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The role of long non-coding RNAs in
genome formatting and expression
Pierre-Olivier Angrand, Constance Vennin, Xuefen Le Bourhis and Eric Adriaenssens*
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Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential but
having a pivotal role in numerous biological functions. Long non-coding RNAs act
as regulators at different levels of gene expression including chromatin organization,
transcriptional regulation, and post-transcriptional control. Misregulation of lncRNAs
expression has been found to be associated to cancer and other human disorders.
Here, we review the different types of lncRNAs, their mechanisms of action on genome
formatting and expression and emphasized on the multifaceted action of the H19
lncRNA.
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The advent of DNA tilling arrays and deep sequencing technologies has revealed that a much larger
part of the genome is transcribed into RNAs than previously assumed. It is estimated that up to 70%
of the genome is transcribed but only 2% of the human genome codes for proteins (Bertone et al.,
2004; Birney et al., 2007; Kapranov et al., 2007; ENCODE Project Consortium, 2012) and RNAs
without coding potential are collectively referred as non-coding RNAs (ncRNAs).

Non-coding RNAs include the well-known ribosomal (r) RNAs, ribozymes, transfer (t) RNAs,
small nuclear (sn) RNAs, telomere-associated RNAs (TERRA, TERC), as well as a plethora of far
less characterized RNAs. Based on their size, these ncRNAs are subdivided into two groups: small
ncRNAs (<200 nt) and long ncRNAs [lncRNA (>200 nt)]. Small ncRNAs, such as microRNAs
(miRs), small interfering RNAs (siRNAs), or PIWI-interacting RNAs (piRNAs) received much
attention and were shown to mainly act as negative regulators of gene expression. In contrast,
lncRNAs represent a more functionally diverse class of transcripts. LncRNAs are found in a large
diversity of animals species (Guttman et al., 2009; Jia et al., 2010; Pauli et al., 2012), but also in
plants (Swiezewski et al., 2009), yeast (Houseley et al., 2008), and even in prokaryotes (Bernstein
et al., 1993) and viruses (Reeves et al., 2007). LncRNAs remains poorly conserved among species
(Pang et al., 2006; Derrien et al., 2012). However, accumulating evidences indicate that this RNA
class plays an important role in a variety of biological processes and may be involved in cancer and
other human diseases (Wapinski and Chang, 2011; Tano and Akimitsu, 2012).

Majority of lncRNAs are 5′ capped, 3′ polyadenylated, multi-exonic and are subjected to tran-
scriptional regulation as coding mRNAs (Carninci et al., 2005; Guttman et al., 2010; Cabili et al.,
2011; Derrien et al., 2012). Some of the lncRNAs such as XIST, MALAT1, or NEAT1 are almost
exclusively localized in the nucleus (Brown et al., 1992; Hutchinson et al., 2007), whereas others
are mostly found in the cytoplasm (Coccia et al., 1992; Yoon et al., 2012). In term of genomic
organization, lncRNAs can be classified according to their proximity to protein coding genes into
five categories: sense, when overlapping one or more exons of another transcript; antisense, when
overlapping one or more exons of another transcript on the opposite strand; bidirectional, when its
expression and the expression of the neighboring coding transcript on the opposite strand are ini-
tiated in close proximity; intronic, when raising from an intron of another transcript; or intergenic,
when produced from an independent transcription unit in the interval between two protein coding
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genes. This crude classification illustrates that lncRNA expression
may be controlled by different molecular mechanisms, but it does
account neither for their modes of action nor for their cellular
functions.

While only a limited number of lncRNAs has been stud-
ied, numerous evidences indicate that lncRNAs interact
with a plethora of proteins. Furthermore, homologous
Watson–Crick base pairing provides an efficient way by
which lncRNAs may selectively interact with other nucleic
acid species. It is believed that lncRNAs are involved in
a diversity of cellular functions through gene expression
regulation at different levels including chromatin organi-
zation, transcriptional regulation, and post-transcriptional
mRNA processing (Mercer et al., 2009; Wilusz et al.,
2009).

