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Dengue virus (DENV) is the etiologic agent of dengue fever, the most significant mosquito-
borne viral disease in humans. Up to 400 million DENV infections occur every year, and
severity can range from asymptomatic to an acute self-limiting febrile illness. In a small
proportion of patients, the disease can exacerbate and progress to dengue hemorrhagic
fever and/or dengue shock syndrome, characterized by severe vascular leakage, thrombo-
cytopenia, and hemorrhagic manifestations. A unique challenge in vaccine development
against DENV is the high degree of sequence variation, characteristically associated with
RNA viruses. This is of particular relevance in the case of DENV since infection with one
DENV serotype (primary infection) presumably affords life-long serotype-specific immunity
but only partial and temporary immunity to other serotypes in secondary infection settings.
The role of T cells in DENV infection and subsequent disease manifestations is not fully
understood. According to the original antigenic sin theory, skewing of T-cell responses
induced by primary infection with one serotype causes less effective response upon sec-
ondary infection with a different serotype, predisposing to severe disease. Our recent study
has suggested an HLA-linked protective role for T cells. Herein, we will discuss the role of
T cells in protection and pathogenesis from severe disease as well as the implications for
vaccine design.
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WORLD WIDE MEDICAL AND SOCIETAL SIGNIFICANCE OF
DENV AND DENV INFECTION
Dengue virus (DENV) is the causative agent of dengue fever, the
most prevalent mosquito-borne viral illness in humans and is pri-
marily transmitted by the mosquitoes Aedes aegypti and Aedes
albopictus (1). The world wide distribution of these two major
vectors puts nearly a third of the global human population at risk
of infection (2). It was recently reported that as many as 390 mil-
lion dengue infections occur worldwide each year, thus making this
infection potentially even more prevalent than malaria (3). Recent
outbreaks in Europe (4) and the US (5, 6), led to the recognition
of DENV as a Category A priority pathogen by NIAID and the
classification of DENV as a domestic re-emerging disease threat
by the CDC.

Disease can be induced by any of the four serotypes of DENV
(DENV1–4). DENV-associated disease in most cases ranges from
asymptomatic to an acute self-limiting febrile illness. However,
in a small proportion of patients, the disease can exacerbate and
progress to severe forms of dengue disease [dengue hemorrhagic
fever (DHF) and dengue shock syndrome (DSS)], characterized
by severe vascular leakage, thrombocytopenia, and hemorrhagic
manifestations (7). Infection with one DENV serotype presum-
ably results into life-long immunity to the infecting serotype but
does only confer short-term protection against the other serotypes
(8). In fact, the severe forms of DENV disease are more often
observed in individuals experiencing a secondary infection with
a different serotype (9, 10). Besides prior infection with one
serotype, other factors influencing the disease outcome are the
strain of infecting virus, age and gender, nutritional status, and the
genetic background of the patient (11–16). No licensed vaccine or

effective anti-viral therapy is currently available and treatment is
largely supportive in nature, thus increasing the economic and dis-
ease burden on public health systems in tropical and subtropical
countries around the globe (17–19).

DENV-SPECIFIC T-CELL RESPONSES
T-CELL EPITOPE IDENTIFICATION
A previous analysis (20) documented the substantial knowl-
edge gaps existing at the level of defined T- and B-cell immune
responses. Over the last years, the situation has improved con-
siderably. As of June 2013, the immune epitope database (IEDB)1

lists 369 antigenic regions identified in humans and 71 identified in
HLA transgenic mice. It has been shown that CD8+ T cells most
vigorously and frequently recognized the NS3, NS4B, and NS5
proteins, whereas the capsid, envelope, and NS3 proteins are the
dominant targets for CD4+ T cells (21–25). In parallel, but beyond
the scope of this review, significant strides have been made in the
definition of DENV-related B cell epitopes.

