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Hantaviruses are the members of the family Bunyaviridae that are naturally maintained
in the populations of small mammals, mostly rodents. Most of these viruses can easily
infect humans through contact with aerosols or dust generated by contaminated animal
waste products. Depending on the particular Hantavirus involved, human infection could
result in either hemorrhagic fever with renal syndrome or in Hantavirus cardiopulmonary
syndrome. In the past few years, clinical cases of the Hantavirus caused diseases have
been on the rise. Understanding structure of the Hantavirus genome and the functions of
the key viral proteins are critical for the therapeutic agents’ research. This paper gives a
brief overview of the current knowledge on the structure and properties of the Hantavirus
nucleoprotein and the glycoproteins.
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INTRODUCTION

Hantaviruses comprise genus Hantavirus within family Bunyaviridae (Elliott, 1990). Humans
become infected by either inhaling virus contaminated aerosols or having contact with the
urine or droppings of infected animals (Jonsson et al., 2010). In humans hantaviruses cause
either hemorrhagic fever with renal syndrome (HFRS) or Hantavirus cardiopulmonary syndrome
(HCPS). Generally, each distinct Hantavirus is maintained in nature in the populations of the
particular small mammal (rodent or insectivore) host species. Murinae-associated hantaviruses
cause HFRS, while Sigmodontinae associated hantaviruses usually cause HCPS. Most of the
Arvicolinae-borne hantaviruses (Prospect Hill virus and Tula virus being the most prominent
ones) seem to be non-pathogenic for humans (Plyusnin et al., 1994; Schmaljohn and Hjelle, 1997).
In accord with the geographic distribution of the virus specific natural hosts, HFRS is mainly
diagnosed in Europe andAsia, withmurine-borne Hantaan virus (HTNV), Dobrava-Belgrade virus
(DOBV), and Seoul virus, as well as arvicoline-borne Puumala virus (PUUV), serving as the main
causative agents. HCPS is endemic in the Americas and is caused by a variety of the Sigmodontinae-
borne New World Hantaviruses, with Andes virus (ANDV) and Sin Nombre virus (SNV) being
the most prominent sources of human infections. Mortality rates vary from 0.3 to 10% for HFRS
and between 30 and 40% for HCPS (Jonsson et al., 2010; Macneil et al., 2011; Krautkramer et al.,
2013). HFRS clinical symptoms include fever, renal dysfunction, haemorrhagic manifestations, and
shock. HCPS is characterized by fever, myalgia, headache, and gastrointestinal symptoms, followed
by non-cardiogenic pulmonary oedema, and shock. A summary of the geographic distribution and
host affiliation of the most prominent hantaviruses and the diseases they cause is given in Table 1.
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TABLE 1 | Representative hantaviruses and their rodent hosts.

Rodent host subfamily Rodent host species Virus species Disease Geographic distribution

Murinae Apodemus agrarius Hantaan HFRS Russia, China, and Korea

Murinae A. flavicollis Dobrava-Belgrade HFRS Balkans and Europe

Murinae Rattus norvegicus Seoul HFRS Worldwide

Sigmodontinae Peromyscus maniculatus Sin Nombre HCPS Western Canada and USA

Sigmodontinae P. maniculatus Monongahela HCPS Eastern Canada and USA

Sigmodontinae P. leucopus New York HCPS USA

Sigmodontinae P. leucopus Blue River HCPS USA

Sigmodontinae Sigmodon hispidus Black Creek Canal HCPS USA

Sigmodontinae Oryzomys palustris Bayou HCPS USA

Sigmodontinae S. hispidus Muleshoe HCPS USA

Sigmodontinae S. alstoni Cano Delgadito Not known Venezuela

Sigmodontinae Oligoryzomys longicaudatus Andes HCPS Argentina, Chile, and Uruguay