To complicate matters further, Anderson et al. (2015) recently
described that a conserved micropeptide is encoded by a skele-
tal muscle-specific RNA previously annotated as a putative long
non-coding RNA. This finding leads to the proposal that sev-
eral lncRNAs could also have a biological function through the
production of micropeptides.

LncRNAs in the Control of mRNA
Processing

The ability of lncRNAs to recognize complementary sequences
allows the regulation of mRNA processing at various steps,
including degradation, splicing, translation, or transport
(Figure 1).

FIGURE 1 | Functional mechanisms of long non-coding (lncRNA) action
at the post-transcriptional levels. (A) mRNA stabilization. Base pairing
between specific regions of a long non-coding antisense RNA and its sense
transcript induces stabilization of the target mRNA and increases protein
abundance. (B) mRNA degradation. Staufen double-stranded RNA-binding
protein 1 (STAU1)-mediated mRNA decay is induced when base pairing is
formed between the mRNA and a lncRNA. (C) Ribosome targeting. Through
homologous base pairing with mRNAs and interactions with ribosomal proteins

lncRNAs target transcripts to ribosomes or prevent translation. (D) Regulation of
splicing. Base pairing between mRNAs and lncRNAs may prevent splicing by
masking the splicing sites. In addition, lncRNAs are also implicated in the
formation and maintenance of nuclear structures involved in alternative splicing
of nascent transcripts. (E) miR sponge. By sequestering miRs through base
pairing formations, lncRNAs affect the expression of the miR target genes.
(F) Precursor of miRs. LncRNAs can serve as a source of miRs after processing.
LncRNAs are shown in red, whereas mRNAs are in blue. See text for examples.
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Base pairing between defined regions of the human β-site
APP-cleaving enzyme 1 (BACE1) transcript and its anti-
sense lncRNA BACE1-AS induces the mRNA stabilization
and consequently the increase in BACE1 protein abundance
(Faghihi et al., 2008). Similarly, the lncRNA TINCR (terminal
differentiation-induced ncRNA) interacts with a range of dif-
ferentiation mRNAs including FLG, LOR, ALOXE3, ALOX12B,
ABCA12, CASP14, or ELOVL3, to increase their stability (Kretz
et al., 2013). In contrast, the recognition of mRNAs by other
lncRNAs, such as half-STAU1-binding site RNAs (1/2sbsR-
NAs) decrease target mRNA stability by inducing STAU1
recruitment and the STAU1-mediated mRNA decay pathway
(Gong and Maquat, 2011).

The translational process may also be modulated positively
or negatively by lncRNA–mRNA pairing. For example, the anti-
sense lncRNA ULCH-AS1 (ubiquitin carboxy-terminal hydro-
lase L1 antisense RNA 1) enhances ULCH mRNA transla-
tion (Carrieri et al., 2012), whereas lincRNA-p21 or pseudo-
NOS suppress target mRNA translation (Korneev et al., 1999;
Yoon et al., 2012).

The lncRNA MALAT1 (metastasis associated lung adenocar-
cinoma transcript 1) regulates pre-mRNA alternative splicing by
modulating active serine/arginine splicing factors levels (Tripathi
et al., 2010). In this case, the modulation of the mRNA process-
ing is not achieved by a lncRNA–mRNA pairing mechanism but
rather by the MALAT1-mediated modulation of the distribution
of various splicing factors in nuclear speckle domains. However,
antisense transcripts may also affect alternative splicing of their
sense transcripts by virtue of masking splice sites by base comple-
mentarity (Krystal et al., 1990; Khochbin et al., 1992; Beltran et al.,
2008). For example, a specific isoform of the lncRNANPPA-AS is
capable of down-regulating the intron-retained NPPA (atriuretic
peptide precursor A) mRNA variant through RNA duplex for-
mation between the sense and antisense transcripts (Annilo et al.,
2009).

