2001a,b, 2003) and in various cell lines transfected with
human aromatase (Charlier et al., 2011a). Accordingly, it is
highly possible that GnIH stimulates neuroestrogen synthesis
in the POA by activating aromatase through dephosphoryla-
tion after binding to GPR147 expressed on aromatase cells
(Figure 1).
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ENVIRONMENTAL OR SOCIAL FACTORS THAT MODULATE
AROMATASE ACTIVITY IN MALE BIRDS
EFFECT OF DAILY RHYTHM
When sexually active male quail are paired in a relatively small
cage they fight using sequential aggressive actions. They often
threaten the opponent by stretching the neck and walking around
(strutting), approach and chase, peck the opponent (pecking),
grab the back of the opponent’s head or neck with their beak
(grabbing), attempt to mount the opponent (mounting), mount-
ing the opponent and lowering their cloaca close to the oppo-
nent’s cloaca (cloacal contact (CC)-like actions). The frequency of
these actions represents the activity of aggressive or sexual behav-
ior of male quail (Selinger and Bermant, 1967; Tsutsui and Ishii,
1981; Schlinger and Callard, 1990; Mills et al., 1997).

Ubuka et al. (2014) quantified strutting, pecking, grabbing,
mounting, and CC-like actions in 5 min during the light hours
around zietgeiber time (ZT) 3, 6, 9, and 12 h. All male quail used
in the experiment were kept under long day photoperiods (16 h
light, 8 h dark) to keep them sexually active. The frequency of
strutting, pecking, and grabbing actions was significantly higher
in the morning (ZT 3 h) and decreased in the afternoon (ZT 9 h)
and the evening (ZT 12 h). The frequency of mounting and CC-
like actions was also high in the morning and tended to decrease
until the evening.

Aromatase activity was assessed by measuring the conversion
of [3H]androstenedione to [3H]E2 using brain homogenates or
organ cultured quail brain blocks (Ubuka et al., 2014). Aromatase
activity in the brain block including the POA or BSTM was low
in the morning (ZT 3 h) and increased in the evening (ZT 12 h).
The change in aromatase activity in the other brain blocks showed
similar trends. E2 content and release in the POA was also low
in the morning (ZT 3 h) and increased in the evening (ZT 12 h)
possibly by the action of activated aromatase by dephosphory-
lation. Ubuka et al. (2014) also measured daily changes in E2
and testosterone concentrations in the serum, because changes
in aromatase activity or E2 concentration in the brain may have
reflected changes in E2 or testosterone concentration in the circu-
lation. However, there was no daily change in E2 and testosterone
concentrations in the serum.

EFFECT OF SOCIAL INTERACTION
Cornil et al. (2005) measured aromatase activity in hypotha-
lamic/preoptic area (HPOA) homogenates of male quail fol-
lowing visual access to or copulation with a female. Sexual
interactions resulted in a decrease in aromatase activity that
reached its maximum after 5 min (Cornil et al., 2005). The time
course of the effect of copulation on aromatase activity was also
measured specifically in the different populations in the brain
expressing high levels of aromatase activity (Schumacher and
Balthazart, 1987) of male quail that experienced varying dura-
tions of visual exposure to or copulation with a female by the
Palkovits punch method (de Bournonville et al., 2013). Sexual
interactions resulted in a rapid inhibition of aromatase activity
in specific brain regions including the MPOA and the tuberal
hypothalamus (de Bournonville et al., 2013). The rapid decrease
in neuroestrogen concentration in the MPOA may be impor-
tant during the motivational phase of the behavior to trigger

physiological events essential to activate mate search and thus
copulation.

