
ORIGINAL RESEARCH ARTICLE
published: 01 November 2013

doi: 10.3389/fnhum.2013.00716

Graph theoretical analysis of developmental patterns of the
white matter network
Zhang Chen1, Min Liu1, Donald W. Gross2 and Christian Beaulieu1*

1 Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
2 Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada

Edited by:

Yong He, Beijing Normal University,
China

Reviewed by:

Hao Huang, University of Texas
Southwetern Medical Center, USA
Pew-Thian Yap, University of North
Carolina, USA

*Correspondence:

Christian Beaulieu, Department of
Biomedical Engineering,
1098 Research Transition Facility,
University of Alberta, 8308-114
Street, Edmonton, AB T6G 2V2,
Canada
e-mail: christian.beaulieu@
ualberta.ca

Understanding the development of human brain organization is critical for gaining insight
into how the enhancement of cognitive processes is related to the fine-tuning of the brain
network. However, the developmental trajectory of the large-scale white matter (WM)
network is not fully understood. Here, using graph theory, we examine developmental
changes in the organization of WM networks in 180 typically-developing participants.
WM networks were constructed using whole brain tractography and 78 cortical regions
of interest were extracted from each participant. The subjects were first divided into 5
equal sample size (n = 36) groups (early childhood: 6.0–9.7 years; late childhood: 9.8–12.7
years; adolescence: 12.9–17.5 years; young adult: 17.6–21.8 years; adult: 21.9–29.6 years).
Most prominent changes in the topological properties of developing brain networks occur
at late childhood and adolescence. During late childhood period, the structural brain
network showed significant increase in the global efficiency but decrease in modularity,
suggesting a shift of topological organization toward a more randomized configuration.
However, while preserving most topological features, there was a significant increase
in the local efficiency at adolescence, suggesting the dynamic process of rewiring and
rebalancing brain connections at different growth stages. In addition, several pivotal
hubs were identified that are vital for the global coordination of information flow over
the whole brain network across all age groups. Significant increases of nodal efficiency
were present in several regions such as precuneus at late childhood. Finally, a stable
and functionally/anatomically related modular organization was identified throughout the
development of the WM network. This study used network analysis to elucidate the
topological changes in brain maturation, paving the way for developing novel methods
for analyzing disrupted brain connectivity in neurodevelopmental disorders.
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INTRODUCTION
Neuroimaging studies have demonstrated widespread and
regionally specific structural and functional brain changes during
development from infancy to adulthood. Structural magnetic res-
onance imaging (MRI) studies have reported age-related changes
in brain volumes (Giedd et al., 1999; Good et al., 2001), areas
(Thompson et al., 2000), cortical thickness (Sowell et al., 2004;
Shaw et al., 2008), and regional gray matter (GM) and white mat-
ter (WM) density (Paus et al., 1999; Gogtay et al., 2004). The
developmental changes in GM and WM on gross scale MRI may
reflect synaptic pruning and myelination occurring at the neu-
ronal level (Gogtay et al., 2004). Functional neuroimaging studies
have demonstrated increased connectivity among distant regions
and decreased connectivity among neighboring regions in brain
maturation which suggests a mechanism of segregation of local
regions and integration of distant regions into disparate subnet-
works for the developing brain (Fair et al., 2008, 2009; Vogel
et al., 2010). Diffusion tensor imaging (DTI) studies of WM
have shown age-related increases in fractional anisotropy (FA)
and decrease in overall diffusion with development [many studies

but some include (Snook et al., 2005; Lebel et al., 2008; Tamnes
et al., 2010)], including into young adulthood (Giorgio et al.,
2008; Lebel and Beaulieu, 2011).

The recent advent of modern network analysis based on graph
theory (Strogatz, 2001), has enabled the investigation of the large-
scale topological organization of various structural and func-
tional brain networks such as the small-world property, network
efficiency and modularity (He et al., 2007; Bullmore and Sporns,
2009; He and Evans, 2010). The network metrics have also proven
useful in modeling the large-scale functional and structural orga-
nization of the developing brain. Several functional brain network
studies have reported age-related increases in the small-worldness
(Wu et al., 2013) and a progression from local to distributed orga-
nization (Fair et al., 2009) in brain development. The analysis of
the structural brain network constructed from regional cortical
thickness correlations has revealed a non-linear developmental
pattern in network metrics and that most topological changes
happen at the late childhood stage (Khundrakpam et al., 2013).

Recently, there has been an increasing interest in the study
of how graph metrics of the anatomical brain network change
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during development. Using DTI, Yap et al. (2011) examined
WM networks of 39 healthy pediatric subjects with longitudi-
nal data collected at average ages of 2 weeks, 1 year, and 2
years and demonstrated that the small-world architecture exists
at birth with efficiency that increases in later stages of devel-
opment. Two recent brain connectivity studies of WM matu-
ration pattern using diffusion MRI tractography demonstrated
linear and non-linear patterns of increasing structural efficiency
with age between ages 2 and 18 years in 30 patients scanned
clinically and otherwise deemed normal post-MRI (Hagmann
et al., 2010) and between ages 12 and 30 years in 439 healthy
subjects (Dennis et al., 2013). However, those studies were
limited by different constraints such as a binarized brain net-
work, limited sample size, or restricted age range (early adoles-
cence to early adulthood), thus the developmental trajectory of
the WM network from early childhood to adulthood remains
unclear.

Therefore, the main goal of this study was to map the devel-
opmental changes of the structural brain network based on
WM connectivity in 180 typically-developing subjects from 6
to 30 years of age. We hypothesized (i) non-linear age-related
developmental trajectories of network metrics as most changes
would be expected to happen at late childhood and adolescent
stages, and (ii) altered modular organization in different age
groups that reflects a process of fine-tuning in structural brain
development.

MATERIALS AND METHODS
SUBJECTS
This study included 180 healthy right-handed subjects aged from
6 to 30 years. Health was verified by asking participants a series of
questions to ensure there was no history of neurological or psychi-
atric disease or brain injury. All subjects gave informed consent;
child assent and parent/guardian consent was obtained for volun-
teers under 18 years. The subjects were divided into 5 age groups
with equal numbers of subjects and demographics of all groups
are shown in Table 1.