Sigmodontinae O. longicaudatus Oran HCPS Argentina

Sigmodontinae O. Flavescens Lechiguanas HCPS Argentina and Uruguay

Sigmodontinae Calomys laucha Laguna Negra HCPS Paraguay and Bolivia

Arvicolinae Clethrionomys glareolus Puumala HFRS Russia, Europe, and Asia

Arvicolinae Microtus pennsylvanicus Prospect Hill Not known North America

Arvicolinae M. ochrogaster Blood Land Lake Not known North America

Arvicolinae M. arvalis Tula Not known Europe, Russia, and Asia

Arvicolinae M. californicus Isla Vista Not known USA and Mexico

HANTAVIRUS GENOME STRUCTURE
AND LIFE CYCLE

Hantavirus virions have spherical shape with size varying
between 80 and 120 nm. Hantavirus genome is comprised of
three segments of single stranded negative sense RNA. Based on
their size, these three segments are named small (S), medium
(M), and large (L). L segment encodes viral polymerase, while M
and S segments encode the precursor (GPC) for two viral surface
glycoproteins (G1 and G2, or alternatively called Gn and Gc), and
the nucleocapsid (N) protein, respectively. Each virion generally
contains equimolar amounts of genomic RNA, with a single
molecule of the viral RNA-dependent RNA polymerase (RdRp)
being attached to each segment of viral RNA. All viral RNA
segments are coated with the molecules of the N protein forming
ribonucleoproteins (RNPs; Elliott, 1990). These are enclosed by
an envelope consisting of a lipid bilayer, with G1 and G2 surface
glycoproteins embedded into it (Elliott, 1990).

Hantavirus virion attachment to the host cell via cellular
receptors is followed by endocytosis. RNPs are released to
the cytoplasm from the late endosome following pH-mediated
membrane fusion. Transcription and translation take place either
at the site of RNPs release or at the endoplasmic reticulum–Golgi
intermediate compartment (ERGIC). In case of the latter, the
RNPs are transported to ERGIC. The viral polymerase, RdRp,
possesses transcriptase, replicase and endonuclease functions;
thus, it carries out both virus transcription (Figure 1A) and
replication (Figure 1B). To initiate transcription, RdRp cleaves
cellular mRNA forming capped primers. Recently, cellular
endonucleases have also been suggested to participate in capped
primer formation by cleaving cellular mRNAs which cap-
structures are protected from degradation by the specifically

bound viral N protein (Mir et al., 2008). These capped primers
initiate transcription of viral mRNAs. S segment derived mRNA
serves as a template for the N protein, and for some particular
hantaviruses also it produces a non-structural NSs protein
(Figure 1C). M segment derived mRNA produces GPC on the
ER membrane-bound ribosomes. G1 and G2 glycoproteins are
transported from the ER to the Golgi complex or to the plasma
membrane where assembly takes place (Figure 2). Old World
hantaviruses assemble at the Golgi while NewWorld hantaviruses
assemble at the plasma membrane (Elliott, 1990; Ravkov et al.,
1998; Spiropoulou, 2013) (Figure 2). After assembly, the newly
formed envelope contains spike-like projections (Elliott, 1990;
Welsch et al., 2007; Hepojoki et al., 2012) formed by the tetramers
of the viral surface glycoproteins, which apparently play an
important role in both virus assembly and cell entry (Welsch
et al., 2007; Lyles, 2013; Yamauchi and Helenius, 2013). Newly
assembled virions are released through exocytosis.