LncRNAs and the Connection with the
MicroRNA World

Some lncRNAs act on post-transcriptional regulation through
the modulation of the microRNA (miR) pathways. MiRs, a large
class of small ncRNA, function by annealing to complemen-
tary sites in the coding sequences or 3′-untranslated regions
(UTRs) of target mRNAs where they favor the recruitment of
protein factors that impair translation and/or promote tran-
script degradation leading to a decrease in protein abundance
(Baek et al., 2008; Bartel, 2009). Specifically, one mechanism by
which the BACE1-AS lncRNA enhances BACE1 sense mRNA
stability could be by masking the binding site for miR-485-5p
(Faghihi et al., 2010). Rather than competing for miR-binding
sites, a number of lncRNAs contain miR-binding sites in their
sequence and therefore act as “sponges” to sequester miRs away
from their mRNA targets. The pseudogene PTENP1 previously
considered as biologically inactive was found to sequester miRs,
consequently affecting their action on target gene regulation
(Poliseno et al., 2010). In particular, the 3′-UTR of the PTENP1

lncRNA binds the same set of miRs targeting the tumor sup-
pressor gene PTEN, then reducing the downregulation of this
transcript and thus enhancing PTEN protein abundance. A num-
ber of other lncRNAs, including KRASP1, linc-MD1, HULC,
or linc-ROR were shown to control mRNA activity through
a miR sponge mechanism (Poliseno et al., 2010; Wang et al.,
2010, 2013; Cesana et al., 2011). These examples illustrate that
lncRNAs could counteract miR actions, but lncRNAs can them-
selves give rise to miRs and thus favor post-translational con-
trol by miR pathways as it is the case for the mouse Dlk1–
Dio3 cluster or the BIC lncRNA (Eis et al., 2005; Hagan et al.,
2009). Within the Dlk1–Dio3 cluster, Meg3/Gtl2 contains in
its last intron the evolutionarily conserved microRNA miR-770
whereas Meg8 transcripts have the intron-encoded miR-341,
miR-1188, and miR-370. Similarly, miR-155 is processed from
sequences present in BIC lncRNA that accumulates in lymphoma
cells.

LncRNAs in the Transcriptional Control

A number of evidences indicate that lncRNAs can act at the level
of transcription either negatively or positively through a variety
of molecular mechanisms (Figure 2). The dihydrofolate reduc-
tase (DHFR) gene contains a major and a minor promoter. The
minor promoter gives rise to a lncRNA that forms a stable triplex
lncRNA-DNA association at the major DHFR promoter and
interacts with the general transcription factor II B (TFIIB) leading
to the dissociation of the transcriptional preinitiation complex
at this major promoter and then reducing DHFR expression
(Martianov et al., 2007).

Other lncRNAs act as decoys to negatively control tran-
scription by titrating transcription factors away from their cog-
nate promoters. The lncRNA PANDAR (promoter of CDKN1A
antisense DNA damage activated RNA) is induced in a TP53-
dependent manner and inhibits apoptotic gene expression to
favor cell-cycle arrest through direct interaction with, and seques-
tration of NFYA, a transcription factor controlling the apoptotic
program upon DNA damage (Hung et al., 2011). Similarly, the
lncRNA GAS5 (growth arrest-specific 5) contains an RNA motif
derived from a stem-loop structure mimicking a DNA motif cor-
responding to the glucocorticoid response element. GAS5 binds
to the DNA-binding domain of the glucocorticoid receptor, acts
as a decoy glucocorticoid response element and is thus competing
with DNA sites for binding to the glucocorticoid receptor (Kino
et al., 2010).

Rather than acting as molecular decoys, lncRNA could modu-
late transcription by recruiting factors at target gene promoters
or acting as transcription factor co-activators. For example, a
lncRNA produced at the 5′ regulatory region of the cyclin D1
(CCND1) gene in response to genotoxic stress tethers and modu-
lates the activity of the RNA-binding protein TLS (translocated
in liposarcoma) which in turn inhibits the activity of the his-
tone acetyltransferases CBP (CREB binding protein) and EP300,
leading to CCND1 transcriptional repression (Wang et al., 2008).
The lncRNA Evf-2 (DLX6-AS1) forms a stable complex with the
homeodomain-containing protein DLX2 to induce expression of
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FIGURE 2 | Functional mechanism of action at the levels of
transcriptional regulation. (A) LncRNA may regulate transcription by virtue of
RNA–DNA triplex formation preventing the formation of the transcription
initiation complex at promoters. (B) LncRNAs can act as decoys by titrating

transcription factors away from their cognate promoters. (C) LncRNAs can
regulate transcription through the targeting of transcription factors to promoters
or acting as co-factors involved in transcription factor activity. (D) LncRNA can
also control transcription factor trafficking. LncRNAs are shown in red.

the adjacent genes at the DLX5/6 locus (Feng et al., 2006). In this
later case, the Evf-2 lncRNA functions as a co-factor regulating
transcription factor activity.

