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Various neuroimaging studies demonstrated that the fronto-insular network is implicated
in impulsive behavior. We compared glucose metabolism (as a proxy measure of neural
activity) among 24 patients with Parkinson’s disease (PD) who presented with low or
high levels of impulsivity based on the Barratt Impulsiveness Scale 11 (BIS) scores.
Subjects underwent 18-fluorodeoxyglucose positron emission tomography (FDG-PET)
and the voxel-wise group difference of FDG-metabolism was analyzed in Statistical
Parametric Mapping (SPM8). Subsequently, we performed a partial correlation analysis
between the FDG-metabolism and BIS scores, controlling for covariates (i.e., age, sex,
severity of disease and levodopa equivalent daily doses). Voxel-wise group comparison
revealed higher FDG-metabolism in the orbitofrontal cortex (OFC), anterior cingulate
cortex (ACC), and right insula in patients with higher impulsivity scores. Moreover, there
was a positive correlation between the FDG-metabolism and BIS scores. Our findings
provide evidence that high impulsivity is associated with increased FDG-metabolism
within the fronto-insular network in PD.
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INTRODUCTION

Impulsivity is an umbrella term that covers ‘‘actions that are poorly conceived, prematurely
expressed, unduly risky, or inappropriate to the situation and that often result in undesirable
outcomes’’ (Evenden, 1999). Impulsivity is generally considered as a personality trait that is
associated with self-control deficiency and several problematic behaviors such as aggression,
risk-seeking behavior, driving violation and also suicide attempt (Owsley et al., 2003; Fineberg
et al., 2014; Gvion et al., 2014). Impulsive behaviors can be observed in healthy individuals
(Chamorro et al., 2012), drug-dependent individuals (Ersche et al., 2011; Qiu et al., 2013)
or patients with neuropsychiatric disorders including bipolar mood disorders, borderline
personality disorder and attention-deficit/hyperactivity disorder (Nandagopal et al., 2011;
Cackowski et al., 2014; Sebastian et al., 2014; Fossati et al., 2015). In addition, high impulsivity is a
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risk factor for impulse control disorders (ICDs) that consist of
serious behavioral symptoms such as pathological gambling,
compulsive shopping, binge eating and hyper sexuality.
Crucially, ICDs may develop due to overstimulation of the
mesolimbic system by dopaminergic medication (Lee et al.,
2010; Voon et al., 2011a,b; Probst and Van Eimeren, 2013).
ICDs are common non-motor symptoms in Parkinson’s disease
(PD). For example, it has been shown that at least one form of
ICDs was found in 13.6% of medicated PD patients (Weintraub
et al., 2010). Moreover, the trait of impulsivity might be an
important selection criterion for deep brain stimulation (DBS)
of the subthalamic nucleus (STN), as DBS of the limbic part of
the STN can reduce the activity of the inhibitory networks in PD
(Jahanshahi, 2013). Thus, understanding the neural mechanisms
of impulsivity in PD may lead to better treatment strategies in
future.

Neuroimaging studies demonstrated that the fronto-insular
network, including the orbitofrontal cortex (OFC), anterior
cingulate cortex (ACC), medial prefrontal cortex (mPFC),
dorsolateral prefrontal cortex (dlPFC), and insula, are involved in
impulsive behavior in healthy controls (Matsuo et al., 2009a; Cho
et al., 2013), patients with neuropsychiatric disorders (Antonucci
et al., 2006; Matsuo et al., 2009b; Sebastian et al., 2014; Trost
et al., 2014), high risk individuals for psychosis (Lee et al., 2013),
and PD patients with ICDs (Cilia et al., 2008, 2011; Van Eimeren
et al., 2010; Voon et al., 2011a; Biundo et al., 2015). In this study,
we focused on impulsivity rather than ICDs to investigate the
neural mechanisms underlying high level of impulsivity as a risk
factor for developing ICDs in PD patients, while we controlled
for age, gender, severity of disease, and levodopa equivalent
daily dose (LEDD) for dopamine agonists. We hypothesized
that PD patients with higher level of impulsivity have regional
glucose metabolism alterations in the fronto-insular network,
particularly in the OFC, ACC, and insula, which have been
discussed to be associated with the inhibitory networks and
impulsivity behaviors.