STRUCTURE AND PROPERTIES OF
HANTAVIRUS GLYCOPROTEINS

Hantavirus surface glycoproteins G1 and G2 are coded by the
M segment and are expressed as a polyprotein precursor, GPC,
which is cleaved by a cellular protease during translocation
to ER yielding mature G1 and G2 glycoproteins (Figure 1C)
(Pensiero and Hay, 1992; Plyusnin et al., 1996). Cryo-electron
microscopy and cryo-electron tomography studies have shown
that G1 and G2 proteins form square-shaped surface spikes
protruding from the viral membrane, with each spike complex
made of four G1 and four G2 subunits (Huiskonen et al.,
2010; Battisti et al., 2011). It has been shown that these G1/G2
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FIGURE 1 | Hantavirus transcription, replication and translation. (A) Hantavirus transcription. Transcription occurs through a prime and realign mechanism.
Cellular mRNA is cleaved by either Hantavirus RNA-dependent RNA polymerase (RdRp) or cellular endonucleases in a process called cap snatching, thus forming a
capped primer (m7GpppNn). It is this capped primer that initiates transcription by aligning its guanidine to the 3′ cytosine of the vRNA. After synthesis of several
nucleotides, the nascent RNA slips back and realigns. Final elongation then takes place, producing an extra copy of viral mRNA. (B) Replication of Hantavirus RNA.
Replication takes place in cytoplasm of the infected cell, using prime and realign mechanism. RdRp attached to the 3′ end of vRNA aligns guanidine triphosphate
(pppG) residue to the first cytosine of the virus RNA and synthesizes the first three nucleotides of the new cRNA strand. The nascent RNA slips back and realigns
after successive addition of bases. Then, final elongation takes place, resulting in production of the full length cRNA. In turn, this positive strand anti-genomic cRNA
serves as a template for producing a large amount of the new strands of vRNA. (C) Hantavirus transcription and translation. Negative sense viral RNA serves as a
template for the viral RdRp, which initiates transcription by cap-snatching mechanism and generates viral mRNA. Viral mRNAs are translated producing N protein,
glycoprotein precursor (which is cleaved to form G1 and G2 glycoproteins), and RdRp from the small (S), medium (M), and large (L) segment-originated mRNA,
respectively.

glycoprotein heterodimers may interact with specific cellular
surface proteins, β3-integrins, facilitating cellular entry of HCPS-
causing hantaviruses (Gavrilovskaya et al., 1998).

Both G1 and G2 glycoproteins are built in a similar
way, each containing a large globular domain, a hydrophobic

transmembrane sequence and a small C-terminal cytoplasmic
tail. Since no matrix proteins exist connecting Hantavirus
nucleoproteins and envelope proteins, it is suggested that there
is a direct interaction between N protein and cytoplasmic tails
of G1 and G2. Nuclear magnetic resonance spectroscopy has
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FIGURE 2 | Hantavirus life cycle. Virion binds to the cell surface membrane receptor and enters the cell via endocytosis. Once inside the cell, RNPs are released
from the late endosome via pH-mediated membrane fusion. Virion-supplied RdRp is driving initial mRNA transcription which takes place in cytoplasm. Viral genomic
(minus sense) RNA serves as a template for generation of mRNA utilized for protein synthesis. When sufficient amounts of the viral proteins are produced, RdRp
switches to the replication mode synthesizing full length anti-genomic (plus sense) RNA, which in turn serves as a template for producing a large amount of the new
full length minus sense viral RNA molecules. Newly synthesized vRNA becomes encapsidated with N protein forming ribonucleoprotein and transported into
perinuclear membrane system, from where they will be transported to Golgi for initiation of virion formation. Egress takes place at the plasma membrane.

shown that a part of the G1 tail ( residues 543–599) has a double
ββα-fold zinc finger made up of a highly conserved motif that has
high similarity between ANDV and Prospect Hill viruses (PHV)
(Estrada et al., 2009, 2011). It has been suggested that these zinc
fingers play a role in virus assembly (Estrada and De Guzman,
2011).

GLYCOPROTEIN INTERACTION AND
TRAFFICKING

Maturation of Bunyavirus glycoproteins takes place in the Golgi
complex (Pettersson and Melin, 1996). During maturation, G1
and G2 glycoproteins are N-glycosylated. Three glycosylation
sites are located on G1 and only one on G2 glycoprotein. Both
G1 and G2 glycoproteins are sensitive to endoglycosidases H and
F. It has been reported that G1 and G2 targeting to Golgi depends
on conformational interaction between these two glycoproteins
(Shi and Elliott, 2002; Deyde et al., 2005). Furthermore, it appears

that G1 glycoprotein plays an important role in facilitating
Golgi trafficking of both glycoproteins. For example, when
G1 glycoprotein is expressed individually, it becomes partially
localized to Golgi, while the majority of this protein is localized in
the endoplasmic reticulum (Deyde et al., 2005). However, when
G2 is individually expressed, it becomes exclusively localized in
the endoplasmic reticulum (Ruusala et al., 1992; Spiropoulou
et al., 2003). It is important to note that glycoproteins from
different hantaviruses are capable to interact resulting in proper
targeting to the Golgi complex (Deyde et al., 2005).