Other lncRNAs regulate transcription by controlling tran-
scription factor trafficking. As such, the lncRNA NRON
(non-protein coding RNA, repressor of NFAT) interacts with
importin-beta family members to inhibit nuclear translocation of
the inactive dephosphorylated nuclear factor of activated T cells
(NFAT) trans-activator (Willingham et al., 2005).

LncRNAs and Epigenetics

LncRNAs have been implicated in the control of gene expres-
sion through the recruitment of epigenetic modifiers at specific
genomic loci. In eukaryotic chromatin, epigenetic regulation
is conveyed by covalent modifications of DNA (methylation,
hydroxymethylation), modifications of histone tails (acetyla-
tion, methylation, phosphorylation, ubiquitinylation), and the
incorporation of various histone variants. These modifications
locally change chromatin organization and regulate gene expres-
sion without changes in the DNA sequence. A number of evi-
dences indicate that lncRNAs, acting as guides targeting enzymes
involved in chromatin modifications, are part of this picture
(Figure 3).

The lncRNA HOTAIR (HOX transcript antisense RNA)
is transcribed from the HOXC locus and targets Polycomb

Repressive Complex 2 (PRC2) to silence distantly located genes,
including genes at the HOXD locus and 100s of other genes
on various chromosomes (Rinn et al., 2007; Zhang et al., 2015).
Components of PRC2 trimethylate lysine 27 of histone H3
(H3K27me3) establishing the silent chromatin state (Völkel and
Angrand, 2007; Völkel et al., 2015). Interestingly, HOTAIR also
binds the LSD1–CoREST complex which possesses a lysine 4
of histone H3 demethylase activity, thus removing an active
H3K4me2 chromatin mark (Tsai et al., 2010). Furthermore, dele-
tion analysis of HOTAIR revealed that distinct parts of the
lncRNA interact with PRC2 and LSD1 indicating that HOTAIR
is able to bridge two independent chromatin modifying activities
at a target locus. Indeed, the knockdown of HOTAIR is respon-
sible for the concomitant loss of occupancy of PRC2 and LSD1,
and concurrent loss of H3K27me3 and gain of H3K4me2 at target
loci. Then, HOTAIR acts as an RNA scaffold targeting two differ-
ent histone modification activities involved in heterochromatin
formation.

The interplay between one lncRNA and different chro-
matin modifying complexes is also found at the INK4A tumor-
suppressor locus. The antisense lncRNA ANRIL (antisense non-
coding RNA in the INK4 locus, CDKN2B-AS) which is produced
by the INK4B/ARF/INK4A locus binds specifically two Polycomb
proteins, CBX7 (PRC1) and SUZ12 (PRC2). Disruption of inter-
action with both PRC1 and PRC2 proteins impacts the tran-
scriptional repression at the INK4B locus in cis (Yap et al.,
2010; Kotake et al., 2011). As another example, the lncRNA
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FIGURE 3 | Examples of lncRNAs controlling chromatin organization.
(A) HOTAIR (HOX transcript antisense RNA) represses transcription in
trans by recruiting two different chromatin modifying activities. The
Polycomb Repressive Complex 2 (PRC2) produces the repressive
H3K27me3 marks, whereas the LSD1-CoREST complex is responsible
for the removal of the active H3K4me2/3 marks. (B) The ANRIL lncRNA
represses transcription in cis at the INK4B/ARF/INK4A locus by

recruiting the Polycomb repressive complexes PRC1 and PRC2. (C) The
HOTTIP (HOXA transcript at the distal tip) lncRNA activates genes by
recruiting the histone modifier complex WDR5-MLL which is responsible
for H3K4me3 methylation, and by mediating long-range chromatin
looping at one extremity of the HOXA locus. Purple hexagons represent
H3K27me3 repressive marks, whereas green hexagons illustrate
H3K4me3 activating marks.