IMAGE ACQUISITION
All data were acquired on a 1.5-T Siemens Sonata MRI scanner.
Standard DTI was acquired using a dual spin-echo, single shot
echo-planar imaging sequence with the following parameters: 40
3-mm-thick slices with no inter-slice gap, TR = 6400 ms, TE =
88 ms, 6 non-collinear diffusion sensitizing gradient directions

Table 1 | Group demographics.

Group Early Late Adolescence Young Adult

childhood childhood adult

Number 36 36 36 36 36

Male/
female

16/20 19/17 15/21 18/18 16/20

Mean age,
SD (y )

8.1 (1.1) 11.3 (0.9) 15.4 (1.4) 19.4 (1.1) 25.7 (2.7)

Age range
(y )

6.0–9.8 9.9–12.7 12.9–17.6 17.6–21.8 21.9–29.7

with b = 1000 s/mm2, 8 averages, field-of-view 220 × 220 mm2,
matrix of 96 × 128 zero-filled to 256 × 256, and scan time of
6:06 min. T1-weighted images were also acquired using MPRAGE
with TE = 4.38 ms, TR = 1870 ms, TI = 1100 ms, and scan time
of 4:29 min.

STRUCTURAL BRAIN NETWORK CONSTRUCTION
Image preprocessing steps including motion and eddy cur-
rent corrections were performed using FSL 5.0 for all DTI
images (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The T1-weighted
(MPRAGE) image of each subject was first linearly coregistered
(Figures 1A,B) to its corresponding b0 image. Each transformed
T1 image was then non-linearly registered to a pre-segmented
and validated volumetric template, the automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) as shown in
Figures 1B,C. This parcellation divided the cortical surface into
78 regions (39 per hemisphere). See Table 2 for the name of
the regions and their corresponding abbreviations. The result-
ing inverse deformation map (T−1) for each subject was then
applied to warp the AAL template to the DTI native space
of each subject using nearest neighbor interpolation method
(Figures 1E,F) as each AAL region was defined as a brain net-
work node. Whole brain WM tractography was performed using a
brute-force streamline-tracking method (Basser et al., 2000) with
a FA threshold of 0.2 and primary eigenvector turning angle of
45 degrees (Figures 1A,D). To limit false positive connections,
two cortical regions were deemed connected if at least 10 con-
necting fibers with two end points were located between them;
the same threshold was also applied in a recent brain network
study (van den Heuvel et al., 2012). The effects of different node-
connecting fiber number (FN) thresholds ranging from 3 to 10
were determined for our network analysis. We quantified the
weight of each valid connection between two cortical regions
(i and j) as the product of the connecting FN and mean FA
of the connecting fiber, normalized by dividing the average vol-
ume of the two connecting regions to counteract the bias where
larger cortical regions inherently project/receive more “virtual”
fibers (wij = FN∗FA/Volume). Several diffusion brain network
studies have applied this weighting function (Lo et al., 2010;
Brown et al., 2011). As a result, the structural brain network of
each participant was represented by a symmetric 78 × 78 matrix
(Figure 1G).

To examine the small-worldness and modular organization
of the WM networks for all different age groups, one weighted
backbone network for each age group was generated to capture
the underlying anatomical connectivity patterns using a previ-
ously published method by our group (Gong et al., 2009). In
summary, to identify the highly consistent cortical connections, a
non-parametric one-tailed sign test was applied. For each pair of
cortical regions, the sign test was performed with the null hypoth-
esis that there is no existing connection. The Bonferroni method
was applied to correct for multiple comparisons at P < 0.05. The
use of this conservative statistical criterion generated a symmetric
weighted matrix as each edge weight was calculated as the mean of
all existing edges in all subjects that captured underlying anatom-
ical connectivity patterns in the human cerebral cortex (Gong
et al., 2009).

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 716 | 2

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Chen et al. Developmental changes of white matter networks

FIGURE 1 | Flowchart for the construction of the DTI white matter

(WM) network for each subject. The T1-weighted image of each subject
(B) was first coregistered into DTI native space (A) using rigid
transformation to the b0 image (not shown). The resultant T1 image was
then non-linearly registered to the ICBM 152 template (C) in the MNI space
to obtain transformation matrix T. The AAL template (E) was then inversely
warped back to the individual DTI space (F) using the inverse
transformation (T −1). Whole brain white matter fibers were reconstructed
using a deterministic tractography method in native DTI space (D). The WM
fibers connecting any pair of regions were located and the edge weight
between the two regions was calculated from the FA, fiber number (FN)
and average volume of the two cortical regions. (G) A sample white matter
network for one subject.

NETWORK ANALYSIS
Several network topological properties were applied for
the weighted anatomical brain network derived from each
participant, including small-worldness, efficiency and modularity
(Watts and Strogatz, 1998; Latora and Marchiori, 2001; Newman,
2006). The connection weights of all edges (wij) were normalized
by the mean weight of the whole network to keep network cost at
the same level for all subjects.

For a weighted network G with N nodes and K edges, the
total strength S was defined as the mean of all edge weights

in the network, S(G) = 1
N

NM∑
i �= j ∈ G

wij where i and j are two

distinct nodes in graph G. The clustering coefficient (CC) of
the weighted network G quantifies the likelihood whether the
neighboring nodes of any network nodes are connected with
each other (Onnela et al., 2005), which was defined as: CC =
1
N

∑
j,k ∈ G

(wij wjk wik)
1/3/(k∗

i (ki − 1)/2), where ki is the number of

connected neighbors of node i. The weighted characteristic path
length L of a network is the average minimum connectional

weights that link any two nodes of the network. To avoid the
issue of disconnected nodes, L was measured here by using a
“harmonic mean” distance between any pair of nodes such as
the reciprocal of the average of the reciprocals (Newman, 2003).
A real network would be considered small world if it meets
the following criteria: γ = Creal

p /Crand
p > 1 and λ = Lreal

p /Lrand
p ∼

1 (Watts and Strogatz, 1998), where Crand
p and Lrand

p are the
mean CC and L of matched random networks that preserve
the same number of nodes, edges and degree distribution as
the real network (Maslov and Sneppen, 2002). In this study,
we generated 1000 matched random networks for each group
network.