GLYCOPROTEIN-INDUCED VIRULENCE

Viral infection ignites innate immune responses aimed to reduce
viral replication. Type I interferons (IFNs) play a pivotal role in
providing direct antiviral protection as well as activating natural
killer (NK) cells, the key effector cells of the innate immune
response. On the other hand, in order to survive viruses develop
mechanisms to prevent elimination by inhibiting pathways
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activating type I IFN transcription (Finlay and McFadden, 2006;
Yoneyama and Fujita, 2007). It has been shown that expression
of the G1 protein cytoplasmic tail of pathogenic hantaviruses
(Alff et al., 2006) inhibits the induction of IFN-β. This ability
distinguishes pathogenic hantaviruses from non-pathogenic
ones, as the latter are incapable of inhibiting IFN-β induction
(Alff et al., 2006). The G1 cytoplasmic tail of the pathogenic
hantaviruses has been shown to inhibit IFN-β transcription by
binding to TRAF3 (Alff et al., 2008) and preventing RIG-I/TBK1-
directed IRF3 phosphorylation (Mackow et al., 2014; Matthys
et al., 2014). TRAF3 is an E3 ubiquitin ligase that forms a TBK1–
TRAF3 complex, which is crucial for IRF3 phosphorylation.
Phosphorylation of IRF3 is vital in IFNβ induction.

HANTAVIRUS REASSORTMENT AND
COMPATIBILITY OF THE HANTAVIRUS
PROTEINS

Reassortment, i.e., exchange of the genome segments between
different virus strains, plays an essential role in maintaining
segmented viruses and can produce new strains with novel
characteristics and improved survivability. The evolution of the
Rift Valley Fever virus (RVFV) presents an example of how novel
reassortants can be naturally generated in endemic areas (Sall
et al., 1997). Rapid virus evolution caused by such reassortment
may bring about global outbreaks (Webster and Laver, 1971;
Young and Palese, 1979). Also, ability to generate reassortants

may put people living in the endemic areas at the risk of
generating uncontrolled chimeric viruses by using live attenuated
vaccines (Sall et al., 1997). Initially, genetic reassortment has
been shown among members of arthropod-borne Bunyaviridae
(Beaty et al., 1985; Chandler et al., 1991). Later on, genetic
reassortment between different Hantavirus strains in nature has
been documented as well (Henderson et al., 1995; Li et al., 1995).
Li et al. (1995) proposed that such reassortment could lead to the
emergence of new Hantavirus strains with novel epidemiological
characteristics.

Reassortment is most likely to occur between genetically
different strains of the same Hantavirus, or between closely
related hantaviruses circulating within closely related rodent
host species. Despite being rather rare, reassortment among
hantaviruses that are distantly related is also possible in nature. It
is well-known that Hantavirus infection could “spill over” to the
non-specific host when different animal species share the same
ecological niche. This could potentially result in dual infection
of a single animal. Replication of two different hantaviruses in
the same host organism may produce reassortants with new
characteristics (Henderson et al., 1995; Rodriguez et al., 1998).

In vitro studies have proven that genetic reassortants can
be developed between distantly related hantaviruses (Rodriguez
et al., 1998; Kang et al., 2002). In details, the ability of two
distantly related hantaviruses to develop reassortants in vitro
have been investigated by Rizvanov et al. (2004). The authors
have shown that ANDV and SNV (Figure 3) can generate
reassortants with novel infectivity characteristics which differ

FIGURE 3 | Hantavirus reassortment. Infection of one host with two different Hantavirus strains may result in reassortment. Reassortment has been shown
between ANDV and SNV resulting in reassortants possessing ANDV M segment and SNV L and S segment.