KCNQ1OT1 (KCNQ1 opposite strand/antisense transcript 1)
mediates bidirectional silencing by interacting with chromatin
and recruiting the PRC2 complex, as well as the histone methyl-
transferase G9a (EHMT2), resulting in an increase in the repres-
sive histone modifications H3K27me3 and H3K9me3 at the
KCNQ1 domain (Pandey et al., 2008). Thus, similar to HOTAIR
and ANRIL, KCNQ1OT1 represents a prototype of a scaffold
RNA recruiting multiple sets of chromatin modifying activities
involved in target gene silencing. Approximately 20% of lncR-
NAs, including HOTAIR, ANRIL, KCNQ1OT1, but also XIST,
RepA, HEIH, PCAT-1, H19, or linc-UBC1 (Zhao et al., 2008;
Maenner et al., 2010; Prensner et al., 2011; Yang et al., 2011; Luo

et al., 2013; He et al., 2013), are believed to guide PRC2 activity to
target genes, indicating that lncRNA-mediated targeting of PRC2
at chromatin is a widely used strategy to repress gene expression
through a chromatin reorganization mechanism (Khalil et al.,
2009).

In contrast, the lncRNA HOTTIP (HOXA transcript at the
distal tip) mediates transcriptional activation by controlling
chromatin modification and organization (Wang et al., 2011).
HOTTIP is produced from the 5′-end of the HOXA locus,
downstream of HOXA13. The knockdown of HOTTIP decreases
expression of HOXA genes in cis, with an efficacy that correlates
with the proximity of the HOXA genes relative to the HOTTIP
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FIGURE 4 | Schematic representation of the transcriptional
complexity at the H19/IGF2 locus. Non-coding transcripts at the
H19/IGF2 are shown as blue squares when they are expressed. Coding
genes are in green, when expressed. The differences in gene expression

between the paternal and maternal alleles are shown. The DNA
methylation status of the regulatory elements ICR (imprinting control
region) and DMRs (differentially methylated regions) is indicated for the
paternal and maternal alleles.

transcriptional unit. At the target genes, knockdown of HOTTIP
results in the loss of activating H3K4me3 and H3K4me2 epi-
genetic marks, together with the decreases in occupancy of the
MLL1 protein complex responsible for the establishment of these
histone modifications. Furthermore, chromosome conformation
capture carbon copy (C5) assays revealed abundant long-range
looping interactions, bridging the transcribed target HOXAgenes
into proximity of the HOTTIP transcriptional unit. Thus, the
mechanism by which the lncRNA HOTTIP controls HOXA
expression relies on its potential to guide the histone methyl-
transferase MLL1 at target HOXA gene promoters, and on the
formation of chromatin loops that connect distantly expressed
HOXA genes to HOTTIP transcripts.

A role of lncRNAs in chromatin loop formation has also been
described for the lncRNA CCAT1-L (Xiang et al., 2014). Indeed,
CCAT1-L, is transcribed from a locus upstream of MYC and
plays a role in MYC transcriptional regulation by promoting
long-range chromatin looping.

Thus, lncRNAs, through the recruitment of chromatin mod-
ifiers and/or the induction of chromatin loops will modulate
the chromatin conformation and will format the genome in a
particular configuration. This lncRNA-mediated genome format-
ting emerges as a crucial and fundamental mechanism by which
lncRNA may act on gene expression programs.