Despite these efforts, significant gaps yet remain. First, the
vast majority of DENV epitopes described in the literature and
reported in the IEDB are restricted by HLA MHC class I alleles,
and only 13% of the epitopes are restricted by HLA class II and
recognized by CD4+ T cells. Of those epitopes, only a few have
defined allele and loci restrictions and characterized functional
and phenotypic features of the associated T cells. Thus, a com-
prehensive analysis of MHC class II restricted responses across all
loci is needed in the general population from endemic areas and

1www.iedb.org
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in patient populations associated with different severity of disease
(acute DF versus DHF/DSS). Furthermore, the epitopes recog-
nized after vaccination with experimental vaccines have not been
systematically identified or validated. This hampers progress in the
field, as the role of MHC class I and class II restricted responses
in disease protection and immunopathology cannot be broadly
evaluated, and the performance of different vaccines in terms
of induction of immune responses in human vaccines remains
undetermined.

IMPLICATIONS FOR HLA POLYMORPHISM
T cells recognize a complex of a particular pathogen-derived epi-
tope presented by a specific MHC molecule. Thus, a given epitope
will elicit a response in individuals that express MHC molecules
capable of binding that particular epitope. MHC molecules are
extremely polymorphic, with several thousand variants known in
humans (26, 27). Each variant is present with variable frequency,
depending on ethnic lineage and geographic locality. As a result,
for basic investigations, diagnostic or vaccine applications and to
ensure high and non-ethnically biased coverage of different patient
populations, it is necessary that the alleles investigated are care-
fully selected. This is accomplished by selecting those alleles that
are most frequent in the various population groups worldwide.

To address this challenge in the context of HLA class I, we
have applied a selection process focused on the 27 most common
HLA A and B alleles in the general population (25). As previously
described, these 27 alleles allowed us to cover at least three out of
four possible HLA A and B alleles expressed per donor in 90% of a
cohort from the general population of Colombo, Sri Lanka. In the
case of HLA class II, we have recently reported the selection of a
panel of 27 different allelic variants that affords high coverage of all
four HLA class II loci (DRB1, DRB3/4/5, DQ, and DP) (27). Based
on publically available population frequency data (28), this panel
of HLA DR, DQ, and DP specificities should allow to cover over
98% of individuals in the general population. Notably, the actual
coverage achieved by this panel was similarly high in cohorts of
distinctly different ethnic composition that we have previously uti-
lized for our studies (29, 30). For each of these class II molecules,
we have established quantitative binding assays (27) and generated
a sufficiently large number of measurements to enable derivation
of quantitative algorithms for predicting binding capacity (27, 31).
Predictive algorithms for the most common HLA class I and class
II alleles are now publicly available at several web sites, including
the IEDB2. Additionally, for each molecule we have produced cell
lines transfected with a single HLA class II allele that will be useful
for fine mapping of HLA restrictions (30). These approaches now
represent efficient and valuable tools for epitope identification,
especially in the context of large and complex targets.

THE HYPOTHESIS OF ORIGINAL ANTIGENIC SIN AS IT IS RELATED TO A
POTENTIAL ROLE OF T CELLS IN DENV PATHOGENESIS
It has been proposed that cross-reactive T cells raised against the
original infecting serotype dominate during a secondary heterol-
ogous infection, a phenomenon that has been termed “original

2www.immuneepitope.org

antigenic sin” (32, 33). This term was first applied to the humoral
response to influenza epidemics (34), but has also been observed
in CD8+ T-cell responses against lymphocytic choriomeningi-
tis virus (LCMV) (35). This hypothesis postulates that during
secondary infection, expansion of pre-existing lower avidity cross-
reactive memory T cells dominate the responses over that of naïve
T cells that are of higher avidity for the new DENV serotype.
It is further hypothesized that peptide variants derived from
the secondary infection serotype can induce a response that is
qualitatively different from the response induced by the original
antigen, such as inducing a different pattern of cytokine produc-
tion. Variants associated with this phenotype are often collectively
referred to as altered peptide ligands (APLs) (36). It is hypothe-
sized that these altered T-cell responses serotype may contribute to
a “cytokine storm” during heterologous secondary infection and
thus contribute to immunopathogenesis of severe dengue disease
(33). However, this hypothesis is in conflict with the observation
that heterologous T-cell responses are not always needed to pro-
duce severe disease in infants. DHF or DSS in infants generally
occurs between the ages of 6 and 12 months in endemic areas
(37). When the maternal antibody titer to DENV decreases below
a protective level, infants are actually at an increased risk for the
development of severe disease despite the fact that they have never
been infected with DENV and lack DENV-specific T-cell memory
(38). Furthermore, a recent study has shown a temporal mismatch
between the CD8+ T-cell response and commencement of capil-
lary leakage, suggesting that CD8+ T cells are not responsible for
early triggering of capillary leakage in children with DHF (39).

