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Selection signatures are genomic regions harboring DNA sequences functionally involved
in the genetic variation of traits subject to selection. Selection signatures have been
intensively studied in recent years because of their relevance to evolutionary biology
and their potential association with genes that control phenotypes of interest in wild and
domestic populations. Selection signature research in fish has been confined to a smaller
scale, due in part to the relatively recent domestication of fish species and limited genomic
resources such as molecular markers, genetic mapping, DNA sequences, and reference
genomes. However, recent genomic technology advances are paving the way for more
studies that may contribute to the knowledge of genomic regions underlying phenotypes
of biological and productive interest in fish.
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INTRODUCTION
Selection signatures are genomic regions that harbor DNA
sequences involved in genetic variation of traits subject to nat-
ural or artificial selection (Qanbari et al., 2012). Currently, due to
advances in genomic technologies and statistical methods, such
signatures can be identified in the genomes of various species.

Most studies in this field of genetics are based on the concept
of hitchhiking, which suggests that selection affects the genome
at a specific region, leaving “signatures” around the selected
gene(s) (Smith and Haigh, 1974). Specifically, the hitchhiking
theory focuses on the spread of new variants in a population
due to selection for their favorable effects (Przeworski, 2002;
Kim and Nielsen, 2004). Selection involving alleles from the
population’s standing genetic variation produces specific and
detectable DNA sequence patterns (Hermisson and Pennings,
2005).

The search for these molecular signatures has been the subject
of intense research in recent years in both domesticated and wild
populations of plants and animals, as well as in humans. These
studies have been motivated by two main objectives: (1) a strong
interest in the evolutionary past of the species and basic molecular
mechanisms governing this evolution and (2) the expectation of
an association between these genomic regions and biological func-
tions or phenotypes of interest, since these regions should have
some functional or adaptive importance underlying their selec-
tion (Nielsen et al., 2007). These studies are possible due to the
development of various methods aimed at detecting selection at
the molecular level in population samples. Information on allelic
frequencies or haplotype patterns segregated in the population

can be used to identify signatures, since selection modifies the
patterns of genetic variation expected under the neutral theory of
molecular evolution.

Most studies in domesticated populations have focused on
detecting relatively old selection signatures dating back hundreds
or thousands of generations, e.g., (Flori et al., 2009), with few
studies on genetic changes during early domestication stages (Trut
et al., 2009).

Certain fish species provide unique models for studying the
effects of selection and domestication, as their populations
were domesticated recently and are available as both wild and
domesticated populations simultaneously.

In this article we present different aspects involved in study-
ing selection signatures at a genomic level in different species and
discuss about the potential application of these studies in fish pop-
ulations to unravel recent selection and domestication processes
in these species.

IDENTIFICATION OF LOCI ASSOCIATED WITH TRAITS OF
INTEREST
The search for genes controlling phenotypic variation can be per-
formed in two different ways. First, the “top–down” approach
which begins with knowledge of the phenotype of interest and
uses genetic analysis to identify genes or causal regions. These
approaches include candidate gene studies, identification of Quan-
titative trait loci (QTLs) and association mapping. These studies
have certain limitations, including the need for an a priori hypoth-
esis about which genes underlie the trait of interest, information
about family relationship between individuals, as well as, access
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to a large number of relatives with phenotypic records (Gu et al.,
2009). Second, the “bottom–up” approach, in contrast, begins
with genomic information and involves statistical evaluation of
molecular information to identify regions subject to selection
(Ross-Ibarra et al., 2007). This approach searches for patterns
of linkage disequilibrium, genetic differentiation, or frequency
spectrum that are inconsistent with the neutral evolution model
to identify selection signatures (Qanbari et al., 2010). Recent
advances in genomics provide a new paradigm for the “bottom–
up” strategy concerning population genomics, a discipline that
infers genetic and evolutionary parameters of a population based
on datasets from the whole genome (Black et al., 2001).

In this context, population genomics relies on two basic prin-
ciples or assumptions. First, neutral loci will be equally affected by
demographic effects and by the evolutionary history of the popula-
tion. Second, loci under selection will tend to behave distinctively,
revealing atypical variation patterns (Luikart et al., 2003).