MATERIALS AND METHODS

Subjects
Twenty-four right-handed patients (mean age 66.29, SD 6.01)
with idiopathic PD were recruited from the outpatient clinic of
the Department of Neurology, University Hospital of Cologne.
The study was approved and registered by the medical ethics
board of the University Hospital of Cologne in line with
Human Research Committee guidelines. All subjects provided
informed consent in accordance with the standard protocol
approvals (Nr.10-278). On every subject, medical history and
neurological examination were performed. Patients fulfilled
criteria for PD based on the United Kingdom Parkinson’s
Disease Society Brain Bank criteria (Hughes et al., 1992).
Evaluation of motor symptoms was assessed with the Unified
Parkinson’s Disease Rating Scale (UPDRS) Part III (Fahn
et al., 1987; Van Hilten et al., 1994) and severity of PD was
assessed with Hoehn and Yahr (1967) staging in both the
ON- and the OFF-state. The OFF-state reflects withdrawal

from dopamine replacement therapy for at least 12 h or from
controlled-released drugs, such as dopamine agonists, for at least
72 h. The ON-state was defined as patient’s best response to
200 mg of levodopa after the OFF-state. Neuropsychological
assessments were acquired in the regular daily medication ON-
state. For subsequent analyses, the LEDD of dopamine agonists
was calculated according to the guidelines of the German
Neurological Society (Diener and Weimar, 2012). In addition,
all patients were interviewed in a detailed survey that noted the
side of onset and duration of disease since the first diagnoses.
Two movement disorders specialists (C.E, L.T) assessed severity
of PD. Our exclusion criteria were the following: (i) psychiatric
comorbidities including depression (BDI-II score >19; Beck
et al., 1996; Kühner et al., 2007), severe cognitive impairment
or dementia (Mini Mental State Exam (MMSE) <27; Kessler
et al., 2000); (ii) any other severe systemic diseases including
cardiovascular diseases or diabetes mellitus; (iii) neurological
diseases such as history of head trauma, stroke, brain tumor,
epilepsy, or dyskinesia; and (iv) PD patients with diagnosis
of ICDs.

Neuropsychological Assessment
The Barratt Impulsiveness Scale (BIS) is a self-report
questionnaire to evaluate impulsivity, which consists of 30
four-point Likert-type items reflecting frequency of occurrence.
The scale was filled out by all patients during their regular
daily medication. The BIS can be divided into three sub-scores
including attention, motor, and non-planning impulsiveness.
Higher BIS scores reflect higher level of impulsivity (Patton et al.,
1995).

Preprocessing and Analysis of FDG-PET
Data
Preprocessing of fluorodeoxyglucose positron emission
tomography (FDG-PET) images was carried out using Statistical
Parametric Mapping (SPM8) (Wellcome Trust Center for
Neuroimaging, London, UK) as described before Drzezga
(2009), Eggers et al. (2014) and Tahmasian et al. (2015b). First,
the scans were normalized to the standard stereotactical space
using the standard PET template and then smoothed using a
6 mm full width at half maximum (FWHM) Gaussian filter.

FDG-PET Data Acquisition
As described previously (Eggers et al., 2009), a high-resolution
24-detector ring PET scanner (ECAT EXACT HRRT, Siemens
CTI, Knoxville, TN, USA) with 207 transaxial image planes
and 1.219 mm voxel size was used in this study. Images were
acquired with subjects in resting position, with background noise
reduced, and with light dimmed. After the injection of 370 MBq
of 18F-fluorodeoxyglucose (FDG), cerebral glucose metabolism
was measured, reflecting the regional neural activity. Arterialized
venous blood sampling allowed absolute quantification for all
participants. The imaging was performed in the 3-D mode and
was subsequently reconstructed as well as corrected for random
artifacts, head motion, attenuation and scatter. The resolution
of the reconstructed images was almost isotropic with 2.2 mm
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FWHM in the center and 2.5 mm FWHM at 10 cm off-axis.
The FDG-PET measurement was performed with subjects in
their regular medicated state (ON-state) to decrease head motion
during scanning and to evaluate neural activity in a similar
condition in terms of impulsivity in their daily routine.