The global efficiency Eglob of a weighted network G is defined

as Eglob(G) = 1
N(N−1)

∑
i �= j∈ G

1
wij

, where wij is the smallest con-

nectional weight between node i and j and N is the number
of nodes. It characterizes the efficiency of a system transporting
information in parallel (Latora and Marchiori, 2003). The local
efficiency Eloc of a weighted network G is defined as: Eloc(G) =
1
N

∑
i ∈ G

Eglob(Gi), where Gi denotes the subgraph composed of the

nearest neighbors of node i. The local efficiency represents the
fault tolerance level of the network in response to the removal of
a node (Latora and Marchiori, 2003).

The regional global efficiency Ereg of a given node i is defined

as: Enodal(i) = 1
N−1

∑
i �= j ∈ G

1
wij

, as it measures the average smallest

path weight between given node i and all other nodes in the net-
work. The node i was considered as a hub if its regional global
efficiency was at least one standard deviation (SD) greater than
the mean nodal efficiency of the whole network.

The modularity Q(p) for a given partition p of a weighted brain

structural network is defined as Q(p) =
NM∑
s = 1

[
ws
W −

(
Ws
2W

)2
]

,

where NM is the number of modules, W is the total weight of
the network, ws is the sum of the connectional weights between
all nodes in module s, and Ws is the sum of the nodal weights in
module s. The modularity index quantifies the difference between
the weight of intra-module links of the actual network and that of
a random network in which connections are weighted at random
(Newman, 2004). The aim of this module identification process
is to find a specific partition p which yields the largest network
modularity, Q(p). Here a modified greedy optimization algorithm
(Clauset et al., 2004; Danon et al., 2006) is used to find the
modules of the network. The advantage of this modularity opti-
mization method is that it takes into account the heterogeneity of
module size observed in real networks (Danon et al., 2006).

We also determined the participation coefficient (PC) for each
cortical region in terms of their inter-modular connection den-
sity (Guimera and Amaral, 2005; Guimera and Nunes Amaral,
2005; Sales-Pardo et al., 2007). The PC, Pi, measures the inter-
modular connectivity of node i, and is defined as: Pi = 1 −
NM∑
s = 1

(
wis
wi

)2
, where NM is the number of modules and wis is inter-

modular connectional weight between the node i and module
s. wi is the total weight of node i in the network. The PC of
node i will be close to 0 if all weights are within its module.
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Table 2 | Seventy eight cortical regions of interest defined in the study and their abbreviations (L: left hemisphere, R: right hemisphere).

Index Region Abb. Index Regions Abb.

(L, R) (L, R)

(1, 40) Gyrus rectus REC (21, 60) Precuneus PCUN

(2, 41) Olfactory cortex OLF (22, 61) Superior occipital gyrus SOG

(3, 42) Superior frontal gyrus, orbital part ORBsup (23, 62) Middle occipital gyrus MOG

(4, 43) Superior frontal gyrus, medial orbital ORBsupmed (24, 63) Inferior occipital gyrus IOG

(5, 44) Middle frontal gyrus orbital part ORBmid (25, 64) Calcarine fissure and surrounding cortex CAL

(6, 45) Inferior frontal gyrus, orbital part ORBinf (26, 65) Cuneus CUN

(7, 46) Superior frontal gyrus, dorsolateral SFGdor (27, 66) Lingual gyrus LING

(8, 47) Middle frontal gyrus MFG (28, 67) Fusiform gyrus FFG

(9, 48) Inferior frontal gyrus, opercular part IFGoperc (29, 68) Heschl gyrus HES

(10, 49) Inferior frontal gyrus, triangular part IFGtriang (30, 69) Superior temporal gyrus STG

(11, 50) Superior frontal gyrus, medial SFGmed (31, 70) Middle temporal gyrus MTG

(12, 51) Supplementary motor area SMA (32, 71) Inferior temporal gyrus ITG

(13, 52) Paracentral lobule PCL (33, 72) Temporal pole: superior temporal gyrus TPOsup

(14, 53) Precentral gyrus PreCG (34, 73) Temporal pole: middle temporal gyrus TPOmid

(15, 54) Rolandic operculum ROL (35, 74) Parahippocampal gyrus PHG

(16, 55) Postcentral gyrus PoCG (36, 75) Anterior cingulate and paracingulate gyrus ACG

(17, 56) Superior parietal gyrus SPG (37, 76) Median cingulate and paracingulate gyrus DCG

(18, 57) Inferior parietal, but supramarginal and angular gyri IPL (38, 77) Posterior cingulate gyrus PCG

(19, 58) Supramarginal gyrus SMG (39, 78) Insula INS

(20, 59) Angular gyrus ANG

The node i was considered as an inter-modular hub if its PC
value was at least one SD greater than the mean PC of the whole
network.

STATISTICAL ANALYSIS
Between-group differences analysis of all the global network met-
rics (S, CC, L, Eglob, Eloc, Ereg, Q) was performed between adjacent
age groups using the General linear model (GLM) with age and
gender included as covariates. The nodal properties (Ereg , z, P)
were corrected by false discovery rate at q = 0.05 (Genovese et al.,
2002; Zeisel et al., 2011).

RESULTS
AGE-RELATED CHANGES IN FIBER NUMBER AND NETWORK SPARSITY
To examine the age effect on the tractography results, we mapped
age-related changes in the FN and sparsity of white matter net-
work as shown in Figures 2A,B. We found that age has an incre-
mental effect on both the FN and sparsity, where both increase
by a factor of ∼1.6 and ∼1.2, respectively, from age 6 to 30
years. These increases are presumably due to the known eleva-
tions of FA in WM with age. Given the fact that our network edge
weighting function depends on FN and FA, it is expected that the
connectivity strength of the network would also increase with age.