MODELS OF SELECTION
Natural selection can be defined as the differential contribution
of genetic variation to future generations (Aquadro et al., 2001)
due to differential reproduction of some phenotypes/genotypes
over others under prevailing environmental conditions at a given
time (Futuyma, 1998). It is the driving force behind Darwinian
evolution and can be subdivided into different types, depending
on the evolutionary outcome (Hurst, 2009).

Directional selection tends to decrease variation within a popu-
lation but may increase or decrease variation among populations.
Positive selection is a type of directional selection that favors alle-
les that increase fitness of individuals. When directional selection
eliminates unfavorable mutations, it is called purifying selection
(also known as negative selection).

Diversifying (or disruptive) selection favors variety and bene-
fits individuals with extreme phenotypes over intermediate. In this
type of selection, the propagation of an allele never reaches fixa-
tion, and therefore it may occur when an allele is initially subject to
positive selection, and then negative selection when the frequency
becomes too high (Nielsen, 2005).

Balanced selection, which helps to maintain an equilibrium
point at which both alleles remain in the population, has several
forms, including frequency-dependent selection and overdom-
inance, which occurs when the heterozygote has the higher
biological fitness, and therefore variability is maintained in the
population (Nielsen, 2005).

SELECTION SIGNATURES
In the classic “hitchhiking” scenario, first described by Smith and
Haigh (1974), a new allelic variant that represents a favorable
adaptive substitution originates within the population as a new
mutation, and its frequency increases as a result of constant selec-
tion pressure. When a favorable allele is selected, and its frequency
increases to fixation in a population, genetic variation in the
surrounding DNA segment is altered; that is, the increased fre-
quency of the selected allele also produces increased frequency of
closely-linked alleles (Pennings and Hermisson, 2006).

The ancestral variation, i.e., genetic variation present in a
population prior to a selection process, is maintained only if

recombination during this phase disrupts the association between
an adjacent locus and the selected site. The resulting pattern
of such a selective event is a strong reduction in genetic varia-
tion around the selected site, known as a “hard sweep,” which
corresponds to the classic selective sweep (Pritchard et al., 2010).

There is a second scenario in which an adaptive substitution
involves multiple copies of a favorable allele in the population.
This may occur for two reasons. First, when an adaptation arises
from genetic variation, many copies of the favorable allele may
be present in the population. Fixation of this allele may involve
descendants of more than one of these copies. Second, a favorable
allele can be introduced in the population by recurrent mutation or
migration during a selection phase, and again, several descendants
of independent origin may contribute to the allelic fixation. In
both cases, different alleles of loci adjacent to any such favorable
copies will be retained in the population, resulting in different
haplotypes (Pennings and Hermisson, 2006).

Selection signatures involving descendants of more than one
copy of the selected allele and, therefore with different haplo-
types at closely-linked sites, are called “soft sweeps.” This type of
selection signature results in different haplotype patterns than the
“hard sweeps” described above and it is more difficult to detect
as it only produces a slight reduction in the levels of adjacent
polymorphisms (Cutter and Payseur, 2013).

Furthermore, when adaptation occurs by polygenic selection,
it induces an increase in the allelic frequency of several loci which
have a favorable effect on a particular phenotype; however, these
polygenic alleles do not necessary achieve fixation, and the result-
ing haplotype pattern corresponds to several partial selection
signatures or multiple “partial sweeps” (Pritchard et al., 2010).

Finally, when purifying or negative selection reduces the fre-
quency or eliminates a deleterious allele, the genetic diversity at
linked loci also decreases, which is known as“background selection”
(Charlesworth, 1993).

Figure 1 schematically summarizes the patterns caused by“hard
sweeps,”“soft sweeps,” and“partial sweeps”that correspond to selec-
tive events for favorable variants in a population, as well as the
pattern produced by “background selection.”

DOMESTICATION AND RECENT ARTIFICIAL SELECTION IN
FISH
Domestication is the process by which various species have been
adapted to a captive environment by humans. Such adaptation is
accomplished through systematic breeding over generations and is
characterized by changes in behavior, morphology, and physiology,
as well as adaptive genetic changes caused by artificial and natural
selection (Price, 1999).