H19, a Prototype of a Multitask lncRNA

As discussed above, lncRNAs can regulate genome expression
through different molecular mechanisms. However, several lncR-
NAs usemultiple strategies that, in combination, may be required
for their biological function. The action of the lncRNA H19 on

gene expression illustrates the complexity of the combinatorial
mechanisms of regulation achieved by a single lncRNA. H19 was
the first lncRNA discovered (Brannan et al., 1990). Furthermore,
H19 and its neighboring IGF2 gene located at position 11p15.5
are subjected to genomic imprinting and the study of the gene
regulation at this locus serves as a model for understanding the
molecular mechanisms involved in this genomic regulation. In
addition, alterations of gene expression at the H19/IGF2 locus
are associated to malignancies and developmental disorders. Loss
of heterozygosity including loss of imprinting could be respon-
sible for a loss of expression or a biallelic expression of these
genes. Patients suffering from Beckwith–Wiedemann syndrome
(BWS, OMIM 130650; Choufani et al., 2010) exhibit a loss of
H19 expression and a biallelic expression of IGF2. BWS is asso-
ciated with fetal and postnatal overgrowth and increased risk of
embryonic or childhood cancers such as Wilm’s tumors. Loss of
IGF2 expression with a biallelic H19 expression is responsible
for 20 to 60% of cases of Silver–Russel syndrome (SRS, OMIM
180860; Penaherrera et al., 2010). SRS is an intrauterine growth
delay associated to an altered postnatal growth with facial dys-
morphia and corporal asymmetry. Numerous studies including
ours indicate that H19 may play a key role in tumorigenesis
and could contribute to tumor progression and aggressiveness.
H19 overexpression has also been reported in various cancer tis-
sues including breast (Adriaenssens et al., 1998; Lottin et al.,
2002), bladder (Cooper et al., 1996), lung (Kondo et al., 1995),
and esophageal cancers (Hibi et al., 1996). Several lines of evi-
dence indicate that H19 could play a role in tumor invasion and
angiogenesis. In breast cancer, the oncogenic role of H19 has
been well established (Berteaux et al., 2005), even if the precise
molecular mechanisms involved in tumorigenesis are not yet fully
understood.
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FIGURE 5 | The multifaceted action of the lncRNA H19. The lncRNA H19
controls genome expression at multiple levels. H19 acts on chromatin
organization through the recruitment of chromatin modifying complex PRC2
(1) and on post-transcriptional control as a miR decoys sequestering miR-106a

and miR-let7 (2) or as a precursor for miR-675-5p and miR-675-3p (3) H19 also
interact with p53 (TP53) and inactivate the tumor suppressor protein action (4)
Furthermore, possible base pairing between H19 and the antisense transcripts
91H and HOTS may have biological outcomes (5).
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At the H19/IGF2 locus, both genes share a common set
of enhancers located downstream of the H19 gene (Figure 4).
The ICR (imprinting control region), located 2 kbp upstream
of the H19 promoter, controls the monoallelic expression of
H19 and IGF2 by insulating communication between the 3′
enhancers and the IGF2 promoter. The chromatin insulator
property of the H19/IGF2 ICR is regulated by the insulator
CTCF (CCTC-binding factor), which binds specifically to the
unmethylated maternal allele. On the paternal allele, the ICR
methylation does not allow CTCF binding and leads to IGF2
expression (reviewed in Lewis andMurrell, 2004). The H19/IGF2
locus contains other differentially methylated regions (DMRs),
with DMR1 being a methylation-sensitive silencer and DMR2
being a methylation-sensitive activator (Constancia et al., 2000;
Murrell et al., 2004). CTCF binding to the maternal ICR reg-
ulates its interaction with matrix attachment region 3 (MAR3)
and DMR1 at IGF2, thus forming a tight loop around the mater-
nal IGF2 locus which may contribute to its silencing. These
interactions restrict the physical access of distal enhancers to
the IGF2 promoter (Weber et al., 2003; Murrell et al., 2004;
Kurukuti et al., 2006). Furthermore, several lncRNAs are pro-
duced at the H19/IGF2 locus adding further complexity to the
locus regulation. The first antisense transcript at the H19/IGF2
locus is the lncRNA IGF2-AS (3–4 kb) discovered in 1991 in
chicken (Rivkin et al., 1993; Moore et al., 1997). IGF2-AS and
IGF2 are coregulated at the transcriptional levels but the func-
tion of this IGF2-AS lncRNA remains unclear. The lncRNA 91H
(about 120 kb) is transcribed from the maternal allele (Berteaux
et al., 2008). Recently, at the same position, a new protein coding
gene HOTS (6 kbp) has been described (Onyango and Feinberg,
2011) but the relationship between the HOTS and 91H is still
not clear. However, these two transcripts are transcribed in an
antisense orientation compared to H19. An additional lncRNA
produced by the H19/IGF2 locus has been identified (Court