EFFECT OF STRESS
Balthazart et al. (2009) showed that exposing male quail to
acute restraint stress for 15 min or injecting corticosterone 30 min
before brain collection results in a significant increase in aro-
matase activity in HPOA homogenates. Dickens et al. (2011)
investigated the effects of acute stress on aromatase activity
in both sexes by measuring enzyme activity in all aromatase-
expressing brain nuclei before, during, and after 30 min of acute
restraint stress. Acute stress rapidly increased aromatase activity
in the male MPOA in 5 min. This elevated activity persisted as
long as the stressor was present and returned to control levels
within 30 min after stress cessation (Dickens et al., 2011). These
results suggest that stress rapidly increases aromatase activity in
the brain of birds.

AROMATASE ACTIVITY, NEUROESTROGEN CONCENTRATION
AND SOCIO-SEXUAL BEHAVIOR OF MALE VERTEBRATES
STUDIES IN FISH
Huffman et al. (2013) tested the role of aromatase in mediat-
ing aggression and reproductive behavior of male Astatotilapia
burtoni, an African cichlid fish that display plasticity in social
behavior. They found that subordinate males have higher aro-
matase expression than dominant males in the magnocellular and
gigantocellular regions of the POA that regulate social behav-
ior. Intraperitoneal injections into dominant male fish with FAD
decreased aggressive, but not reproductive behavior. Indeed FAD
treated males had increased aromatase expression in the giganto-
cellular portion of the POA (Huffman et al., 2013). These results
suggest aromatase expression in the POA is negatively correlated
with dominance or aggression in male A. burtoni.

Black et al. (2005) investigated the effect of social environmen-
tal change on aggressive behavior and brain aromatase activity
in a sex-changing fish, Lythrypnus dalli. Male removal from a
socially stable group results in rapid increases in aggression in
the dominant female, which will later become male. These dom-
inant females, and recently sex-changed individuals, had lower
brain aromatase activity compared with control females and the
established males had the lowest brain aromatase activity. Within
hours of male removal, dominant females’ aggressive behavior
was inversely related to brain aromatase activity (Black et al.,
2005). These results suggest that high E2 concentration in the
brain caused by higher aromatase activity may inhibit aggressive
behavior so that E2 concentration and aromatase activity should
be reduced to increase aggressiveness and dominance within the
social group.

Lord et al. (2009) tested the effects of testosterone, E2,
and FAD on approach responses toward females in male gold-
fish (Carassius auratus). Injections of testosterone stimulated
approach responses toward the visual cues of females 30–45 min
later. E2 produced the same effect 30–45 min and even 10–25 min
after administration and treatment with FAD blocked the exoge-
nous effect of testosterone. The authors suggest that the testos-
terone surge induced by sexual stimuli may rapidly prime males
to mate by increasing sensitivity within visual pathways that
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guide approach responses toward females and/or by increasing
the motivation to approach potential mates. These actions occur
within traditional limbic circuits, and the aromatization of testos-
terone maybe important for the male approach response toward
females (Lord et al., 2009).

STUDIES IN BIRDS
Historically studies in birds that have reported the involvement of
aromatase in male sexual behavior and the stimulatory effect of E2
on male sexual behavior have used castrated male quail (Adkins,
1977) or reproductively inactivated male quail by photoperi-
odic manipulation (Adkins et al., 1980). Single doses of various
steroids were administered peripherally to reproductively inactive
birds for days or weeks to compare their effects (Adkins, 1977;
Adkins et al., 1980; Tsutsui and Ishii, 1981; Wada, 1982; Schlinger
and Callard, 1990). These studies are likely to have shown the
genomic effects of E2 and other sex steroids on the brain that facil-
itated socio-sexual behaviors, which were attenuated by castration
or photoperiodic manipulation.