In fish, domestication occurred very recently as compared to
other land animals. One theory to explain the late domestication
of aquatic species suggests that, due to the high fertility of these
species, a small number of broodstock were required to obtain
a sufficiently large progeny in subsequent generations. After a
few generations, the inbreeding depression increases considerably;
therefore, fitness and productive behavior decrease. As a result, fish
farmers were forced to repeatedly take new broodstock from the
wild environment, interrupting the continuity of domestication
and breeding (Gjedrem et al., 2012). For this reason, aquaculture
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FIGURE 1 |The horizontal lines represent the haplotypes in a

population; the circles favorable alleles; and the triangles deleterious

alleles. (A) Hard sweeps involve fixation of a new favorable variant.
(B) Soft sweeps involve fixation of equivalent alleles from different genetic

backgrounds and therefore result in different haplotypes. (C) Partial
sweeps involve increased allele frequency at several loci, without reaching
fixation. (D) Background selection eliminates deleterious variants and linked
loci.

has lagged behind land animal and plant culture in the use of
breeding to enhance biological production efficiency.

On the other hand, it is estimated that less than 10% of
aquaculture production is based on genetically improved stocks
(Gjedrem, 2012), although the annual genetic gains reported for
aquaculture species are substantially higher than for land animals.
For example, selection response reported for grow-related traits
are even higher than 10% in fish populations, which can sub-
stantially enhance aquaculture production by selective breeding
(Gjedrem et al., 2012). Recent high selective pressures in farmed
fish populations may have shaped genome variation in regions
harboring causative mutations of selected traits. The identifica-
tion of these regions may help in the understanding of the effect
of selection events and identification of genetic variants involved
in phenotypic variation in fish populations.

EXAMPLES OF DOMESTICATION AND BREEDING PROGRAMS IN
AQUATIC SPECIES
The fish belonging to the family Ciprinidae are most likely the
first fish species to be domesticated. For instance, the gold-
fish (Carrassius auratus) is an ornamental fish, believed to have
been domesticated in China before the XVI century and later
taken to Japan and Europe (Purdom, 1993). Another impor-
tant group of ornamental fish is the koi carp, a variety derived
from common carp (Cyprinus carpio) and mainly cultivated in
Japan. The large variety of colors and forms among koi carp
resulted from directed selection and crossbreeding (Gjedrem,
2005).

There is evidence in common carp showing a large response
to selection for furunculosis survival rates (Schaperclaus, 1962).
In 1987, Ilyassov (1987) showed results from 4 to 5 generations
of selection in this species for resistance to dropsy disease, which
increased survival by 30–40% as compared to unselected carps.

On the other hand, selection responses reported for growth rate
in rohu carp (Labeo rohita) have been particularly high, reaching
almost a 30% per generation (Gjedrem, 2012).

Furthermore, salmonid species are the most intensively selected
fish populations. In this regard, the rainbow trout (Oncorhynchus
mykiss) has a long history of domestication and breeding in the
United States, Norway, Finland, and Denmark (McAndrew and
Napier, 2011). In 1932, investigators began to select individuals
to improve growth rate, number of eggs, and characteristics of
sexual maturity (Donaldson and Olson, 1957). Currently there
are 13 breeding programs worldwide aimed at improving growth
rate, age at sexual maturity, fillet quality, and disease resistance in
this species (Rye et al., 2010).

In the case of Atlantic salmon (Salmo salar), breeding programs
exist in Norway, Scotland, Ireland, Australia, and Chile (Norris
et al., 1999; Metcalfe et al., 2003; Glover et al., 2009; Dominik et al.,
2010; Rye et al., 2010; McAndrew and Napier, 2011). Several traits
of commercial interest such as growth, sexual maturity, meat qual-
ity, and disease resistance have been incorporated into breeding
objectives. Furthermore, findings from genomic technologies have
been incorporated into these breeding programs, for example, the
use of QTLs to assist selection for resistance against the viral dis-
ease named infectious pancreatic necrosis (Houston et al., 2008;
Moen et al., 2009).