SMALL-WORLD EFFICIENCY OF DEVELOPING WM NETWORKS
To examine the small-worldness of the WM networks for all
different age groups, using a previously published method by
our group (Gong et al., 2009), one weighted backbone net-
work for each age group was generated to capture the under-
lying anatomical connectivity patterns as shown in Figure 3.
Compared with their corresponding 1000 random networks, all

FIGURE 2 | Age-related changes in fiber number and sparsity of white

matter network in all the individual subjects. Both fiber number and
sparsity demonstrate increases with age.

five age groups showed strong small-worldness (σearly childhood =
3.54, σlate childhood = 3.19, σadolescence = 3.25, σyoung adult = 3.12,
σadult = 3.19).

GLOBAL NETWORK PROPERTIES AND THEIR AGE-RELATED
TRAJECTORIES
Over all subjects in each age group, the total network weight, CC,
Lp, modularity (Q), Eglob and Eloc was calculated for the WM
network and the age-related trajectories are shown in Figure 4.
The total network weight displayed significant increases in three
of the four developing stages, whereas the other metrics such as
Lp, Q, Eglob, and Eloc demonstrated non-linear alteration pat-
terns where most changes happened from young childhood to
late childhood that then leveled off. Both Lp and Q decreased
significantly from young childhood to late childhood but stabi-
lized at older ages. Global network efficiency increased signifi-
cantly from young childhood to late childhood but also stabilized
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FIGURE 3 | The small-worldness of the WM networks for the five age

groups. Each group was represented by one weighted backbone network
to capture the underlying anatomical connectivity patterns. Compared with
their corresponding random networks, all age groups showed strong
small-worldness (i.e., σ >> 1). The numbers reflect the structural indices
indicated in Table 2.

later. Local network efficiency increased significantly from late
childhood to adolescence and stabilized afterwards.

REGIONAL EFFICIENCY OF THE DEVELOPING WM NETWORKS
We found consistent hubs regions, measured here as the AAL
areas with highest regional global efficiency, such as bilateral
PCUN, SFGdor, and SFGmed, that are shared by all age groups
as shown in Figure 5. Comparing the regional efficiency changes
from group to group in these hubs, seven regions had increased
nodal efficiency (P < 0.05, FDR corrected) from early childhood
to late childhood and two regions from late childhood to ado-
lescence (Figure 6). Most regional changes from early to late
childhood are in the default-mode system, including bilateral
PCUN and left DCG. Left STG and right INS were found to have
increased efficiency from late childhood to adolescence.

FIGURE 4 | Age-related changes in different network metrics for the

developing WM network from early childhood to adult. (A) Total
network strength (S), (B) Clustering coefficient (CC), (C) Shortest path
length (Lp ), (D) Modularity (Q), (E) Global efficiency (Eglob), and (F) Local
efficiency (Eloc). Significant changes between any adjacent age groups are
indicated by their p value. An increase with age is observed in S over the
full age span. Eglob increases only between the two youngest age groups
and Eloc only between late childhood and adolescence; in both cases, the
efficiency values then stay elevated. Reductions are observed in Lp and Q
from early to late childhood that is then maintained low. There is no change
in CC between any adjacent age groups. The + signs indicate outliers.

MODULAR ORGANIZATION AND CONNECTOR HUBS OF THE
DEVELOPING WM NETWORKS
The modular organization of the developing structural brain
networks for the five different age groups is shown in Table 3
and Figure 7. Six modules (1–6) were detected in all age groups
indicating strong stability (Greicius et al., 2003) in the modu-
larity of the developing brain network. Despite decreased mod-
ularity from early to late childhood, the modular structures of
both groups were almost identical. Module 1 was mostly com-
posed of bilateral orbitofrontal regions (ORBsup, ORBsupmed,
ORBmid, REC) in early and late childhood that becomes more
lateralized in adolescence. Right orbitofrontal regions become
connected with right temporal and occipital regions that resem-
bles the ventral visual system (Grill-Spector et al., 2008) and
left orbitofrontal regions become part of lateral frontal sys-
tem. Module 2 consists of mostly occipital regions (SOG, CAL,
CUN) throughout the youngest age groups except at adult-
hood when the left occipital regions become part of left ventral
visual system (Grill-Spector et al., 2008). Lateralized modules 3
(left hemisphere) and 4 (right hemisphere) consist of regions
mostly across frontal, parietal and temporal lobes from each
hemisphere from early to late childhood. However, module 4
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FIGURE 5 | Global hubs of the developing WM network defined by their nodal efficiency. Association hub regions such as bilateral PCUN, SFGdor, and
SFGmed are consistent over all age groups. Note that all brain images are viewed from the medial side (also for Figures 6, 7).

FIGURE 6 | Regions with significantly increased nodal efficiency from

early childhood to late childhood and late childhood to adolescence.

Seven regions had increased nodal efficiency (P < 0.05, FDR corrected)
from early childhood to late childhood and two regions from late childhood
to adolescence. Most regional changes from early to late childhood are in
the default-mode system, including bilateral PCUN and left DCG. Left STG
and right INS have increased efficiency from late childhood to adolescence.

is pruned to a mainly frontal-parietal system from adolescence
onwards and module 3 doesn’t reach a similar outcome until
adulthood. Modules 5 and 6 are two of the most consistent
modules during development and include mostly bilateral frontal
(SFG, MFG) and posterior parietal (PCUN, DCG, SMA) regions,
respectively.

The distribution of inter-modular hubs based on PC of each
region for different age groups was very consistent (Figure 8).
They were mostly located within posterior cortex, including bilat-
eral PCUN, SPL, and MOG. Large frontal hubs such as bilateral
SFGdor appeared in late childhood and remained significant
afterwards.

To ensure the change of modular organization didn’t result
from the different sparsity of the five age groups, an additional

analysis was performed where we normalized all group networks
sparsity to the lowest sparsity at 0.1142 (early childhood)
as weaker connections were removed from the other net-
works with higher sparsity (late childhood, 0.1262, adolescence,
0.1312, young adult, 0.1289, adult, 0.1329) and re-examined
the modularity of the networks. We found extremely consis-
tent modularity (0.56 previous vs. 0.56 with normalized spar-
sity in late childhood, 0.56 vs. 0.56 in adolescence, 0.55 vs.
0.56 in young adults, and 0.58 vs. 0.56 in adults) and mod-
ular organization compared with our original networks. Thus,
we could presume that changes in the backbone network and
its modular organization were not due to different matrix
densities.

