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With the advent of high throughput data genomic technologies the volume of available
data is now staggering. In addition databases that provide resources to annotate, translate,
and connect biological data have grown exponentially in content and use. The availability
of such data emphasizes the importance of bioinformatics and computational biology in
genomics research and has led to the development of thousands of tools to integrate
and utilize these resources. When utilizing such resources, the principles of reproducible
research are often overlooked. In this manuscript we provide selected case studies
illustrating issues that may arise while working with genes and genetic polymorphisms.
These case studies illustrate potential sources of error which can be introduced if
the practices of reproducible research are not employed and non-concurrent databases
are used. We also show examples of a lack of transparency when these databases
are concerned when using popular bioinformatics tools. These examples highlight that
resources are constantly evolving, and in order to provide reproducible results, research
should be aware of and connected to the correct release of the data, particularly when
implementing computational tools.
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INTRODUCTION
When conducting genetics research, whether from the perspec-
tive of a candidate gene study or genome wide association study
(GWAS), researchers must be able to accurately identify and
translate where molecular markers are located on the genome
in reference to the coordinates of known genes. While this may
seem straightforward, it can be quite complicated and is often
overlooked (Hong et al., 2009; Wang et al., 2010). The mapping
of markers to genes and subsequent data mining of information
about these genes is further complicated by the ever increas-
ing amounts of data and resulting evolution in databases, which
in turn can lead to changes in genomic coordinates, anno-
tations, and other information. Additionally, few studies (and
methodologies) report the version of databases that are used
in the bioinformatic workflow process. For example, the pop-
ular bioinformatics resource DAVID lists the download date of
the various databases used for the Knowledgebase (the most
recent of which is in 2009), but does not provide the ver-
sion of those databases (Huang et al., 2009a,b). This lack of
reporting can make subsequent analysis and reproduction of oth-
ers research difficult, if not impossible. In this manuscript we
describe the key steps involved in the use of database resources
for the mapping of markers to genes (and vice versa) in a typi-
cal candidate gene based study and highlight several ambiguities
that can have potentially serious consequences in subsequent
research.

WORKFLOW CASE STUDIES
The steps in identifying SNPs from a list of candidate genes
can be described as (1) determining the candidate gene pool,

(2) annotating, or retrieving information about those genes,
(3) determining the location (and boundaries) of those genes,
and (4) identifying molecular markers (e.g., single nucleotide
polymorphisms, SNPs) within those boundaries. Similar steps are
involved in identifying genes that are related to SNPs found to be
significant from a GWAS.

In a collaborative research setting investigators will often pro-
vide a list of gene names that they are interested in to their bioin-
formatic collaborators who then retrieve information related to
these genes for further analysis. The naming of these genes is
the first point of ambiguity. Often, these names are common
names or synonyms instead of the official names or gene sym-
bols [see HUGO Gene Names Committee HGNC (Seal et al.,
2011)]. Due to the structure of most bioinformatic data sources,
it can be difficult to correctly identify the gene that an inves-
tigator is interested in when the official name is not provided.
An example of this is described in Table 1. In this example the
original list of TOSO, PIGR, FCAMR, ADRA1A, ADRA1B, and
ADRA1D was provided by a collaborator. When searching the
UCSC Genome Browser or Entrez Gene databases (accessed July
2011), we see that TOSO is not an HGNC official gene symbol,
but is instead a synonym for the gene Fas apoptotic inhibitory
molecule 3 (official symbol FAIM3, geneID 9214), and search-
ing earlier versions of UCSC Genome Browser or into the Gene
Accession Conversion tool in DAVID, TOSO would not produce
any results.

The second source of ambiguity, gene annotation, is also
illustrated in Table 1. In general, capturing gene level anno-
tations (HGNC id, geneID, synonyms, chromosome, descrip-
tion, etc.), not only provides more information, but also allows
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Table 1 | Inconsistency in gene “names” and locations.