Among Pacific salmon, the chinook salmon(Oncorhynchu
stshawytscha) originating in British Columbia (BC), Canada was
one the first species of salmons to be domesticated (Kim et al.,
2004). Currently, its farming is limited and there are two breed-
ing programs in operations (Rye et al., 2010). Moreover, genetic
improvement programs for coho salmon (Oncorhynchus kisutch)
have been successful in selecting for harvest weight and early
spawning, with selection responses of about 10% per generation
(Neira et al., 2006).
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Tilapias are the second-most important group of cultivated fish
in the world. The dominant species is the Nile tilapia (Oreochromis
niloticus); however, other species of the genus Oreochromis (Neira,
2010) are also cultivated. The GIFT (Genetic Improvement of
Farmed Tilapias) program, begun in 1987 in the Philippines,
systematically compared wild and commercial strains in various
aquatic environments and established a family-based selection
system to improve growth rate (Eknath et al., 1993). The pro-
gram is currently managed by the World Fish Center in Malaysia
and genetic gains for growth-related traits are among 10–15%
(Ponzoni et al., 2011).

Breeding programs have recently been established for other
important species such as, sea bass (Dicentrarchus labrax;
Vandeputte et al., 2009), sea bream (Sparus aurata), turbot (Scoph-
thalmus maximus), Atlantic cod (Gadus morhua; Glover et al.,
2011), halibut (Glover et al., 2007), and tuna (Owen, 2011).

All of these domestication and artificial selection processes
shape the genomes of cultured fish populations, resulting in selec-
tion signatures that could potentially be identified using molecular
and statistical methods.

APPROACHES USED FOR DETECTING SELECTION
SIGNATURES
When a new allelic variant that does not affect the fitness of indi-
viduals originates in a population, it is not affected by natural
selection and is said to be neutral. Statistical tests aimed at testing
a neutral evolution model can be divided into three main classes:
(1) tests based on polymorphisms within species; (2) tests based
on the differences between species; and (3) tests that use infor-
mation within and between species. A description of these three
approaches is given below.

TESTS BASED ON POLYMORPHISMS WITHIN SPECIES
Frequency spectrum
The frequency spectrum is defined as the allele frequency dis-
tribution of a large number of independent loci in a given
sample (Nielsen, 2005; Vogl and Clemente, 2012). Deviations from
expectations of the neutral model (no selection, recombination,
population subdivision, or changes in the effective population size)
could be indicative of selection: purifying or negative selection
tends to increase the fraction of mutations segregating at low fre-
quencies, while positive selection increases the number of alleles
observed at high frequencies (Hurst, 2009).

Many tests for detecting selection signatures are based on infor-
mation provided by the frequency spectrum obtained from DNA
sequence data. One of the most commonly used is the Tajima’s
(1989) D test, which compares two measures of genetic variation
(θ). The first is obtained from the average of nucleotide differences
between pairs of sequences, and the second is the total number of
segregating sites (Nielsen, 2005). If the difference between these
two measures is greater than expected under neutral evolution,
this model is rejected. Other tests have incorporated phyloge-
netic information in order to estimate the direction of change
and increase power to detect deviations from the null hypothesis
of the neutral model (Perfectti et al., 2009). One such test is that
of Fu and Li (1993), which also calculates a statistic based on the
comparison of two genetic variation estimates, adding phylogenic

information. For example, a related species may be added as an
outgroup, such as the inclusion of the chimpanzee in an analysis
of human genetic variation (Nielsen, 2005). Likewise, Fay and Wu
(2000) developed a test based on the concept that the frequency
spectrum expected under neutrality must be enriched with muta-
tions at low frequencies, and that therefore, mutations at high
frequencies are atypical.

Researchers have used this approach to detect selection sig-
natures in several species. In humans, for example, evidence of
selection has been found in genes related to the immune sys-
tem and social behavior (Sabeti et al., 2002; Williamson, 2007).
In other species such as chickens, it has been possible to iden-
tify genomic regions related to production-related traits such as
eggshell hardness and immune system characteristics (Qanbari
et al., 2012).

Linkage disequilibrium (LD) and haplotype structure
Linkage disequilibrium (LD) refers to the non-random associa-
tion of alleles at two or more loci. That is, if two alleles at two
loci segregate together in greater proportion than expected by
chance, it is said that these loci are in linkage disequilibrium.
This measure has been widely used to study various demo-
graphic events and evolutionary processes in plants and animals,
such as breeding systems, patterns of geographic subdivision,
events of natural, and artificial selection, gene conversion, muta-
tion, and other forces that can cause changes in gene frequency
(Slatkin, 2008). The LD is affected by different evolutionary fac-
tors, including recombination, admixture, bottlenecks, gene flow,
genetic drift, inbreeding, and selection (Slatkin, 2008). As a con-
sequence, LD across the genome can vary within and between
populations.