Statistical Analyses
Following our hypothesis, we divided our patients into two
groups based on their BIS scores according to the published
standards i.e., patients with higher impulsivity (BIS > 65, n = 8)
and lower impulsivity (BIS ≤ 65, n = 16; Voon et al., 2007;
Stanford et al., 2009). For group comparisons of demographic
and neuropsychiatric data, we carried out two-sample t-tests
as a parametric test applied on normally distributed data, and
Mann-Whitney U-tests as a nonparametric test for not normally
distributed data and also Fisher’s exact test for sex difference
in the Statistical Package for Social Sciences, version 22 (SPSS).
P-values less than 0.05 were considered statistically significant.

For group comparisons of FDG-PET data, a voxel-wise
two-sample t-test in SPM8 was performed across the whole-
brain, while PET images were normalized by the whole-
brain FDG uptake values. The initial uncorrected threshold
of 0.001 was applied for group comparison and results were
reported as significant at p-value less than 0.05 with family-
wise error (FWE) correction of the cluster-level. This analysis
was controlled for covariates, including age, gender, severity of
disease (UPDRS III OFF) and LEDD for dopamine agonists.
We chose dopamine agonist LEDD instead of total LEDD
because it has been shown that dopamine agonists change the
activity of the OFC and rostral cingulate region in PD (Van
Eimeren et al., 2009, 2010). Results with total LEDD as a
covariate were highly similar (not shown). These analyses yielded
a volume-of-interest (VOI) that showed significant metabolic
changes in patients with higher impulsivity level compared to
patients with lower impulsivity level. We chose the VOI based

on significant metabolic changes in the whole brain voxel-wise
group comparison to be independent from selection bias of
a-priori defined regions. Subsequently, we extracted the absolute
averaged FDG-metabolism within the mentioned VOI for each
individual subject as applied previously in several neuroimaging
studies (Matsuda et al., 2012; Tahmasian et al., 2013, 2015b;
Wehrl et al., 2013; Klupp et al., 2014, 2015), then normalized
those scores (FDG scores from the VOI divided to global uptake
scores) and then performed independent t-test between groups
using SPSS.

To detect the association between the FDG-metabolism and
impulsivity, we performed a partial correlation analysis between
the normalized averaged FDG-metabolism scores of the VOI and
the total and sub-scores of BIS across all 24 patients in SPSS,
controlling for covariates such as age, gender, severity of disease
(UPDRS III OFF) and LEDD for dopamine agonists.

RESULTS

Demographic and Neuropsychological
Data
Our sample consisted of 24 non-demented, non-depressed, non-
ICD PD patients. Demographic information is summarized in
Table 1. The mean total BIS for the patients with low level
of impulsivity was 53.18 (SD 7.60; range 41–63) and for the
patients with a high level of impulsivity was 70.37 (SD 4.17;
range 65–79). Between groups, there were significant differences
on the total and sub-scores of BIS, including attention, motor
and non-planning (p < 0.05, Table 1). Group comparisons
demonstrated no significant differences regarding the severity
of disease and severity of motor symptoms. However, there
was a significant difference between LEDD calculated only for
dopamine agonists as suggested previously (Tomlinson et al.,
2010). Hence, we controlled for the effects of dopamine agonists
in further analyses. One should note that there was trend towards

TABLE 1 | Demographic and neuropsychological data (a = Mann-Whitney-Test, b = t-test, c = Fisher’s exact test, degree of freedom was 22 for all group
comparisons, results presented as mean ± SD).