GeneID Symbol Synonyms Chr Description Genome build/base pair location

Hg17 Hg18 Hg19

9214 FAIM3 TOSO 1 Fas apoptotic
inhibitory
molecule 3

203466126-
203483738

205144354-
205161966

207076633-
207095378

5284 PIGR FLJ22667|MGC125
361|MGC125362

1 Polymeric
immunoglobulin
receptor

203490267-
203508202

205168495-
205186430

207101869-
207119811

83953 FCAMR FCA/MR|FKSG87 1 Fc receptor, IgA,
IgM, high affinity

Information
Not available

205198027-
205210593

207131404-
207143970

148 ADRA1A ADRA1C|ADRA1L
1|ALPHA1AAR

8 Adrenergic, alpha-
1A-, receptor

26683139-
26778839

26683139-
26778839

26627222-
26722922

147 ADRA1B ADRA1|ALPHA1B
AR

5 Adrenergic, alpha-
1B-, receptor

159276318-
159332129

159276318-
159332595

159343740-
159400017

146 ADRA1D ADRA1|ADRA1A|
ADRA1R|ALPHA1|
DAR|dJ779E11.2

20 Adrenergic, alpha-
1D-, receptor

4149816-
4177659

4149278-
4177659

4201278-
4229659

Bold genes indicate terms from original list from collaborator. Annotation information retrieved for the candidate gene list through Entrez gene’s GeneInfo. GeneInfo

data can be downloaded from Entrez gene’s FTP location on September 10th 2010 (ftp://ftp.ncbi.nih.gov/gene/DATA/).

investigators to perform quality checks. In the example discussed
here, ADRA1A is listed as both an HGNC official gene symbol
(adrenergic alpha-1B-receptor, gene ID 147) and as a synonym for
ADRA1D (adrenergic alpha-1D-receptor, gene ID 146). Without
scrutiny, it is difficult to tell which gene(s) the investigator is
indeed interested. A survey of the most recent build of Entrez
Gene (Hg 19) reveals that there are 43,037 unique gene sym-
bols, 53,215 unique gene synonyms and 1122 instances where
a term is both an official gene symbol and a synonym for at
least one other gene, and 2632 terms that occur as synonyms
for multiple genes, Although it may seem trivial in this exam-
ple where there are only a few genes, in situations where there
are dozens to hundreds of genes this manual verification of
genes represents a significant investment of time and potential
sources of error. It is also important to note that inconsisten-
cies between databases can also introduce significant errors when
translating gene IDs from one source to another. Even when
using one of the several ID converters available (e.g., DAVID
ID Converter or GeneCruiser), errors can be introduced when
synonyms, HGNC symbols and other identifiers are inconsis-
tently mapped or when the timelines for the database releases
are not correctly matched or are out of date (discussed further
below).

In the candidate gene framework, the gene coordinates can
be identified from databases such as Entrez Gene or UCSC
Genome Browser relatively easily. However the third ambiguity,
determining the gene location, is illustrated in part by incon-
stancies in the use of gene symbol vs. gene synonym (Table 1).
For example, the genes ADRA1A and ADRA1D (discussed above)
are located on separate chromosomes. Choosing the wrong gene
will result in choosing a completely inappropriate location which

will have obviously significant potential implications on down-
stream analysis. This ambiguity is perhaps more of a concern
when taking the approach common for GWAS of identifying
genes related to interesting SNPs. For a GWAS, usually both the
SNP coordinates and genes that contain those SNPs are provided
by the manufacturer of the genotyping platform. However, how
these coordinates and genes are identified is often unclear, and
these annotation files themselves are often additional source of
errors. This is strikingly illustrated in Table 2. In this instance
a SNP (rs2844871) was identified as interesting based on an
association study genotyped on the Affymetrix Genome Wide
Human SNP Array 6.0. When following the bioinformatic work-
flow to identify the gene of interest, it was discovered that the
SNP is mapped to different genes based on not only differ-
ent databases, but also on different versions of those databases.
A query of build 135 of dbSNP identified 1,226,430 SNPs that
have multiple coordinates, 805,555 of which have more than
one distinct chromosome assigned to the same rs ID (or 1.5%
of the 54,212,080 SNPs). Additionally, 1,164,480 single base pair
coordinates were found to be associated with multiple rsID’s
(with the maximum of 97 rsID’s associated with the coordi-
nates for one single nucleotide polymorphism). Searching for
annotation information for rs2844871 in the UCSC Genome
Browser, dbSNP, HapMap and Affymetrix databases not only pro-
vided different genomic locations based on which build that was
accessed, but different (and multiple) chromosomes. Although
in this case the multiple locations are likely due to a duplica-
tion event [a BLAST (http://blast.ncbi.nlm.nih.gov/) search of the
100 base pair sequence surrounding the SNP shows that regions
of >90% identity occur on chromosomes 22, 14, 2, 4, and 21],
it serves to dramatically illustrate errors that can be introduced
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Table 2 | Discrepancies in the location of SNP rs2844871.