Thus, another approach to detect genomic selection signatures
is based on statistical comparisons of atypical LD patterns at spe-
cific haplotypes of certain genomic regions that are inconsistent
with the neutral evolution model (Mueller, 2004). This approach
has been used in numerous studies to detect selection signatures
in humans and in domesticated species (Sabeti et al., 2002; Voight
et al., 2006; Hayes et al., 2008). These studies are based on the
concept that in a large population, a neutral variant, which by defi-
nition is not under selection, will take many generations to become
fixed or lost. Recombination and the passing of generations act
with stronger intensity, and therefore, LD around these neutral
alleles erodes quickly, leaving a smaller surrounding haplotype
(Kimura, 1983; Nielsen et al., 2005b; Sabeti et al., 2006).

Conversely, alleles under positive or balanced selection carry
other linked alleles with them, generating increased LD in the
genomic region, as described for the hitchhiking effect (Smith and
Haigh, 1974). LD between these alleles is slowly eroded, such that
the adjacent haplotype is longer than expected by chance (Sabeti
et al., 2002). Thus, large haplotypes reflect positive selection. This
forms the basis of the EHH statistic (“extended haplotype homozy-
gosity”) suggested by Sabeti et al. (2002), which is defined as the
probability that two randomly selected chromosomes carrying the
core haplotype are identical by descent, and also measures the
decay of haplotype homozygosity as a function of the distance.
EHH allows for identification of regions with atypical frequen-
cies of extended haplotypes and has been effectively used to detect
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signatures of recent positive selection within a population (Tang
et al., 2004; Walsh et al., 2006).

Voight et al. (2006) developed the statistic |iHS| or “integrated
Haplotype Score” which allows to compare the area under the
curve of EHH distribution between ancestral and derived alleles.
This approach is based on the fact that the EHH area of an allele
under selection will be greater than that of a neutral allele; there-
fore, the integral of EHH captures this effect. iHS corresponds to
a standardized ratio between the areas under the curve of ances-
tral and derived alleles, which is equal to 0 when the EHH decay is
similar for both types of alleles. A negative iHS value near −1 indi-
cates extended haplotype around a derived allele, whereas positive
values near one indicate extended haplotype around an ancestral
allele.

The iHS statistic is more sensitive for detecting rapid increases
in frequencies of the derived allele produced by selection. How-
ever, it cannot detect selection signatures resulting from complete
or nearly complete fixation of a beneficial allele in the popula-
tion, and therefore cannot detect a significant fraction of variants
under positive selection (Qanbari et al., 2011). For this reason,
Tang et al. (2007) reported a new method involving compari-
son of EHH at the same site, but between populations, i.e., an
approach based on the genetic diversity among divergent popu-
lations. These statistics are called site-specific EHH (EHHS); the
area under the EHHS curve (iES); and the standardized ratio of
iES between two populations (Hellmann et al., 2003), which reflect
haplotype variation among populations. The search for selection
signatures from EHH statistical derivatives has been performed
in several species such as cattle (Qanbari et al., 2011), poultry (Li
et al., 2012; Zhang et al., 2012), swine (Ai et al., 2013) and humans
(Sabeti et al., 2007).

Index of population differentiation
The FST (Wright, 1951) is a statistical measure of genetic variation
due to differences in allele frequencies between and within popu-
lations (Holsinger and Weir, 2009). The FST statistic has been one
of the most widely used methods for detecting genomic regions
that have been under selection (Gianola et al., 2010; Qanbari et al.,
2011). The FST for a locus that has been selected in one popula-
tion but not another will be higher than in other loci not affected
by selection, where genetic diversity is mainly caused by genetic
drift (Holsinger and Weir, 2009). Genetic drift affects all loci in
the genome similarly; however, loci under selection often behave
differently and therefore may present atypical patterns of varia-
tion. These atypical patterns can be determined by genotyping,
for example, a large number of single nucleotide polymorphisms
(SNP) throughout the whole genome, where loci influenced by
selection may be identified by deviations from the empirical dis-
tribution of FST statistic (Cavalli-Sforza, 1966; Akey et al., 2002).
That is, relative to a neutral model, outliers with value below a
certain level suggest the effect of balanced selection, while out-
liers with values above a certain level are indicative of directional
selection.