We have previously reported that “original antigenic sin” is
indeed detectable at the level of CD8+ T-cell responses in the
general population (25). However, a potential limitation of those
studies was that they were conducted at the level of the general
population from an endemic area (i.e., Sri Lanka), and did not
measure HLA class II restricted epitopes. Furthermore, it is not
known whether the studies could capture in vivo impaired or
altered T-cell responses during acute infection.

LOW MAGNITUDE T-CELL RESPONSES ARE HLA-LINKED AND
ASSOCIATED WITH DISEASE SUSCEPTIBILITY
The results presented above suggest that antigenic sin does not
significantly impair the quality of T-cell responses in the general
population. However, lower quality responses might be associated
with the relatively few individuals experiencing more severe clin-
ical outcomes. Previous studies highlight that certain HLA alleles
are associated with either increased or decreased risk of clinical
manifestations (14, 40–45). However, these studies did not deter-
mine whether increased risk might be associated with a hyperactive
T-cell response, or conversely whether a higher T-cell response
might be associated with a decreased risk. Correlations of HLA-
associated disease susceptibility with T-cell responses found that
weak T-cell responses correlated with disease susceptibility (25).
A possible explanation for these observations would be that cer-
tain alleles and epitopes are associated with higher magnitude
responses, which are in turn associated with higher degrees of
multi-functionality, and thus might be most beneficial in protect-
ing from disease. A detailed analysis of cytokines produced by
DENV-specific T cells revealed that stronger responses are indeed
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associated with multifunctional T-cell responses. Thus, it might
be possible that while T cells have a protective role in general in
the HLA-linked, lack of a multifunctional T-cell response might
contribute to pathogenesis in certain individuals.

ROLE OF T CELLS IN PROTECTION AGAINST DENV INFECTION
The protective role of T cells during viral infection is well estab-
lished (46). Generally, CD8+ T cells can control viral infection
through several mechanisms, including direct cytotoxicity and
production of pro-inflammatory cytokines such as IFN-γ and
TNFα. Similarly, CD4+ T cells are thought to control viral infec-
tion through multiple mechanisms, including enhancement of B
and CD8+ T-cell responses, production of inflammatory and anti-
viral cytokines, cytotoxicity of viral infected cells, and promotion
of memory responses (47).

Several lines of evidence suggest that both CD4+ and CD8+

T cells may contribute to protection against homologous re-
infection or heterologous dengue infection. It has been shown
that DENV-specific human CD4+ T and CD8+ T cells proliferate,
produce IFN-γ, and lyse infected target cells (48–50), suggest-
ing that serotype-specific T cells are activated and functional in
humans with primary DENV infection (48, 51). Furthermore,
higher frequencies of DENV-specific IFNγ-producing T cells are
present in children who subsequently develop subclinical infec-
tion, compared with those who develop symptomatic secondary
DENV infection (52).

Finally, studies in a murine model of DENV infection demon-
strated that both CD4+ and CD8+ T cells contribute to protection
against DENV challenge (53–56). In parallel to the evidence in the
murine model, studies performed previously demonstrated that
HLA alleles associated with increased risk of severe disease are
also associated with weak CD8+ T-cell responses, and conversely
that strong, multifunctional, T-cell responses correlate with alleles
associated with protection from severe disease. These data strongly
imply a protective role for CD8+ T cells against severe DENV
disease in humans (25).

DENV SEROTYPES AND VACCINE DEVELOPMENT
The dengue serocomplex consists of four serotypes, each of which
is made up of several genotypes (57). The four serotypes share
65–75% genetic homology with each other but are antigenically
distinct (58). This high degree of sequence variation in a pathogen,
characteristically associated with RNA viruses, poses unique chal-
lenges to vaccine development. This is of particular relevance
in the case of DENV infections because of the more severe dis-
ease and immunopathology associated with prior exposure to a
different serotype (9). Consequently, the development of DENV
vaccines has been hampered by the potential risk of vaccine-related
adverse events and the requirement to induce long-lasting protec-
tive immune responses against all four DENV serotypes simulta-
neously. A recent phase 2b proof-of-concept efficacy vaccine trial
(59) of a live-attenuated tetravalent chimeric yellow fever-dengue
vaccine (CYD23) showed only 30% overall efficacy, demonstrating
partial (60–80%) protection toward three of four DENV serotypes.
No protection against DENV2 infection was observed, despite
three subsequent immunizations and high neutralization titers
against all four serotypes.