PD patients with lower PD patients with higher p-value
impulsivity (n = 16) impulsivity (n = 8)

Sex (female/male) 6/10 2/6 0.667c

Age (year) 65 ± 6.59 68.88 ± 3.75 0.14b

Duration since diagnosis 7.41 ± 4.23 11.38 ± 5.21 0.054b

Hoehn und Yahr OFF 3 ± 0.89 2.62 ± 0.51 0.349a

Hoehn und Yahr ON 2.5 ± 1.03 2.25 ± 0.46 0.588a

UPDRS III OFF 35.06 ± 14.17 29.50 ± 5.15 0.177b

UPDRS III ON 24.19 ± 13.09 21.38 ± 6.34 0.759a

LEDD—total (mg) 600.94 ± 356.45 956.12 ± 475.51 0.051b

LEDD—dopamine agonists (mg) 180.62 ± 133.85 318.62 ± 181.68 0.046b

MMSE 28.69 ± 1.138 28.75 ± 1.275 0.928a

BIS—total 53.18 ± 7.60 70.37 ± 4.17 0.000b

BIS—attention 14.37 ± 2.80 18.375 ± 2.38 0.002b

BIS—motor impulsivity 19.00 ± 3.01 22.625 ± 2.32 0.007b

BIS—non-planning 19.81 ± 5.39 29.5 ± 3.92 0.000b

Abbreviations: BIS, barratt impulsiveness scale; LEDD, levodopa equivalent daily dose; MMSE, mini–mental state examination; PD, Parkinson’s disease; SD, standard

deviation; UPDRS, unified Parkinson’s disease rating scale.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 November 2015 | Volume 9 | Article 317

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Tahmasian et al. Impulsivity and Metabolism Changes in PD

a significant group difference regarding the LEDD-total and
duration of disease since diagnosis.

PD Patients with Higher Impulsivity Level
Revealed Increased Glucose Metabolism
in the Fronto-Insular Network
Voxel-wise two-sample t-test between groups demonstrated
higher metabolism within the fronto-insular network including
the OFC, medial-frontal gyrus, ACC and insula, mainly on the
right hemisphere (based on Automated Anatomical Labeling
atlas; Tzourio-Mazoyer et al., 2002) in subjects with higher
impulsivity level compared to individuals with lower level of
impulsivity (p < 0.05, FWE corrected; Figure 1A, Table 2).
Moreover, patients with higher impulsivity revealed higher
averaged FDG-metabolism using the group difference VOIs
determined by SPM8 (mean ± SD = 2.28 ± 0.14 vs. 1.97 ±

0.10; Figure 1B). On the other hand, PD patients with higher
level of impulsivity had significant decreased FDG-metabolism in
the superior parietal gyrus and occipital cortex compared to PD
patients with lower level of impulsivity (p< 0.05, FWE corrected,
not shown).

Association between Impulsivity and
Glucose Metabolism in the Fronto-Insular
Network
We assessed the link between FDG-metabolism of the fronto-
insular network and BIS scores. Results showed a positive
correlation between the averaged FDG-metabolism and total
BIS scores (r = 0.761, p < 0.001) across all patients

(Figure 2A). Furthermore, significant positive correlations were
found between the FDG-metabolism and BIS sub-score for
attention (r = 0.646, p < 0.05), motor (r = 0.506, p < 0.05), and
non-planning impulsivity (r = 0.670, p < 0.001; Figures 2B–D).

DISCUSSION

To assess the neural correlates of impulsivity in PD patients, we
compared glucosemetabolism of patients with higher impulsivity
level and patients with lower impulsivity level. We found that
patients with higher impulsivity level showed increased glucose
metabolism within the fronto-insular network including the
OFC, medial frontal gyrus, ACC, and right insula (Figure 1).
Moreover, our findings demonstrated positive correlations
between the averaged FDG-metabolism of those regions and BIS
scores (i.e., total and sub-score for attention, motor, and non-
planning impulsivity) across all patients (Figure 2). These results
provide further evidence that higher impulsivity is linked with
altered function of the fronto-insular network. Our findings are
in line with previous reports indicating that high impulsivity
is associated with structural and functional changes of regions
associated with reward-related decision making and impulse
control behavior including the OFC and ACC in healthy controls
and individuals at ultra-high risk for psychosis (Horn et al.,
2003; Brown et al., 2006; Cilia et al., 2008; Matsuo et al., 2009a;
Cho et al., 2013; Lee et al., 2013). PD patients with higher
level of impulsivity also demonstrated lower FDG-metabolism
in the superior parietal gyrus and occipital cortex compared
to other group. Based on our hypothesis we did not expect
changes in these parieto-occipital regions. These findings might

FIGURE 1 | (A) Voxel-wise group comparison of FDG-metabolism generated by independent t-test in SPM8. Red maps illustrate increased metabolism in PD
patients with higher impulsivity compared to PD patients with lower impulsivity in the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and right insula
(p < 0.05, FWE corrected in cluster level, bars represent range of t-values). (B) Group difference based on the averaged FDG-metabolism of the fronto-insular
network including the OFC, ACC, and insula within (∗p < 0.001).
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TABLE 2 | Voxel-wise group comparison t-test demonstrated increased metabolism in PD patients with higher impulsivity compared to PD patients with
lower impulsivity.