Various estimates of the FST statistic have been developed and
applied in a number of studies to search for selection signatures
(Akey et al., 2002; Hayes et al., 2009; Amaral et al., 2011). However,
although the outlier approach may be effective in identifying genes

under selection, it poses several challenges, such as susceptibility
to genotyping errors, population stratification, and false positives,
as well as variations in mutation rate and low sensitivity (Narum
and Hess, 2011). It is also well known that the outlier detection
methods have limited power to detect disruptive selection (Beau-
mont and Balding, 2004) and weak forms of divergent selection
(Wright and Gaut, 2005).

TESTS BASED ON DIFFERENCES BETWEEN SPECIES
The statistical methodology to detect selection signatures by com-
paring information between species relies on the fact that genomic
substitutions in coding regions are present in two forms: non-
synonymous mutations (dn), which can lead to the replacement
of amino acids in the resulting proteins, and synonymous muta-
tions (ds), which do not cause amino acid substitution because
of the redundancy of the genetic code (Nielsen, 2005; Biswas and
Akey, 2006).

The dn/ds ratio provides information about evolutionary forces
acting upon a particular gene. For example, at loci under neu-
trality, the dn/ds ratio will be equal to 1. Genes subject to
functional limitations, such that a non-synonymous substitution
is detrimental, will tend to be eliminated from the population by
negative selection; therefore, dn/ds <1. Conversely, an excess of
non-synonymous mutations over synonymous mutations (dn/ds

>1) provides evidence for the action of positive selection in
favor of non-synonymous substitution, which could provide a
comparative advantage at the protein level (Nielsen et al., 2005a).

Based on these concepts, several studies have detected selection
in many genes and organisms, such as genes related to immune
response (Endo et al., 1996; Hughes, 1997; Sawyer et al., 2004),
viral receptor genes (Fitch et al., 1997; Nielsen and Yang, 1998;
Bush et al., 1999), genes associated with fertility (Swanson et al.,
2001, 2003), and genes involved in sensory perception and smell
in humans (Gilad et al., 2000).

TESTS THAT USE INFORMATION WITHIN AND BETWEEN SPECIES
The neutral theory of molecular evolution indicates that genomic
regions that evolve rapidly and, thus, have high divergence
between species, will also show high levels of polymorphisms
within species. The Hudson–Kreitman–Aguade (HKA) test com-
pares the level of polymorphisms within each species and
observed divergence between related species for two or more
loci. The test can determine if it is likely that the observed
difference is due to neutral or adaptive evolution (Hudson
et al., 1987). The HKA test is the precursor to the McDonald–
Kreitman test (Howe et al., 2013), which compares synonymous
(PS) and non-synonymous (PN) mutations at a specific locus
that are polymorphic within a species and synonymous (DS)
and non-synonymous (DN) mutations that are fixed between
species. Under neutrality, the ratios between PN/PS and DN/DS

should be the same, while positive selection leads to increased
divergence of synonymous substitutions (DN/DS > PN/PS;
McDonald and Kreitman, 1991).

GENOMIC RESOURCES IN FISH
In recent decades, the development of DNA markers has greatly
contributed to the study of animal genetics. DNA markers allow us
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to observe and exploit variation across the genome of an individual
(Liu and Cordes, 2004; Tier, 2010).

In fish, a wide range of DNA markers have been used,
including amplified fragment length polymorphisms (AFLP), ran-
dom amplified polymorphic DNA (RAPD), sequence tagged sites
(STS), variable number of tandem repeats (VNTR), microsatel-
lites or simple sequence repeats (SSR), SNP, and expressed
sequence tags (EST; Liu, 2007). Currently, with the develop-
ment of high-throughput sequencing technologies many gigabases
of nucleotide sequences can be generated in a short period of
time, and many SNP and other polymorphisms can be detected
using bioinformatics methods (Liu, 2011). These techniques pro-
vide an affordable and reliable scale of DNA sequencing in
several organisms (Mardis, 2008). They are extensively used
in de novo sequencing, quantification of gene expression by
RNA-seq (“RNA sequencing”; Wang et al., 2009), massive iden-
tification of SNP markers using RAD-sequencing (“restriction
site associated DNA sequencing”; Rowe et al., 2011), and pop-
ulation genomics studies (Hohenlohe et al., 2010; De Wit et al.,
2012).