DISCUSSION
The present study utilized DTI tractography and network the-
ory to characterize changes to the global structural WM network
with age from early childhood to adulthood. Our main results are
demonstrations of (1) a non-linear age effect on most network
topological properties of brain WM network in development
where most changes happen at late childhood stage (10–13 years),
such as increased global network efficiency and decreased modu-
larity, suggesting a shift of organization toward a more random-
ized configuration, (2) consistent hubs involving several major
functional systems across all age groups and significant nodal
changes only happening from early childhood to adolescence, (3)
anatomically localized modules in the development of brain WM
network, and (4) key connector hubs during development of the
WM network.

First, using graph theoretical analysis, small-world net-
work architecture was demonstrated in the WM networks
of all age groups. During the last decade, graph theoreti-
cal analysis has been widely applied to both the functional
(Stam, 2004; Bassett et al., 2006; Achard and Bullmore, 2007)
and anatomical (He et al., 2007; Hagmann et al., 2008;
Gong et al., 2009) brain networks and one common find-
ing is the existence of “small-worldness” in all types of net-
work, as defined by high CC and low characteristic path
length. Recent structural brain network studies have also
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Table 3 | Cortical regions in each module of developing white matter network.

Module Early childhood Late childhood Adolescence Young adult Adult

1 ORBsupmed.L
ORBsupmed.R
ORBsup.L
ORBmid.L
ORBinf.L
REC.L
REC.R
OLF.L
OLF.R

ORBsupmed.L
ORBsupmed.R
REC.L REC.R
OLF.L
OLF.R

ORBsup.R
ORBmid.R
ORBinf.R
TPOsup.R
TPOmid.R
REC.R OLF.R
IOG.R FFG.R
HES.R STG.R
MTG.R ITG.R
MOG.R PHG.R

ORBsupmed.L
ORBsup.R
ORBsupmed.R
ORBmid.R
ORBinf.R
TPOsup.R
TPOmid.R
REC.L REC.R
OLF.L OLF.R
IOG.R FFG.R
HES.R STG.R
MTG.R ITG.R
MOG.R

ORBsup.R
ORBmid.R
ORBinf.R
TPOsup.R
TPOmid.R
MOG.R IOG.R
FFG.R HES.R
STG.R MTG.R
ITG.R PHG.R
REC.R OLF.R
INS.R

2 SOG.L SOG.R
CAL.L CAL.R
CUN.L CUN.R
LING.R

SOG.L SOG.R
CAL.L CAL.R
CUN.L CUN.R
LING.R PHG.R

SOG.L CAL.L
CUN.L PCG.L
SOG.R CAL.R
CUN.R LING.R
PCG.R

SOG.L SOG.R
CAL.L CAL.R
CUN.L CUN.R
LING.L LING.R
PHG.L PHG.R

TPOmid.L
SOG.L SOG.R
MOG.L IOG.L
CAL.L CAL.R
CUN.L CUN.R
LING.L LING.R
FFG.L ITG.L
PHG.L

3 IFGoperc.L
IFGtriang.L
TPOsup.L
TPOmid.L
PreCG.L ROL.L
PoCG.L SPG.L
IPL.L SMG.L
ANG.L MOG.L
IOG.L LING.L
FFG.L HES.L
STG.L MTG.L
ITG.L PHG.L
INS.L

ORBsup.L
ORBmid.L
ORBinf.L
IFGoperc.L
IFGtriang.L
TPOsup.L
TPOmid.L
PreCG.L ROL.L
PoCG.L SPG.L
IPL.L SMG.L
ANG.L MOG.L
IOG.L LING.L
FFG.L HES.L
STG.L MTG.L
ITG.L PHG.L
INS.L

ORBmid.L
ORBinf.L
IFGoperc.L
IFGtriang.L
TPOsup.L
TPOmid.L
PreCG.L ROL.L
PoCG.L SPG.L
IPL.L SMG.L
ANG.L MOG.L
IOG.L LING.L
FFG.L HES.L
STG.L MTG.L
ITG.L PHG.L
INS.L

ORBsup.L
ORBmid.L
ORBinf.L
IFGoperc.L
TPOsup.L
TPOmid.L INS.L
PreCG.L ROL.L
PoCG.L SPG.L
IPL.L SMG.L
ANG.L MOG.L
IOG.L FFG.L
HES.L STG.L
MTG.L ITG.L

IFGoperc.L
IFGtriang.L
TPOsup.L
PreCG.L ROL.L
PoCG.L SPG.L
IPL.L SMG.L
ANG.L HES.L
STG.L MTG.L
INS.L

4 ORBsup.R
ORBmid.R
ORBinf.R
IFGoperc.R
IFGtriang.R
TPOsup.R
TPOmid.R
PHG.R INS.R
PreCG.R ROL.R
PoCG.R SPG.R
IPL.R SMG.R
ANG.R MOG.R
IOG.R FFG.R
HES.R STG.R
MTG.R ITG.R

ORBsup.R
ORBmid.R
ORBinf.R
IFGoperc.R
IFGtriang.R
TPOsup.R
TPOmid.R
INS.R PreCG.R
ROL.R PoCG.R
SPG.R IPL.R
SMG.R ANG.R
MOG.R IOG.R
FFG.R HES.R
STG.R MTG.R
ITG.R

IFGoperc.R
IFGtriang.R
PreCG.R
PoCG.R
ROL.R
SPG.R
IPL.R
SMG.R
ANG.R
INS.R

SFGdor.R
IFGoperc.R
IFGtriang.R
PreCG.R
PoCG.R
MFG.R
ROL.R
SPG.R
IPL.R
SMG.R
ANG.R
INS.R

SFGdor.R
IFGoperc.R
IFGtriang.R
PreCG.R
PoCG.R
MFG.R
ROL.R
SPG.R
IPL.R
SMG.R
ANG.R

(Continued)
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Table 3 | Continued