Anatomical region L/R Cluster p-value (FWE-corrected) T-score Peak coordinates (MNI)

Orbitofrontal cortex L 170 0.004 5.82 −2, 38, −10
Medial frontal gyrus R 170 0.004 5.77 12, 48, 2
Anterior cingulate cortex R 170 0.004 4.47 4, 44, 0
Insula-operculum R 115 0.029 5.24 46, 2, 14
Insula R 115 0.029 4.75 46, 10, 2

Abbreviations: FWE, family-wise error; MNI, Montreal Neurological Institute.

be additionally due to the increased FDG-metabolism in the
fronto-insular network a secondary compensatory change of
network activity.

Its worthy to note that FDG-PET imaging provides a
quantitative measurement of regional metabolism within the
synaptic terminals of the neuron-astrocyte functional unit. In
detail, after injection of FDG, its tissue uptake increases in the
active region, which correlates with the local metabolism of
brain tissue. Hence, increase of glucose uptake provides indirect
evidence of higher synaptic metabolism in a particular region
(Lucignani and Nobili, 2010).

Neural Correlates of Impulsivity within the
Fronto-Insular Network
Distinct brain regions are responsible for processing of reward-
related learning, goal-directed actions, decision-making and the

formation of habits (Schultz et al., 2000; Torregrossa et al., 2008).
Among them, the OFC is involved in sensory and emotional
integration, encoding the affective value of reinforcers and
evaluation of the expected rewards/punishments of a decision.
Therefore, the OFC has an important role in adaptive decision-
making, guiding behavior, judgments, and behavioral regulation
(Kringelbach, 2005; Torregrossa et al., 2008; Schoenbaum et al.,
2011). Animal studies revealed that OFC lesions result in
failure to assess the value of an outcome under changing
conditions, improper inhibition of motor responses, devalue
the reinforce, increase in habitual responding and increased
premature responses (Torregrossa et al., 2008). Thus, it seems
that activity of the OFC is essential for proper impulse control.
Moreover, it has been shown that the association of the
lateral PFC to both aggression and attentional impulsivity
depends on OFC contribution (Gansler et al., 2011). In a
functional neuroimaging (fMRI) study, Horn et al. (2003) applied

FIGURE 2 | Positive correlation between the averaged FDG-metabolism within the group comparison volume-of-interest (i.e., the fronto-insular
network) extracted for each subject and the total BIS scores (A), attention BIS score (B), motor BIS score (C), non-planning BIS score (D). Partial
correlations were performed across all 24 PD patients with additional covariates such as age, sex, severity of disease and LEDD for dopamine agonists; ∗p < 0.05).
BIS, Barratt Impulsiveness Scale; LEDD, levodopa equivalent daily dose.
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Go/No-Go task. This task is often used to assess a participant’s
ability to sustain attention and inhibit responses. The authors
demonstrated a significant activation in the anterior lateral OFC
during the inhibition task. They showed that subjects with
higher impulsivity activated the right inferior frontal gyrus,
posterior lateral OFC and anterior insula (Horn et al., 2003).
Similarly, our results support the idea that hyperactivity of the
OFC is essential for proper inhibition in PD patients with high
impulsivity.