Although teleost fish are the largest group of vertebrates (about
27,000 species), they are underrepresented in genome sequencing
projects (Spaink et al., 2013). Table 1 shows some of the species
that have undergone genome sequencing projects to date.

Extracted and modified from Spaink et al. (2013). The terms
scaffolds or contigs indicate that the genome of the species has
been partially sequenced, and the term chromosome indicates that
sequencing has been anchored to the existing physical map of the
species.

SELECTION SIGNATURES IN FISH
In fish, studies aimed at detecting selection signatures are per-
formed mainly in the context of molecular ecology disciplines.
Most of them have been limited to a low level of resolution and
restricted to specific genomic regions.

MODEL FISH SPECIES
Using SNP markers from ESTs, loci with outlier FST values
were identified in wild populations of zebrafish (Danio rerio),
suggesting directional selection in genes associated with energy
metabolism, homeostasis regulation, and signal transduction,
which could be associated with local adaptation among differ-
ent populations. Further, evidence was found to suggest balanced
selection of the gene encoding the receptor for the NS1A influenza
virus (Whiteley et al., 2011). In the same study, outlier FST values
were found for loci in laboratory strains related to oxidoreduc-
tase activity, chromatin condensation, immune response, and
induction of apoptosis, among other processes, which could be
associated with the domestication process of cultured strains
(Whiteley et al., 2011).

CICHLIDS
Keller et al. (2013) detected outlier SNP patterns between five
cichlid species from the Lake Victoria area in East Africa, iden-
tifying signatures of divergent selection between the two genera
that include these species. These selection signals were associ-
ated with male color, depth distribution, feeding patterns, and

morphological traits that distinguish the genera. Moreover, evi-
dence has been found to suggest selection in the homeobox genes
(dlx) involved in the development of the nervous system, the
craniofacial skeleton, and the formation of connective tissue and
appendages (Diepeveen et al., 2013).

SALMONIDS
In lake whitefish (Coregonus clupeaformis), a fish of the salmon
family distributed along northern Alaska and all of Canada, 24
loci were identified that revealed selection signatures associated
with QTL of certain adaptive traits such as natatorium behavior,
growth rate, morphology, and reproduction characters (Rogers
and Bernatchez, 2007).

In Atlantic salmon, Vasemägi et al. (2012) used microsatel-
lite markers and SNP to locate 10 genomic regions showing
signatures of directional selection related to characteristics such
as growth rate and morphology. Martinez et al. (2013) found
strong evidence of selection in a microsatellite marker on chro-
mosome 3, which harbored QTL for body weight. Furthermore,
there is evidence that genes associated with immune response
have been subject to greater selection pressure compared with
other regions of the genome (Tonteri et al., 2010; Portnoy et al.,
2014). Other studies in genera Oncorhynchus, Salmo, and Salveli-
nus have revealed signatures of balanced selection for genes of
the major histocompatibility complex IIB (Aguilar and Garza,
2007; Limborg et al., 2012). In brown trout, analysis with markers
linked to genes related to the immune response showed evidence
of having been subjected to selection (Jensen et al., 2008). Finally,
evidence was found in both brown trout and sockeye salmon of
disruptive selection at two loci within the major histocompatibil-
ity complex IIB (Hansen et al., 2010; Gomez-Uchida et al., 2011;
Meier et al., 2011).

OTHER FAMILES
In guppies (Poecilia reticulata), outlier FST values suggest that
between 3.5 and 6.5% of SNP markers are under directional selec-
tion. Some of these loci are near QTL associated with ornamental
traits, and they are also in EST (Willing et al., 2010).

In Atlantic cod in 1960, Sick detected evidence of selection
in the locus encoding Hemoglobin (Hb I) and the Pan I locus,
which encodes a protein related to the neuroendocrine system and
has recently been associated with vesicle transport in adipocytes
(Pogson, 2001). In the same species, Moen et al. (2008) identified
29 SNP with outlier FST, suggesting that these loci are or have
been under selection. These loci were found in genes involved in
muscle contraction, immune response, and production of ribo-
somal proteins. Moreover, Nielsen (Nielsen et al., 2009) found
evidence of directional selection for local adaptation to various
environmental conditions, such as loci with outlier FST values
associated with genes involved in the production of proteins for
thermal shock (Hsp90), determination of sexual behavior (Aro-
matasa), and formation of photoreceptor cells for perception of
light (rhodopsin).