Database Database

version

Human

genome

build

Human reference

chromosome/

NCBI build

dbSNP

build

Location (bp)

Affymetrix 6.0

NetAffx 30 Hg18 NCBI36 Not specified chr22:14459243

NetAffx 31 Hg19 GRCH 37 131 SNP is listed, but no position
information given

NetAffx 32 Hg19 GRCH 37 132 SNP is listed, but no position
information given

UCSC genome browser

July 2011 Hg18 NCBI36 128 chr22: 14459242

Hg18 NCBI36 130 chr14: 19763716
chr22: 16079242

Hg 19 GRCH 37 132 chr14:19763467
chr22:16078993
chrUn_gl000244:34403

Hg 19 GRCH 37 135 chr14:19763467
chr22:16078993
chrUn_gl000244:34403

dbSNP

July 2011 Hg 19 NCBI 37.1 132 chr2: 125655701

October 2012 Hg19 NCBI 37.3 137 chr14: 19763717
chr22: 16079243
NA
chr2:124523528

HapMap Release 27 Hg18 Not specified Not specified chr22: 14459243*

HapMap Release 28 Hg18 NCBI36 126 chr22: 14459243

∗Genotyped on Affy 6.0 for Phase II samples, no dates or other information was given in HapMart.

Search results for SNP rs284487 from various sources. Search conducted on Jul 11th, 2011 and updated October 29th, 2012.

with the use of different databases and lack of stringent quality
controls.

Additionally, when mapping a marker to a gene, investiga-
tors are often not just interested in a SNP that lies directly
with the gene boundary, but also genes that lie within a cer-
tain distance or are in linkage disequilibrium with a SNP of
interest. The accurate identification of SNPs and related genes
is dependent on both an accurate identification of gene bound-
aries and the synchronization of multiple databases, which often
leads to the final source of ambiguity and is discussed further
below.

The final source of ambiguity, variation between databases
and across time, is intrinsic to every step of the workflow out-
lined above. Bioinformatic analysis is dependent on key database
resources such as dbSNP, Entrez Gene, UCSC Genome Browser
and Ensembl (Sherry, 2001; Fujita et al., 2011; Maglott et al., 2011;
Flicek et al., 2012). These databases are in a state of dynamic flux,
and are constantly being updated, sometimes resulting in signif-
icant changes (Data Changes that Occur Between Builds, 2005;
Fujita et al., 2011). More often than not, investigators fail to pro-
vide the date and database version of each of the data sources that

was used in the process of their analysis. Comparing the num-
ber of official gene symbols and synonyms for Hg18 and Hg19
highlights the differences in database builds. As discussed above,
there are 43,037 and 53,215 unique gene symbols and synonyms
respectively in Hg19, compared to 38,586 and 53,475 in Hg18,
with 23,325 gene symbols overlapping between the two versions
of the human genome builds. Tables 1 and 2 illustrate how the
version of the database used can have an effect on the data that
is retrieved. For example, (1) FACMR (gene ID 83953) was not
included in the human genome build 17 (Hg17) and has gene
boundary location that is shifted by almost two million bases
from Hg18 to Hg19 and (2) when the coordinates from Hg17
are used to search UCSC Genome Browser using Hg19 the gene
OPTC (gene ID 26254) is retrieved instead of FAIM3. Although
these shifts in boundaries are a result of updates to the genome
builds, one can see how using gene boundary coordinates from
Hg19 for data that was originally built on Hg17, without first
correcting for the change, can introduce errors. Tools such as the
UCSC Genome Browser LiftOver Utility are available to convert
genome coordinates between assemblies; however to correctly
apply the tool, researchers must first be aware of the issue.
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Furthermore, the timeline of these changes is not coordi-
nated across databases. A search conducted in January 2010 in
dbSNP would have been based on Hg18 instead of Hg19 which
the NCBI released in early 2009 (build #37) and the August
2010 HapMap data release (release #28) for both Phase II and
III data is based on NCBI build 36 and dbSNP release 126
(from 2006). As discussed above, the location of a gene may
change with different builds of the human genome, sometimes
significantly, and investigators should take the necessary steps
to ensure that they are using coordinated builds of the different
resources. When conducting research that is based on a genotyp-
ing chip, investigators should also carefully consider the version
of databases used for bioinformatic analysis. If the correspond-
ing changes in the coordinates of the markers on the genotyp-
ing chip are not also accounted for, SNPs could be mapped
to incorrect genes, which can result in very costly mistakes
(Karow, 2010).

DISCUSSION
In recent years there has been a paradigm shift in the field of
genetics. In the not too distant past, researchers were limited
by their ability to acquire data. Now, with the availability of
genome scale DNA and RNA platforms and recent introduction
of affordable whole genome sequencing technologies, scientists
are limited by their ability to effectively organize and analyze vast
amounts of data. Part of this process is the accurate and consistent
annotation of genomic information as part of the bioinformat-
ics workflow. As describe above, changes in database versions and
genome builds throughout the life of a study can have potentially
significant impact.