Module Early childhood Late childhood Adolescence Young adult Adult

5 SFGdor.L
SFGdor.R
SFGmed.L
SFGmed.R
ACG.L
ACG.R
MFG.L
MFG.R

SFGdor.L
SFGdor.R
ORBsup.L
ORBsupmed.L
ORBsupmed.R
SFGmed.L
SFGmed.R
REC.L OLF.L
MFG.L MFG.R
ACG.L ACG.R

SFGdor.L
SFGmed.L
SFGmed.R
IFGtriang.L
MFG.L
ACG.L
ACG.R

SFGdor.L
SFGmed.L
SFGmed.R
MFG.L
IFGtriang.L
ACG.L
ACG.R

SFGdor.L
SFGmed.L
SFGmed.R
ORBsup.L
ORBsupmed.R
ORBsupmed.L
ORBmid.L
ORBinf.L
MFG.L
ACG.L ACG.R
REC.L OLF.L

6 PCUN.L PCUN.R
DCG.L DCG.R
PCG.L PCG.R
PCL.L PCL.R
SMA.L SMA.R

PCUN.L PCUN.R
DCG.L DCG.R
PCG.L PCG.R
PCL.L PCL.R
SMA.L SMA.R

PCUN.L PCUN.R
DCG.L DCG.R
PCL.L PCL.R
SMA.L SMA.R

PCL.L PCUN.L
PCUN.R DCG.L
DCG.R PCG.L
PCG.R PCL.R
SMA.L SMA.R

PCUN.L PCUN.R
DCG.L DCG.R
PCG.L PCG.R
PCL.L PCL.R
SMA.L

revealed that small-world topology and modular organization
are established during early brain development (<2 years) to
support rapid synchronization and information transfer with
minimal rewiring cost (Fan et al., 2011; Yap et al., 2011). Thus,
our results are in agreement with previous findings that the
WM network maintains small-world efficiency at all stages of
development.

Total network weight shows increases in three of the four
developing stages, although the greatest change is between the
two youngest groups pre-adolescence. Our finding is consis-
tent with a previous WM network study that reported a sig-
nificant increase in the average node strength in a group of
subjects aged from 18 months to 18 years where it was sug-
gested that increased network weight indicates increased nodal
strength and greater physiological efficacy, particularly of long
pathways (Hagmann et al., 2010). A functional network study has
also reported increased functional integration due to a decrease
of average path length during the same period and suggested
it was related to increased axonal diameter and myelin thick-
ness of long association fiber tracts (Supekar et al., 2009). We
also found significant age-related decreases in the shortest path
length and modularity and increase in the global efficiency of
the developing WM network from early childhood to late child-
hood indicating greater integration among distant brain regions
and a shift of topological organization to a more randomized
configuration. Previous WM network (Hagmann et al., 2010)
and cortical thickness network (Khundrakpam et al., 2013) stud-
ies of brain development also demonstrated a similar pattern
of network metrics evolution between age 2 and 18 years and
between 5 and 18 years, respectively. However, the WM net-
work study had applied a linear fit for all the network metrics
vs. age even though network metrics such as efficiency and clus-
tering seemed to have leveled off after late childhood in their
paper (Hagmann et al., 2010). Using a similar approach to ours,
(Khundrakpam et al., 2013) demonstrated a leveling off of various

cortical thickness network metrics after the early adolescence
stage.

Consistent global hub regions, indicated by higher regional
efficiency, are observed across all age groups. Hub regions are
predominately association cortices that receive convergent inputs
from multiple cortical regions. Regions such as SFG and PCUN
have been constantly identified as the hub regions in both struc-
tural (He et al., 2007; Gong et al., 2009) and functional brain
networks (Achard and Bullmore, 2007). A recent structural brain
network study also identified them as the hub regions from age
2 years suggesting that they are established at a very early age
(Hagmann et al., 2010). We also found that the regions with the
most age-related increases in efficiency are in the default-mode
system, including bilateral PCUN and left DCG. A functional
brain network study has reported a less well-developed default
mode network connectivity in early childhood compared with
adults, especially within posterior regions such as PCUN (Fair
et al., 2008). However, evidence from structural covariance net-
work analysis has demonstrated significant pruning in the default
mode system from early childhood to late childhood (Zielinski
et al., 2010). Thus, we could speculate that nodal efficiency of
default mode regions might plateau by late childhood.

In this study, a stable and functionally/anatomically related
modular organization was demonstrated in the developing WM
network. Six modules comprising regions with known func-
tions or connections were identified in the developing WM
network. Modules 1, 2, 5 and 6 were mostly composed of
orbitofrontal, occipital, frontal, and posterior parietal regions
that could correspond to sensory integration, visual, executive
function, and default mode network, respectively, (Duncan and
Owen, 2000; Raichle et al., 2001; Kringelbach, 2005). Modular
network analysis has provided rich quantitative insights into
the organization of complex brain networks. Studies in mam-
malian anatomical brain networks have revealed clusters that
overlap with many known brain functions (Hilgetag et al., 2000;
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FIGURE 7 | Modular organization of the developing WM

networks. Six modules (1–6) were detected in all age groups and
are represented by red, green, purple, yellow, pink, and blue
colors. See Table 3 for a detailed list of modular regions. Module
1 was mostly composed of bilateral orbitofrontal regions (ORBsup,
ORBsupmed, ORBmid, REC) in early and late childhood and
becomes more lateralized from adolescence onwards. Module 2
consists of mostly occipital regions (SOG, CAL, CUN) bilaterally.
Lateralized modules 3 (left hemisphere) and 4 (right hemisphere)
consist of regions mostly across frontal, parietal and temporal
lobes within each hemisphere. Modules 5 and 6 are two of the
most consistent modules during development that include mostly
bilateral frontal (SFG, MFG) and posterior parietal (PCUN, DCG,
SMA) regions, respectively.