Frontiers in Microbiology | www.frontiersin.org 5 November 2015 | Volume 6 | Article 1326

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Muyangwa et al. Hantavirus Proteins: Structure and Function

from both parental strains. Noteworthy, the resulting reassortant
viruses always retained the S and L segments of the same
parental Hantavirus, while the M segment was introduced from
the other one. In spite of both viruses being Sigmodontinae-
borne, their rodent hosts are separated geographically. SNV
circulates in North America, while ANDV endemic for South
America (Plyusnin and Morzunov, 2001). These data are in
agreement with the previous finding published by Urquidi
and Bishop (1992) demonstrating that the reassortant progeny
between Bunyaviruses contains homologous S and L segments.
Few progeny contain S and L segments that are heterozygous,
i.e., virion contains corresponding segments from both parental
strains. Virus progeny of the hantaviruses that are closely related
have a different prevalence of homologous L and S segments from
those that are distantly related (Rodriguez et al., 1998; Scmaljohn
and Hopper, 2001).

The M segment plays an important role in Bunyavirus
replication (Beaty et al., 1981) and is also known to alter the
efficiency of virus budding. Glycoproteins encoded by the M
segment take part in cell surface attachment, thus, they are
essential for viral entry into the host cell. It is interesting
to note that the stable reassortment progeny between SNV
and ANDV contained the M segment from the virus which
has higher capacity to replicate in the host cell type used in
the experiments (Rizvanov et al., 2004). This data supports
the notion that reassortment strategy utilized by segmented
viruses may generate novel virus strains with higher capacity
to propagate. Two additional conclusions that could be drawn
from the reassortment experiments are: (i) the viral RdRp
obviously works much better on the viral RNA template coated
with the homologous N protein, and (ii) cytoplasmic tails of
the Hantavirus G1/G2 glycoproteins seem to interact with the
heterologous RNPs at least as efficiently as with the homologous
ones.

Ability to generate reassortants between distantly related
hantaviruses provides a tool for studying the role of each
viral segment (and corresponding viral protein) in pathogenesis
of infection. Also, reassortants can be used for analyzing the
Hantavirus specificity to the animal host.

STRUCTURE AND PROPERTIES OF THE
HANTAVIRUS N PROTEIN

The Hantavirus N protein consists of approximately 433 amino
acid residues (about 50 kDa in size). The N protein appears to
be highly conserved among different hantaviruses. It has been
shown that large amounts of N protein are expressed early after
infection (Vapalahti et al., 1995). Also, it has been demonstrated
that early immune response in Hantavirus patients is directed
mainly against N protein. Therefore, many virus diagnostics
developed are based on detecting Hantavirus N protein or anti-N
protein antibody (Amada et al., 2013; Yoshimatsu and Arikawa,
2014).

The N protein is expressed exclusively in the cytoplasm (Elliott
et al., 2000) of the infected cell. Hantavirus N protein plays a

pivotal role in the virus life cycle as it is required for encapsidating
viral RNA, as well as regulating virus replication and assembly.

RNA BINDING AND
RIBONUCLEOPROTEIN ASSEMBLY

The N protein protects viral genomic RNA from degradation by
cellular nucleases by forming viral RNPs. The mechanisms of
RNA encapsidation are not completely understood. It has been
shown that the N protein selectively interacts with Hantavirus
RNA, encapsidating vRNA (negative sense genomic) and cRNA
(positive sense anti-genomic) while leaving viral mRNA free.
Selective encapsidation is thought to be possible due to presence
of the unique panhandle terminal structure formed by the self-
complimentary terminal sequences of the full length vRNA and
cRNA. It has been demonstrated that these 23 nucleotides-long
terminal sequences can serve as a binding site for the viral RdRp
and have high affinity to the N protein (Mir and Panganiban,
2004). In particular, the N protein of some hantaviruses, such as
HTNV, has been proven to preferably bind to its S segment vRNA
rather than to the S segment open-reading frame or non-specific
RNA. This may suggest that the N protein recognition site resides
in the non-coding region of HTNV vRNA (Severson et al., 1999).
It was later reported that such binding depends on the 5′ end
sequence of the S segment vRNA (Severson et al., 2001).