Silverin et al. (2004) investigated the relationships among
territorial aggression and brain aromatase activity in pied fly-
catcher, Ficedula hypoleuca, at the peak of the reproductive
season. Aggressive behavior was measured during a simulated
territorial intrusion in unpaired males holding primary terri-
tories. A significant correlation was observed between number
of attacks/min displayed during the simulated territorial intru-
sion and aromatase activity in the anterior diencephalon but not
in the posterior diencephalon and telencephalon (Silverin et al.,
2004). These results suggest that aromatase activity in the ante-
rior diencephalon is important for territorial aggression. Charlier
et al. (2011b) exposed wild male white-crowned sparrows in
the late breeding season to simulated territorial intrusion (STI)
(song playback and live decoy) for 30 min. Although STI sig-
nificantly increased aggressive behavior aromatase activity was
not affected in the brain regions collected using the Palkovits
punch technique. STI did not affect circulating levels of E2, but
rapidly reduced E2 concentrations in the hippocampus, ventro-
medial nucleus of the hypothalamus and bed nucleus of the stria
terminalis (Charlier et al., 2011b).

Many species also defend territories in the non-breeding sea-
son, when circulating testosterone levels are low. Castration of
the western male song sparrow Melospiza melodia morphna had
no effect on aggression in the non-breeding season, suggest-
ing that autumnal territoriality is independent of gonadal hor-
mones. Soma et al. (2000) treated wild, free-living non-breeding
male song sparrows with FAD using micro-osmotic pumps. FAD
greatly reduced aggressive behavior, and the effects of FAD were
rescued by E2 replacement. These data indicate that E2 regulates
male aggression despite low circulating levels of sex steroids or
despite castration (Soma et al., 2000). Studies in diverse avian and
mammalian species suggested that adrenal dehydroepiandros-
terone (DHEA), an androgen precursor and prohormone, is
important for aggressive behavior when gonadal testosterone
is low and circulating DHEA can be converted into active sex
steroids within the brain (Soma et al., 2014).

To investigate the physiological role of GnIH in the stimula-
tion of E2 synthesis in the brain, Ubuka et al. (2014) analyzed

the effects of i.c.v. administration of GnIH on E2 concentra-
tion in the brain and aggressiveness (peck frequency against the
standard bird) of individual birds. I.c.v. administration of GnIH
increased E2 concentration in the brain blocks including the POA
or PAG, 30 min after administration. This was associated with
a significant decrease in the frequency of pecking in the morn-
ing (ZT 2–4 h). As i.c.v. administration of GnIH stimulated E2
synthesis in the brain and inhibited the frequency of pecking
actions, it was hypothesized that the high concentration of E2 in
the brain may inhibit aggressive behavior. To test this hypothe-
sis Ubuka et al. (2014) centrally administered various doses of E2
and measured five stereotypic actions of aggressive behavior in the
morning (ZT 2–6 h). I.c.v. administration of E2 at 1 ng increased
the frequency of CC-like action compared with vehicle adminis-
tered birds. However, i.c.v. administrations of E2 at 10 ng, 100 ng,
1 μg, and 10 μg inhibited the frequency of pecking, grabbing,
mounting, and CC-like actions compared with vehicle or 1 ng E2
administered birds (Ubuka et al., 2014). These results suggest that
high concentrations of neuroestrogen inhibit socio-sexual behav-
iors of male quail although basal concentration of neuroestrogen
facilitates socio-sexual behaviors (Ubuka and Tsutsui, 2014).

STUDIES IN RODENTS
Compaan et al. (1994) measured the brain aromatase activity in
the POA, amygdaloid nuclei (Am), ventromedial hypothalamus
(VMH), and parietal cortex (CTX) from two strains of adult male
house mice, which were genetically selected for territorial aggres-
sion, based upon their attack latencies (short attack latency: SAL;
long attack latency: LAL). Non aggressive LAL males had higher
aromatase activity in the POA compared to aggressive SAL ani-
mals. The aromatase activity levels in both the VMH and Am did
not differ significantly between strains. Aromatase activity was
higher in POA than VMH in nonaggressive LAL males, whereas
aromatase activity was higher in VMH than POA in aggressive
SAL males. In both selection lines, the Am exhibited the highest
levels of aromatase activity, as compared to the other investigated
areas (Compaan et al., 1994).