The OFC has reciprocal connections with the ACC, which
is involved in executive functions such as attention, inhibition
and emotion regulation (Devinsky et al., 1995; Banks et al.,
2007; Rushworth et al., 2007). Another fMRI study demonstrated
that activation of several regions, including the ACC, was
positively correlated with impulsivity level during inhibitory
control paradigms, suggesting a regulatory role of ACC in
modulating impulsive behaviors (Brown et al., 2006). Recently,
Kerr et al. (2015) revealed that impulsivity was linked with
higher activation of the ACC and amygdala during anticipation
of the primary reward. In addition, impulsivity was negatively
associated with functional connectivity between the ACC and
amygdala (Kerr et al., 2015). Wilbertz et al. (2014) highlighted
a link between urgency as an impulsivity subdomain and a
network including the inferior frontal gyrus, anterior insula
and dorsal ACC. Another Go/No-Go fMRI study revealed
that subjects with internet gaming addiction had hyperactivity
during No-Go trials in several brain regions including the left
superior medial frontal gyrus, right ACC, right superior/middle
frontal gyrus. Interestingly, activation of the superior medial
frontal gyrus was positively associated with BIS-11, suggesting
an association between impulsivity and impaired prefrontal
impulse inhibition (Ding et al., 2014). Moreover, it has
been reported that self-control and successful inhibition of
impulsive behaviors, particularly motor impulsivity, and reactive
aggression depends on the anterior insula activity (Dambacher
et al., 2015).

Several studies highlighted the relationship between gray
matter volume changes and the BIS scores in healthy controls
and subjects at ultra-high risk for psychosis (Matsuo et al.,
2009a; Cho et al., 2013; Lee et al., 2013). For example,
Cho et al. (2013) found positive correlations between volume
of mPFC, dlPFC, OFC, ACC and total, non-planning, and
attention/cognitive BIS scores but not with motor impulsivity.
Churchwell and Yurgelun-Todd (2013) found a positive linear
association between anterior insula thickness and non-planning
imulsivity, and both of them had negative correlations with age.
Similarly, it has been demonstrated that patients with major
depressive disorder, alcoholism, posttraumatic stress disorder,
attention-deficit/hyperactivity disorder, antisocial personality
disorder or bipolar disorder showed positive correlations
between the left, right, and total OFC gray matter volume
and BIS motor impulsivity scores and aggression (Antonucci
et al., 2006). Our results are similar to these findings, as
we found significant positive associations between the FDG-
metabolism of the fronto-insular network and the total, non-
planning, attention and motor impulsivity. On the other hand,
Matsuo et al. (2009a) demonstrated that gray matter volumes

of the bilateral OFC and left ACC were negatively correlated
with the total BIS scores. More specifically, they found negative
associations between the right OFC volume and non-planning
impulsivity, and between the left OFC volume and motor
impulsivity.

In the right fronto-insular cortex and anterior limbic area of
the human brain there are large bipolar neurons so-called ‘‘von
Economo neurons’’, particularly in the ACC and the anterior
insula. These neurons are involved in empathy, social awareness,
and self-control and their numbers are reduced in several
neuropsychiatric disorders including fronto-temporal dementia,
schizophrenia, bipolar disorder, addiction and ICDs (Allman
et al., 2011a,b; Kim et al., 2012).

Taken together, the above-mentioned studies showed that the
fronto-insular network is critically involved in impulsiveness.
With regards to our findings of the increased metabolism within
this network, it is possible to speculate that subjects with higher
impulsivity scores need this network to be more active in
order to inhibit their impulses, compared to subjects with lower
impulsivity.

Impulsivity vs. Impulse Control Disorders
Although impulsivity is a natural behavior that can be controlled
by inhibitory mechanisms in healthy individuals, it can be
considered as a risk factor for ICDs in patients with PD (Cilia
and Van Eimeren, 2011; Probst and Van Eimeren, 2013). Patients
with ICDs such as pathological gambling, hypersexuality, and
kleptomania have more compulsive characteristics resulting
in failure to resist aggressive impulses (Weiss and Marsh,
2012; Fineberg et al., 2014). Although the neural systems
for regulating impulsive, compulsive, and habitual behaviors
have an overlapping regional pathophysiology (i.e., activation
of the OFC), impulsivity and subdomains of ICDs have
different pathophysiological mechanisms (Torregrossa et al.,
2008; Leeman and Potenza, 2012). Accordingly, one should
be aware that impulsivity and ICDs are conceptually and
pathophysiologically distinct.