Zhou et al., 2006). Previous neuroimaging studies have also
demonstrated anatomically- and functionally-related modules in
the human brain structural network using diffusion spectrum
imaging (Hagmann et al., 2008) and the functional network
using resting-state functional MRI (Salvador et al., 2005; Ferrarini
et al., 2009; He et al., 2009; Meunier et al., 2009; Valencia et al.,
2009). Also, network modules identified by cortical thickness net-
work analysis are comprised of brain regions known to subserve
distinct brain functions such as executive function, vision, and
default mode network (Chen et al., 2008, 2011). Two recent DTI
studies also revealed non-random and dynamic modular orga-
nization of structural brain network in the first 2 years of brain
development (Fan et al., 2011; Yap et al., 2011). Two lateralized
modules (3 and 4) that correspond to the frontal-parietal net-
work were also observed in the developing WM network. The
adult human brain exhibits distinct hemispheric asymmetries
in both structure and function. These asymmetries are thought
to originate from evolutionary, developmental, hereditary, expe-
riential, and pathological factors (Toga and Thompson, 2003).
Thus, we could speculate that the lateralized network modules
might result from the functional and structural hemispheric
asymmetries.

Taken together, our results suggest an efficient modular orga-
nization in the WM network from early childhood and are
consistent with modular behavior reported in previous struc-
tural and functional brain network studies and more importantly,
a lateralized developmental pattern in some of the modules.
The inter-modular hubs are the main connectors between mod-
ules and their existence in frontal and posterior cortex in the
developing brain are consistent with previous WM network
(Yap et al., 2011) and cortical thickness network (Khundrakpam
et al., 2013) analysis. Resting state functional networks have
also reported a high density of strong functional connections
in posterior cortex (Achard et al., 2006). Thus, we could spec-
ulate that the inter-modular hubs uncovered in this study are
well-established at childhood and are responsible for the con-
nections between different functional systems of the developing
brain.

FIGURE 8 | The distribution of inter-modular hubs based on

participation coefficient (PC) of each region for different age

groups. They were mostly located within posterior cortex, including

bilateral PCUN, SPL, and MOG. Large frontal hubs such as
bilateral SFGdor appeared in late childhood and remained significant
afterwards.
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A few methodological issues need to be addressed. Two draw-
backs of our study include the acquisition of DTI data with six
diffusion directions at low b values of 1000 s/mm2 and the use
of deterministic tractography which will give errors in such an
unsupervised tractography method given abrupt terminations at
low FA crossing fiber regions or erroneous connections due to
errors in the primary eigenvector direction. Multiple gradient
directions can reduce the uncertainty of the primary eigenvector
direction and limit potential bias as a function of tract orienta-
tion, both concerns for deterministic tractography of WM tracts
(Landman et al., 2007). However, a recent study from our group
has demonstrated six-direction data can also provide average
diffusion measures like FA over a specific tract with compara-
ble robustness to 30- or 60-direction data and yield appropriate
parameter values for many major WM tracts (Lebel et al., 2012),
which is encouraging as our edge weights were calculated based
on the average FA of all voxels over the whole tract connecting
two nodes. However, this does not overcome potential false pos-
itive connections or missed connections from the deterministic
tractography algorithm. We attempted to minimize the former
by invoking a minimum FN between regions but an incor-
rect connection that is consistent among the subjects within a
group would still be included in the network analysis. DTI data
with more than six directions also permit other advantages such
as alternative analysis methods (e.g., probabilistic tractography)
(Dennis et al., 2013). Higher b values than typically acquired
are also advantageous for resolving crossing fibers and increas-
ing the accuracy of tractography derived connections (Tournier
et al., 2008). Another limitation of the study is that the age ranges
of the groups covered a 3.1 to 4.7 year age range for the four
youngest groups. In this study, a general linear model was applied
to remove those age effects within all groups before perform-
ing the between-group comparison. In future study, smaller age
ranges within groups may provide more specific indices of tim-
ing for the WM network maturation. Third, a FN threshold of
10 was applied to minimize the inclusion of random connections
between two cortical regions. Currently, there are no standard
approaches in determining the threshold value for the number
of connecting fibers between regions as small thresholds such as 3
streamlines (Shu et al., 2011) produced networks with large spar-
sity with many spurious connections. Thus, our choice of higher
threshold reduces, but does not eliminate, the risk of false-positive
connections due to noise or the limitations in deterministic trac-
tography. Recently, a threshold of 10 connecting streamlines or
more was also applied in a brain network study (van den Heuvel
et al., 2012) in which they considered that edges comprising
fewer than 10 streamlines were potentially spurious and were
deleted from the connection matrix. To examine the influence
of the threshold, we tested a range of thresholds from 3 to 10
fibers and results including all network parameters are shown
in Table A1. Although the network efficiency decreased as the
sparsity decreased, the small worldness of the network remained
intact. Most importantly, the group differences among adjacent
age groups also remained consistent across all applied thresh-
olds which indicates that the network comparison results are not
sensitive to the threshold choices. Cortical regions in our study

are defined by an a priori volumetric template (AAL) that was
employed to automatically parcellate the entire cerebral cortex
into different regions. Different templates used in various studies
might cause discrepancy in the specific results, though the main
trend of the network properties is expected to remain intact.

Various weighting functions for cortical-cortical connections
have been applied in previous brain network analyses of brain
development including 1/mean diffusivity (Hagmann et al., 2010)
and proportional FN (Dennis et al., 2013), whereas we used
the product of tract FA (known to increase exponentially with
development over this age range but at unique rates per tract—
Lebel et al., 2008) and AAL regional volume-normalized FN
that has been used by others in studies of Alzheimer’s Disease
and aging (Lo et al., 2010; Brown et al., 2011). Other diffusion
indices such as mean diffusivity (MD), axial diffusivity (AD)
or radial diffusivity (RD) could have been examined instead of
FA as a basis of “weighting” the network connections. However,
to our best knowledge, while a few studies have applied MD
as an edge weighting function (Hagmann et al., 2010; Li et al.,
2012), none have used AD or RD. While changes in MD and
FA for the WM typically occur together during maturation, with
MD values decreasing and FA values increasing, the processes
by which the two parameters change are theoretically different
(Schmithorst et al., 2002; Huppi and Dubois, 2006) and they
do not change at the same rate (Lebel et al., 2008). Axial and
RD, under certain circumstances, may be more specific to under-
lying biological processes, such as myelin and axonal changes
(Song et al., 2002). A recent study has demonstrated changes
of FA in corticospinal tract and anterior corona radiata during
development (2 to 40 years) that were attributed to the differ-
ent rate changes in AD and RD (Faria et al., 2010). Thus, one
would expect different WM network organization if using differ-
ent weighting functions. Therefore, future studies could consider
using multiple diffusion tensor measures such as FA, MD, AD
and RD.