N PROTEIN INTERACTS WITH HUMAN
MxA(p78) Protein

It has been shown that the efficiency of Hantavirus replication is
inversely proportional to the ability of infected cells to activate
MxA expression (Kanerva et al., 1996). MxA protein is a key
component of the type I IFN-induced antiviral state providing
resistance to a wide range of the RNA viruses (Pavlovic et al.,
1993). There are two types of Mx proteins in humans, MxA and
MxB (Horisberger et al., 1988), with only MxA known to possess
anti-viral activity (Haller and Kochs, 2002). Interferon regulatory
factor 3 (IRF-3) regulates activation of MxA gene transcription
(Baigent et al., 2002). Generally, IRF-3 is present in the cytoplasm
of the cell in a dormant state (Reich, 2002). However, upon
infection, IRF-3 translocates into the nucleus, where it initiates
transcription ofMxA and other IFN inducible genes (Reich, 2002;
Melchjorsen and Paludan, 2003). It has been shown that IRF-3
nuclear translocation can occur as early as 24 after Hantavirus
infection (Khaiboullina et al., 2005).

MxA activation has been shown to vary in different cell
types (Khaiboullina et al., 2005). For example, high MxA
activation level was demonstrated in human umbilical cord
endothelial cells (HUVECs), while ativation of MxA in VeroE6
cells was virtually undetectable. Further studies have shown that
Hantavirus replication efficacy is inversely proportional to the
ability of infected cells to activate expression of MxA protein
(Kanerva et al., 1996; Khaiboullina et al., 2005). These data
suggest that variations in Hantavirus replication may partially
depend on ability of the particular cell types to activate MxA
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protein. In turn, MxA protein is known to bind to the N protein
forming an MxA/N protein complex (Khaiboullina et al., 2005).
Formation of MxA/N complexes has been suggested for some
other Bunyaviruses as a potential mechanism of MxA inhibition
of viral replication (Kochs et al., 2002). Thus, it is very likely that
in the case of hantaviruses the mechanism of MxA inhibition is
similar.

HANTAVIRUS INFECTION ACTIVATES
THE INNATE IMMUNE RESPONSE

Increased microvascular permeability is characteristic for
hantavirus infections (Zhang et al., 1987; Enria et al., 2001;
Hepojoki et al., 2014). However, permeability of endothelial cell
monolayer did not change after Hantavirus infection in vitro
(Khaiboullina et al., 2000; Sundstrom et al., 2001). Hantavirus
infection is not cytopathic, therefore, it has been suggested that
an increased microvascular leakage is most likely associated
with cell response to infection, rather than related to virus
replication. A DNA microarray conducted to determine changes
in cell responses in Hantavirus infected cells showed that
non-pathogenic (PHV) and pathogenic (SNV) hantaviruses
have different effects on transcriptional activity in infected cells
(Khaiboullina et al., 2004). In particular, it has been shown that
PHV infection activates approximately five times less genes
than the SNV infection does (36 genes were up-regulated in
PHV-infected cells in comparison to 175 genes in SNV-infected
cells). As infection progressed, more changes in transcriptional
activation were detected.

Activation of nuclear and transcriptional factors was shown
to vary in cells infected with pathogenic versus non-pathogenic
hantaviruses (17 vs. 8; Khaiboullina et al., 2004). Also, Hantavirus
infection activates IRF-7, IRF-1, and IRF-9 transcription factors
(Khaiboullina et al., 2004). Interestingly, the transcriptional
activity of these factors was lower in non-pathogenic (PHV)
than in pathogenic (SNV) Hantavirus. Although no changes in
transcriptional activity of IRF3 were noted, nuclear translocation
of this factor in Hantavirus infected cells has been shown
by immunohistochemistry (Khaiboullina et al., 2005). Nuclear
translocation is essential for IRF3 activity which includes
activation of IFN inducible genes as well as activation of
cytokines. It has been demonstrated that IRF-3 controls
activation of CCL5 gene transcription, while IRF-1 and IRF-
3 regulate expression of MxA protein (Baigent et al., 2002).
Up-regulation of CCL5 and MxA has been shown in Hantavirus-
infected cells. Therefore, it could be concluded that Hantavirus-
induced activation of IRF1 and IRF3 may lead to changes
in cytokine and IFN inducible protein expression in infected
cells.