In the case study discussed here we highlight several ambigu-
ities that can be introduced in a candidate gene or SNP based
study. When going across database versions using gene name,
coordinates or rsID’s up to the individual researcher. In the can-
didate gene based approach where the aim is to identify variants
within a gene, one will typically use the coordinates of both genes
and SNPs to identify SNPs for further study. As described above,
one first verify they have the correct gene, and then must either
stay within the same human genome version for each database
used, or must correctly convert coordinates in order to avoid
introducing errors. For the complementary approach based on
identifying genes related to interesting SNPs, often the only data
provided is the rsID for that SNP and no coordinates or genome
build information is provided. Without this extra information
errors can again be introduced when, as shown above, multi-
ple positions, and therefore multiple genes are associated with a
variant.

One way to prevent these errors is for investigators to
involve bioinformaticians in all stages of a study, and for every-
one involved to follow the principles of reproducible research.
Reproducibility in research has been defined by the uniform
Guidelines of the International Committee of Medical Journal
Editors as the responsibility of authors to “identify the methods,
apparatus and procedures in sufficient detail to allow other work-
ers to reproduce the results.” Young scientists are taught to include
in the methods and materials section of manuscripts the details

which would be needed for successful repetition and extension of
their work (Hothorn and Leisch, 2011). Unfortunately, the same
attention that is given to laboratory based experimental details
and protocols have not been applied to the bioinformatics or
computational components of many large genetic studies. This
is beginning to change, especially in the domains of bioinfor-
matics and biocomputing, where there has been growing interest
in following the philosophy and best principles of reproducibil-
ity and repeatability in scientific research (Hothorn et al., 2009;
Mesirov, 2010). As we move toward fully embracing the con-
cepts of reproducible research, there is an increasing need for
reproducible research modules in many of the software and tools
where underlying computer code and data tend to change over
time.

The continued growth in data volume has introduced a new
set of issues that must be considered and addressed in genomics
studies. The examples discussed above illustrate the importance
of involving bioinformaticians in the entire process of a study.
Researchers can avoid these pitfalls by implementing procedures
that follow the principles of reproducible research. Similar to
the use of a notebook in a wet lab, a wiki based notebook
(our own group uses a Confluence powered wiki), employing a
Reproducible Research Systems (RSS) approach or using tools
such as myExperiment, GenePattern GRRD, Galaxy or Sweave,
can be used to detail the workflow involved in the computa-
tional analysis of complex genomic data (Friedrich Leisch, 2002;
Reich et al., 2006; Goble et al., 2010; Goecks et al., 2010; Hothorn
and Leisch, 2011). Accurate depiction of the research process will
become even more important as journals follow the trend set
by Biometrical Journal, Journal of Epidemiology, and Biostatistics
which now suggest that authors go beyond the common prac-
tice of making data freely accessible, but also meet some stan-
dard of reproducibility (Peng et al., 2006; Peng, 2009; Mesirov,
2010).

CONCLUSION
The importance of following the principles of reproducible
research has been recently highlighted with several high pro-
file examples (Hothorn et al., 2009; Baggerly and Coombes,
2011). Seemingly small mistakes can have significant down-
stream consequences in any data analysis that utilizes large
amounts of data and multiple steps of analysis. As exempli-
fied here, the simple mistake of not reporting, or using an
incorrect version of a database can affect the interpretability
and reproducibility of a study. To prevent these issues from
having a greater impact, it is important for the research com-
munity as a whole to embrace the concepts of reproducible
research and make a conscious effort toward moving toward that
goal.
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URLS

Resource URL

Entrez Gene www.ncbi.nlm.nih.gov/gene

UCSC Genome Browser http://genome.ucsc.edu

Affymetrix NetAffx Analysis Center www.affymetrix.com/analysis/index.affx

dbSNP www.ncbi.nlm.nih.gov/projects/SNP/

UCSC LiftOver http://genome.ucsc.edu/cgi-bin/hgLiftOver

My Experiment www.myexperiment.org/

GenePattern GRRD www.broadinstitute.org/cancer/software/genepattern/grrd/

Sweave www.stat.uni-muenchen.de/∼leisch/Sweave/

HUGO www.genenames.org/aboutHGNC.html

DAVID http://david.abcc.ncifcrf.gov/

GeneCruiser http://genecruiser.broadinstitute.org/genecruiser3/
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