In conclusion, a graph theoretical approach was used to
demonstrate age-related alterations in the large scale network
properties of the developing WM network from early child-
hood (6 years) to adulthood (30 years). It was shown that
increased network weight signifies a reshaping of the WM net-
work from early childhood to late childhood with increased
integration and decreased segregation. These findings are com-
patible with the notion that structural and functional brain
networks become stable after late childhood. Our results also
have implications for understanding how the modular organi-
zational alterations in the large-scale structural brain networks
underlie maturation of cognitive function in brain development.
This study may pave the way for developing novel methods for
analyzing disrupted brain connectivity in neurodevelopmental
disorders.
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APPENDIX

Table A1 | White matter network parameters derived from different fiber-number node-to-node connection thresholds in all age groups.

FN threshold Groups Eglob Eloc Q σ

3 Early childhood 0.93 ± 0.07 1.32 ± 0.07 0.55 ± 0.03 3.15

Late childhood 0.98 ± 0.07 1.35 ± 0.08 0.54 ± 0.02 3.02

Adolescence 1.02 ± 0.09 1.38 ± 0.09 0.54 ± 0.02 2.92

Young adult 1.02 ± 0.07 1.37 ± 0.06 0.54 ± 0.02 2.76

Adult 1.03 ± 0.07 1.39 ± 0.06 0.54 ± 0.02 2.90

4 Early childhood 0.89 ± 0.07 1.27 ± 0.06 0.56 ± 0.02 3.22

Late childhood 0.94 ± 0.07 1.30 ± 0.07 0.54 ± 0.02 3.02

Adolescence 0.97 ± 0.08 1.33 ± 0.08 0.54 ± 0.02 2.95

Young adult 0.97 ± 0.06 1.33 ± 0.06 0.54 ± 0.02 2.82

Adult 0.99 ± 0.06 1.36 ± 0.06 0.54 ± 0.02 2.96

5 Early childhood 0.86 ± 0.07 1.25 ± 0.06 0.55 ± 0.02 3.29

Late childhood 0.91 ± 0.07 1.27 ± 0.07 0.54 ± 0.02 3.09

Adolescence 0.94 ± 0.08 1.30 ± 0.08 0.54 ± 0.02 3.06

Young adult 0.94 ± 0.06 1.30 ± 0.05 0.54 ± 0.02 2.95

Adult 0.96 ± 0.06 1.31 ± 0.06 0.54 ± 0.02 3.01

6 Early childhood 0.84 ± 0.07 1.22 ± 0.06 0.55 ± 0.03 3.33

Late childhood 0.88 ± 0.06 1.24 ± 0.07 0.54 ± 0.02 3.08

Adolescence 0.91 ± 0.08 1.27 ± 0.08 0.54 ± 0.02 3.10

Young adult 0.91 ± 0.06 1.27 ± 0.05 0.54 ± 0.03 3.00

Adult 0.93 ± 0.06 1.29 ± 0.05 0.54 ± 0.02 3.04

7 Early childhood 0.82 ± 0.07 1.19 ± 0.07 0.56 ± 0.03 3.37

Late childhood 0.86 ± 0.06 1.22 ± 0.07 0.54 ± 0.02 3.01

Adolescence 0.89 ± 0.08 1.25 ± 0.08 0.54 ± 0.02 3.18

Young adult 0.89 ± 0.06 1.25 ± 0.05 0.54 ± 0.02 3.01

Adult 0.90 ± 0.05 1.26 ± 0.05 0.54 ± 0.02 3.08

8 Early childhood 0.80 ± 0.06 1.17 ± 0.07 0.56 ± 0.03 3.40

Late childhood 0.84 ± 0.06 1.20 ± 0.06 0.54 ± 0.02 3.14

Adolescence 0.87 ± 0.07 1.23 ± 0.07 0.54 ± 0.02 3.23

Young adult 0.87 ± 0.06 1.22 ± 0.05 0.54 ± 0.02 3.06

Adult 0.89 ± 0.05 1.24 ± 0.05 0.54 ± 0.02 3.12

9 Early childhood 0.78 ± 0.06 1.15 ± 0.06 0.56 ± 0.02 3.48

Late childhood 0.82 ± 0.05 1.18 ± 0.06 0.54 ± 0.02 3.21

Adolescence 0.85 ± 0.07 1.21 ± 0.07 0.54 ± 0.02 3.25

Young adult 0.85 ± 0.05 1.20 ± 0.05 0.54 ± 0.02 3.09

Adult 0.87 ± 0.05 1.22 ± 0.05 0.54 ± 0.02 3.14

10 Early childhood 0.77 ± 0.06 1.13 ± 0.06 0.56 ± 0.03 3.54

Late childhood 0.81 ± 0.05 1.16 ± 0.06 0.54 ± 0.02 3.12

Adolescence 0.83 ± 0.07 1.19 ± 0.07 0.54 ± 0.02 3.25

Young adult 0.84 ± 0.05 1.19 ± 0.05 0.54 ± 0.02 3.12

Adult 0.85 ± 0.05 1.21 ± 0.05 0.54 ± 0.02 3.19

Adjacent groups show significant differences or trend in network properties are highlighted in shaded cells. FN: fiber number, Eglob: global efficiency, Eloc: local

efficiency, Q: modularity, σ : small worldness.

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 716 | 13

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Graph theoretical analysis of developmental patterns of the white matter network
	Introduction
	Materials and Methods
	Subjects
	Image Acquisition
	Structural Brain Network Construction
	Network Analysis
	Statistical Analysis

	Results
	Age-Related Changes in Fiber Number and Network Sparsity
	Small-World Efficiency of Developing WM Networks
	Global Network Properties and their Age-Related Trajectories
	Regional Efficiency of the Developing WM Networks
	Modular Organization and Connector Hubs of the Developing WM Networks

	Discussion
	Acknowledgments
	References
	Appendix