In stickleback (Gasterosteus aculeatus), a fish of the Gasterostei-
dae family, studies using microsatellite markers to assess genetic
diversity among marine and freshwater populations revealed
evidence of directional selection that might be associated with
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adaptation of certain populations to freshwater environments
(Mäkinen et al., 2008).

FUTURE DIRECTIONS
The search for and detection of genomic signatures produced by
selection has provided valuable information that contributes to
the understanding of evolutionary forces affecting the genome and
gene functions that control phenotypes of biological and economic
interest (Nielsen, 2005; Nielsen et al., 2007).

Some fish species provide the great advantage of simulta-
neous availability as both a wild and a cultivated population.
Additionally, these species have unique characteristics in terms
of population structure and intra-specific adaptive divergence,
mainly due to the diversity of environmental conditions that fish
populations inhabit, resulting in populations that exhibit charac-
teristics of strong local adaptation. Comparative studies among
these populations would provide benefits in terms of elucidating
the effects of selective processes and recent domestication events,
which could improve the understanding regarding the impact of
the interaction between domesticated and wild populations, the
identification of genetic factors involved in economically impor-
tant traits for aquaculture and unravelling the actual phenotypic
variation within and between fish populations.

In domesticated species, the main motivation behind the search
for selection signatures lies in the possibility of finding genes
or genomic regions associated with traits of economic interest.
The development of next-generation sequencing technologies and
high-throughput genotyping has made it possible to investigate
the effect of selective pressures on genome variation in several
domesticated species. In cattle and sheep, researchers have detected
selection signatures associated with carcass yield traits, tail fat
deposition, dairy traits (Moradi et al., 2012; Rothammer et al.,
2013), reproductive traits (Gautier and Naves, 2011; Qanbari
et al., 2011), immune response (Gautier and Naves, 2011), coat
color, and horn development (Druet et al., 2013), among other
characters of interest. Also, in swine, selection signatures have
been identified in genomic regions associated with traits such
as coat color, ear morphology, reproductive characteristics, and
fat deposition (Wilkinson et al., 2013). In chickens, researchers
have identified selection signatures associated with eggshell hard-
ness and immune system characteristics (Qanbari et al., 2012), to
mention just a few examples. These studies may provide a basis
for conducting similar research that allows for investigation of
the genomic regions affected by the processes of domestication
and natural or artificial selection in fish populations, allowing
for discovery of new genes that underlie phenotypic traits of
interest and understanding processes relevant for conservation
purposes.

There is currently little genomic information for fish species as
compared to humans or domesticated animals. This is one of the
reasons why selection signatures studies have been conducted in
only a few species and generally limited to a low level of genomic
coverage (Vasemägi et al., 2005, 2012). However, recent advances
in genomic technologies, including high quality reference genome
sequences, construction of genetic maps, and development of
high-density SNP arrays are paving the way for systematic study
of genetic variation in these species.

The development and application of next-generation sequenc-
ing approaches will represent a powerful strategy to improve the
resolution and accuracy when detecting regions under selection
in several species. This may lead to determination of the causative
genetic factors involved in several biological aspects of aquaculture
species. However, the application of these results in the aquacul-
ture development requires further studies aiming at determining
effective and practical applications of this technology. Candi-
date disciplines to be benefited from the discovery of selected
regions using next-generation sequencing are, for example, genetic
improvement, vaccine and pharmaceutical development and fish
nutrition.

CONCLUSION
The development of genomic methodologies has contributed
greatly to the study of genetic variation between and within species.
High-resolution studies at the level of the whole genome can iden-
tify selection signatures explaining phenotypic variation between
and within populations, and therefore potentially identify genetic
variants underlying characteristics of biological and economic
interest.

Although the application and utility of these techniques in
aquaculture species has been limited by a lack of genomic infor-
mation, there is a great potential for conducting such studies, espe-
cially in species for which there are genome sequencing projects
and high-density molecular markers platforms availability.
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