A recent study demonstrated that PD patients with ICDs had
cortical thinning in fronto-striatal circuitry including the right
superior OFC, left rostral middle frontal, bilateral caudal middle
frontal region, corpus callosum, right accumbens, as well as an
increase in the left amygdala. Moreover, they found a positive
correlation between severity of impulsive symptoms and cortical
thickness of left rostral middle frontal, inferior parietal, and
supramarginal regions (Biundo et al., 2015).

Several fMRI studies revealed that dopamine agonist therapy
mediates the ability of PD patients to control their impulses
and may lead to high impulsivity and ICDs (Cilia et al.,
2008; Van Eimeren et al., 2009, 2010; Ray and Strafella,
2010; Voon et al., 2011a; Weiss and Marsh, 2012; Napier
et al., 2015). For example, it has been suggested that PD
patients with pathological gambling have an ACC-striatal
disconnection and also a hyperactivity in the OFC, hippocampus,
amygdala, insula, and ventral pallidum, possibly associated
with a drug-induced overstimulation of relatively preserved
reward-related neuronal systems (Cilia et al., 2008, 2011).
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Van Eimeren et al. (2010) demonstrated that in the lateral
OFC, rostral cingulate zone, amygdala, and external pallidum,
healthy controls had higher activity in response to dopamine
agonist, while PD patients with pathological gambling showed
a significant DA-induced reduction of activity. To control
for the influence of dopamine agonists on the suggested
relationship (Tahmasian et al., 2015a), we applied a partial
correlation approach, which accounts separately for influences
of medication (LEDD for dopamine agonists) on local FDG-
metabolism. Furthermore, the results were also independent
from age and sex.

Due to our results, we assume that higher activity of
fronto-insular network is necessary in patients with higher
impulsivity. In particular, patients with higher impulsivity level
have self-control deficiency and tendency to do problematic
risky behaviors (Owsley et al., 2003; Fineberg et al., 2014; Gvion
et al., 2014). Thus, they need to inhibit their impulses more
than subjects with lower impulsivity level. As mentioned above,
patients with lesions or atrophy in the OFC and ACC show
more impulsive, antisocial, and risky behaviors (Winstanley et al.,
2004; Berlin et al., 2005; Matsuo et al., 2009a,b; Kerr et al.,
2015). Taken together, we suggest that the observed increased
activity in the inhibitory network (Van Eimeren et al., 2010)
within the fronto-insular regions is necessary to allow an active
inhibition of risk-related impulsive behaviors, particularly in
patients with higher impulsivity (for review, see Seguin, 2004;
Crews and Boettiger, 2009; Perry et al., 2011). One should note
that our subjects had higher impulsivity and not ICDs diagnosis.
Hence, future studies should systematically compare subjects
with different levels of impulsivity vs. healthy subjects and
patients with ICDs to provide explicit proof of this hypothesis.

LIMITATIONS

Our study has several limitations: (i) albeit the BIS scale is
the most common tool to assess of impulsivity, it is a self-
report and subjective questionnaire. Thus, it is not an objective

assessment of impulsivity; (ii) it should be noted that our
findings may be limited to moderate impulsivity level of our
subjects and can not be generalized to ICDs in PD patients;
(iii) the observed difference in glucose metabolism might be
due to underlying mechanism including the different levels of
von Economo neurons in the fronto-insular network, receptor
availability or genetic difference across subjects but these data
were not available for us to correct for their influence. In
particular, gray matter volume difference is probably one of
the most important confounding factors, but we did not have
structural MRI data from these subjects to perform atrophy
correction; and (iv) our sample size was rather small, particularly
in patients with higher impulsivity level, we also did not include
healthy control subjects or PD patients with ICDs. Future studies
with larger sample size should consider atrophy correction and
systematically compare healthy controls and PD patients with
and without ICDs.

CONCLUSION

In summary, the current study provides evidence that PD
patients with higher impulsivity level have increased glucose
metabolism within the fronto-insular network compared to PD
patients with lower impulsivity level. The data are consistent with
several structural and fMRI studies, suggesting that the activity of
fronto-insular network is essential for proper impulse inhibition,
particularly in PD patients with higher impulsivity. Our findings
shed new light on the neural correlates of impulsivity in PD.
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