DNA Array data have shown upregulation of several genes
controlling processes of apoptosis, growth and proliferation. For
example, upregulation of transcriptional activity of Bcl2 gene has
been detected in Hantavirus infected HUVECs. Also, Hantavirus
infected cells are characterized by transcriptional activation of
vascular endothelial growth factor (VEGF), a survival factor for
endothelial cells, which prevents apoptosis by inducing Bcl-2

expression. It has been shown that VEGF and Bcl2 cooperate
to prevent apoptosis in vitro. For instance, increased expression
of Bcl-2 was found in neuroblastoma cells treated with VEGF.
Also, VEGF abrogates apoptosis induced by TNF-α-induced
serum starvation (Pidgeon et al., 2001; Beierle et al., 2002).
Therefore, it could be suggested that activation of Bcl2 and
VEGF can explain absence of apoptosis in Hantavirus infected
cells.

It has been suggested that cytokines play important role
in pathogenesis of the vascular leakage in Hantavirus infected
microvascular beds (Zaki et al., 1995). DNA Array data have
shown an increased expression of a cluster of CC chemokine
genes including RANTES (CCL5; Khaiboullina et al., 2004). Also,
data presented by Geimonen et al. (2002) have demonstrated that
transcriptional activation of CCL5 is characteristic for HTNV
and PHV infection of endothelial cells. It is known that CCL5
plays a role in regulation of immune effectors migration to the
site of infection (Schall et al., 1990). Interestingly, mononuclear
leukocyte accumulation is a histological hallmark of Hantavirus
infection (Zaki et al., 1995). One could suggest that increased
traffic of immune effectors through the endothelial monolayer
may lead to its damage and, thereby, making it more permeable
(Schall et al., 1990).

N PROTEIN’S ROLE IN REGULATION OF
ANTIVIRAL STATE

Expression of the glycoproteins of the pathogenic hantaviruses
inhibits INF-β and TBK-1 induction via virulence determinants
present on the G1 cytoplasmic tail. However, it has been
suggested that, this alone may not be sufficient to make them
virulent and some other virulence factors may play role (Matthys
et al., 2011). Recently, it has been demonstrated that the ANDV
N protein hinders autophosphorylation of TBK1 resulting in the
inhibition of IRF3 phosphorylation and RIG-I/MDA5-directed
type I IFN induction (Cimica et al., 2014). Additionally, the N
protein can affect the protein kinase R (PKR) dimerization (Wang
and Mir, 2015). It has been demonstrated that the Hantavirus N
protein prevents PKR phosphorylation, which is essential for its
enzymatic activity. PKR inhibits virus replication and is essential
for establishing antiviral state (Goodbourn et al., 2000). PKR
activates IFN via NF-κB and IRF1 up-regulation (Kumar et al.,
1997). Additionally, PKR can activate apoptosis in infected cells
(Gil and Esteban, 2000). Therefore, it could be suggested that
the glycoproteins and the N protein may interfere with antiviral
activity in infected cells, thus promoting viral replication.

SUMMARY

There are two clinical entities associated with Hantavirus
infection, HFRS and HPS. The mortality rate may vary from
0.1 to 40% depending on the particular Hantavirus involved.
The Hantavirus genome is composed of a three negative sense
single stranded RNA segments coding for the N protein, G1
and G2 glycoproteins and viral polymerase. Genetic reassortment
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between different hantaviruses has been documented both in
nature and in vitro. Such reassortment could result in emergence
of the novel Hantavirus strains with new virulence characteristics
and/or new host range.

Emerging evidence suggests that the Hantavirus N protein
plays a major role not only in virus replication, transcription and
virus assembly, but also in establishing favorable environment
for virus replication within the host cell. Pathogenic hantaviruses
cause more pronounced changes in transcriptional activity of
various cellular genes as compared to non-pathogenic strains.
Activation of CCL5 may contribute to Hantavirus-induced
leukocyte accumulation in infected tissue and, potentially, to

pathogenesis of vascular permeability. The Hantavirus N protein
interacts with host proteins interfering with activation of the
antiviral pathways in infected cells.
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