Toda et al. (2001a,b) generated ArKO mice by targeting dis-
ruption of the CYP19 (aromatase) gene. They observed that
ArKO males exhibited a complete loss of aggressive behavior
in a resident-intruder paradigm. The behavior of ArKO males
was partially reinstated when the mice received supplements of
E2 soon after birth until the day of testing, but it was not
restored when the supplementation was started at 7 days after
birth (Toda et al., 2001a,b). These results suggest that neuroestro-
gen is required to construct neuronal infrastructure for aggressive
behavior after birth and to maintain it in adult male mice.

Harada et al. (2009) also generated ArKO mice, which showed
undetectable estrogen and enhanced androgen levels in blood.
These ArKO mice exhibited enhanced appetite and displayed dis-
orders in sexual motivation, sexual partnership preference, sexual
performance, aggressive behavior, parental behavior, infanticide
behavior and exploratory (anxiety) behavior. By introducing
a transgene of human aromatase, controlled by the minimal
promoter region, into the ArKO mouse they showed near
recovery from behavioral disorders. This transgenic mouse line
(ArKO/hArom) have a POA, hypothalamus and amygdala that
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are exposed to neuroestrogen only in the perinatal period, and
then to enhanced androgens but no neuroestrogen exposure in
adulthood, These results suggest that neuroestrogen acting in spe-
cific brain regions are important to organize sex-specific neural
networks during the perinatal period (Harada et al., 2009).

STUDIES IN NON HUMAN PRIMATES
Phoenix (1974) studied the sexual and sex-related behavior of
adult male rhesus monkeys castrated 3 years earlier in pair tests
with receptive females. The performance before, and during, daily
treatment with 1 mg/kg dihydrotestosterone propionate (DHTP),
a non-aromatizable androgen, was compared. It was shown that
DHTP effectively rendered the performance level of the castrates
comparable to that of the intact controls (Phoenix, 1974). This
result suggests that aromatization of androgen is not required for
male sexual behavior in this monkey species.

Zumpe et al. (1996) tested the effect of medroxyprogesterone
acetate (MPA) (that reduces androgen uptake by brain), FAD,
and E2 on the sexual motivation and behavior of castrated and
testosterone treated male cynomolgus monkeys, Macaca fasci-
cularis. Sexual motivation reflected in mounting attempts and
mounting attempt latencies was diminished by E2 treatment in
males receiving both MPA and FAD, but ejaculatory activity
was unchanged (Zumpe et al., 1996). These results suggest that
although testosterone and basal concentration of neuroestrogen
is required for sexual motivation of males, higher concentra-
tion of neuroestrogen may inhibit sexual motivation reflected in
mounting attempts.

STUDIES IN HUMANS
Gooren (1985) reported that administration of tamoxifen, estro-
gen receptor antagonist, or testolactone, an aromatase inhibitor,
had no effect on male human sexual function. Replacement of
testosterone substitution therapy of agonadal men by DHT, non-
aromatizable androgen, was not associated with any change of
sexual functioning. Administration of DHT to eugonadal men
led to a transient increase in nocturnal sexual dreams, erec-
tions and irritability. It was concluded that aromatization of
testosterone is not required and that DHT maintains sexual func-
tions in the adult male with an established sex life (Gooren,
1985).

Kyomen et al. (1999) performed a randomized, double-blind,
placebo-controlled clinical trial to investigate the efficacy and
safety of short-term estrogen therapy in decreasing aggressive
behavior in elderly patients with moderate-to-severe dementia.
They found that estrogen therapy was associated with lower
total aggression scores and with decreased frequency of physical
aggression over the 4-week trial and no adverse effects of estro-
gen were observed during the course of the study (Kyomen et al.,
1999).