As reviewed above, T-cell responses have been implicated to
have a protective role in DENV infection. Previous data from our
lab and others clearly demonstrate that CD8+ T-cell responses
dominantly target the non-structural proteins NS3, NS4B, and
NS5 (21–25). Since these DENV proteins are absent in the recom-
binant live-attenuated tetravalent dengue-yellow fever chimeric
virus vaccine (60), our results perhaps provide an explanation for
the low level of vaccine efficacy observed. Further,our data demon-
strate the need to accurately assess T-cell responses (and not only
antibody responses) in the context of DENV vaccine development.

Five additional and promising vaccine candidates are being
tested in human clinical trials. These vaccines rely on tech-
nologies spanning from live-attenuated viruses, vectored vaccines
expressing certain dengue proteins, replication-defective vaccines
to nucleic acid-based vaccines [reviewed in Ref. (61)]. Since our
data raise the possibility that T-cell responses against all DENV
proteins might be beneficial or even required for vaccine efficacy,
it will be of particular interest to study T-cell epitopes induced by
multivalent live-attenuated vaccines and compare them to T-cell
responses observed in natural infection.

METHODS TO CHARACTERIZE T-CELL RESPONSES AFTER VACCINATION
Characterization of T-cell epitopes can be performed by a variety
of techniques, each associated with distinct advantages and dis-
advantages. These techniques include: ELISPOT, FACS and ICS
assays, cell sorting, and tetramer staining. Though ELISPOT is the
most sensitive at detecting low-levels of specific cytokine produc-
tion, ICS assays are better suited to characterize phenotypes and T
cells that are simultaneously producing multiple cytokines. Secre-
tion of particular cytokines such as IFN-γ and TNF-α has been
implicated in the induction of DENV-associated immunopathol-
ogy. IFN-γ has been implicated as having a protective role during
DENV infection whereas TNF-α has been implicated as a key
mediator of immunopathology (62, 63). Characterization of a
broad array of cytokines affords determination of the degree to
which the cells responding to a given epitope are polyfunctional
effectors. As illustrated in several different systems, T cells with a
polyfunctional phenotype capable of secreting multiple cytokines
provide the most effective control of viral infection (64–66).
Importantly, both ELISPOT and ICS assays can be used to charac-
terize pools of epitopes in conditions where only small amounts
of PBMC are available.

An alternative and complementary approach to ELISPOT and
ICS involves the use of tetramer staining reagents (67, 68). This
approach requires not only the production of specific reagents for
each HLA:epitope combination, but also that T cells specific for
each combination are present in sufficient frequency in periph-
eral blood to allow their detection and characterization. In cases
where T-cell frequency is low, this limitation can be overcome by
the tetramer enrichment technique (69). Because tetramer char-
acterization is in general more technically demanding, tetramer
assays are ideally suited for in-depth characterization of a small
but representative set of epitope specificities.

Markers associated with memory or activation/exhaustion
states are also of interest. For vaccines to be effective, they must
promote development of an effective T-cell memory response, in
terms of recall of both effector T-cell responses and anamnestic
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antibody responses (70). T cell can be classified into TN (naïve
T cells), TCM (central memory T cells), TEM (effector mem-
ory T cells), and TEMRA (effector memory T cells re-expressing
CD45RA) subsets (71). Activation and conversely exhaustion of T
cells are implicated in the regulation of protective immunity and
immunopathology (72). Markers such as CD57 (73, 74), CD40L
(75), and PD-1 (programed death-1) (76) allow determination
of activation/exhaustion states of memory T-cell subsets. All of
these techniques are currently available and a detailed analysis
of the responses induced by natural or experimental infection
with DENV will greatly contribute to the understanding of T-cell
immunity in humans and may further contribute to identify robust
correlates of protection in natural immunity and vaccination
against DENV.
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