Orengo et al. (2002) investigated if testosterone and estro-
gen levels correlate with aggression in older men with dementia.
Plasma total and free testosterone and estrogen levels and scores
for behavioral disturbances, in particular aggression, were mea-
sured in elderly males who had a diagnosis of dementia. They
found that free testosterone levels showed significant positive
correlations with measures of aggression, but plasma estrogen

levels showed significant negative correlations with measures of
aggression (Orengo et al., 2002).

CONCLUSION AND POSSIBLE MECHANISM
In this review we give an account of studies that have investigated
the role of neuroestrogen or estrogen on socio-sexual behavior
of males. Many correlational studies in fish, birds, and mammals
suggest that male aggression or sexual behavior and aromatase
activities in the brain are negatively correlated. Basal activity of
aromatase appears to be required for male socio-sexual behav-
iors especially during development when neuronal infrastructure
for male socio-sexual behavior is constructed or organized in
the brain. As administration of aromatase inhibitor such as FAD
decreases socio-sexual behaviors of adult males in many ani-
mals, aromatase and neuroestrogen seem to be also important
for the maintenance of neuronal infrastructure for male socio-
sexual behavior in adulthood. However, neuroestrogen may not
be important for the maintenance of male socio-sexual behav-
ior in some monkeys and humans. We speculate that this may
be because of the relative roles that a developed cerebrum plays
in the socio-sexual behavior of primates. Higher concentrations
of neuroestrogen or estrogen may inhibit aggressive behavior
in adulthood that was experimentally shown in male quail and
elderly human males with dementia.

Although dopamine and glutamate stimulate male socio-
sexual behaviors in birds and mammals, it was shown that they
inhibit aromatase activity in the POA that is thought to be the
most critical site of aromatization and neuroestrogen action for
the regulation of male socio-sexual behaviors. These results fur-
ther suggest that higher concentration of neuroestrogen especially
in the POA may inhibit male socio-sexual behavior. Dopamine
may act as an alternative substrate for aromatase to compete with
testosterone and prevent its transformation into neuroestrogen.
Accordingly, dopamine may facilitate male socio-sexual behav-
ior by decreasing aromatase activity in the cytosol after it enters
the cell through dopamine transporter or receptor internaliza-
tion. Glutamate was shown to decrease the activity of aromatase
by phosphorylation of aromatase, whereas GnIH increases the
activity of aromatase by its dephosphorylation. The effects of glu-
tamate and GnIH on phosphorylation or dephosphorylation of
aromatase are likely to be achieved by cell signaling processes
triggered after binding to their receptors. Even if dopamine, gluta-
mate, and GnIH can rapidly change the activity of aromatase and
neuroestrogen concentration in the POA, we consider that neu-
roestrogen in the POA may not directly regulate the movement
of the body to perform socio-sexual behaviors because synthe-
sized neuroestrogen could not be degraded in milliseconds after
constrictions and relaxations of related muscles, instead different
concentrations of neuroestrogen is likely to facilitate or inhibit
the action of neurotransmitters and neuromodulators, including
dopamine, glutamate, and GnIH, which are released according to
social or natural, favorable or unfavorable environment.

The key question arising from the above hypothesis is what
is the possible mechanism of neuroestrogen action according to
its concentration from facilitation to inhibition on male socio-
sexual behavior? It was shown that ERαKO male mice display
decreased aggression toward intruders in resident-intruder tests
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(Ogawa et al., 1997). In contrast ERβKO male mice are more
aggressive than wild type mice in resident-intruder tests (Ogawa
et al., 1999). There are also studies showing different roles of
ER subtypes on the behavior. ERα was shown to be essen-
tial for female-directed chemo-investigatory behavior of males
(Wersinger and Rissman, 2000b) and ERβ was shown to regu-
late anxiety behavior (Choleris et al., 2003; Imwalle et al., 2005;
Lund et al., 2005). It may be possible that neuroestrogen regu-
lates different ER subtypes depending on its concentration in the
brain. Further studies including detailed analyses of the localiza-
tion of aromatase and ER subtypes and the time-course of their
activations are required to answer this question.
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