et al., 2011). This PIHit (paternally expressed IGF2/H19 inter-
genic transcript) lncRNA is a 5–6 kb transcript expressed from
the paternal allele after birth. Thus, the genomic organization
of coding and non-coding transcripts illustrates the complex-
ity of the interleaved networks of lncRNAs expressed from the
H19/IGF2 locus.

To complicate matters further, H19 lncRNA mechanisms
of action appear to be extremely diverse, acting at various
levels (Figure 5). H19 has been shown to guide chromatin
modifying enzymes to specific loci. In particular, Luo et al.
(2013) have shown that H19 binds to and recruit the his-
tone methyltransferase EZH2 at the E-cadherin promoter, lead-
ing to an increase in H3K27me3 repressive marks and to
the silencing of the E-cadherin gene in bladder cancer. PRC2
protein members are not the only chromatin modifying fac-
tors interacting with H19 since it has been shown that this
lncRNA physically binds to the methyl-CpG-binding domain
protein 1 (MBD1). The H19-MBD1 complex is then recruited
at several imprinted genes including IGF2, SLC38A4, and
PEG1 (Monnier et al., 2013). This recruitment also induces
methylation at lysine 9 of histone H3 (H3K9me3), prob-
ably via the additional interaction with an H3K9 histone
methylransferase.

The multifaceted action of H19 is also illustrated by its dual
interaction with miR pathways. On one hand, the lncRNA H19
acts as miR sponge to sequester miR-106a as well as the mir-let7
family members (Kallen et al., 2013; Imig et al., 2015). On the
other end, H19 serves as a precursor of miR-675 that will in turn,
post-translationally regulate a number of targets involved in cell
tumorigenicity, including RB, IGFR1, SMAD1, SMAD5, CDC6,
NOMO1, or RUNX1 (Cai and Cullen, 2007; Tsang et al., 2010;
Gao et al., 2012; Keniry et al., 2012; Dey et al., 2014; Zhuang
et al., 2014). The role of H19 in tumor progression could also
be mediated through its interaction with the tumor-suppressor

TABLE 1 | Examples of long non-coding RNAs (lncRNAs) associated with human disorders.

lncRNA Cancer/disease Mechanisms of action Reference

ANRIL Neurofibromatosis type 1, prostate cancer,
melanoma, acute lymphoblastic leukemia

Chromatin modification via the recruitment of the
Polycomb Repressive Complex 2 (PRC2) at the
INKB/ARF/INK4A tumor suppressor locus

Pasmant et al. (2007), Pasmant et al. (2011), Yap
et al. (2010), Iacobucci et al. (2011)

HOTAIR Hepatocellular carcinoma, colorectal
cancer, breast cancer, glioblastomas

Chromatin modification via the recruitment of PRC2
and LSD1 in trans.

Gupta et al. (2010), Kogo et al. (2011), Yang et al.
(2011), Zhang et al. (2015)

H19 Colorectal, gastric, breast, lung,
esophageal, bladder, pancreas, ovary
cancers

Chromatin modification via the recruitment of
PRC2; Decoy for miR-Let-7; source of miR-675;
TP53 inactivation

Kondo et al. (1995), Cooper et al. (1996), Hibi et al.
(1996), Lottin et al. (2002), Berteaux et al. (2005),
Tsang et al. (2010), Yang et al. (2012), Luo et al.
(2013), Ma et al. (2014), Zhuang et al. (2014)

HEIH Hepatocellular carcinoma Chromatin modification via the recruitment of PRC2 Yang et al. (2011)

PCAT-1 Prostate cancer Chromatin modification via the recruitment of PRC2 Prensner et al. (2011)

linc-UBC1 Bladder cancer Chromatin modification via the recruitment of PRC2 He et al. (2013)

BACE1-AS Alzheimer’s disease Increase in mRNA stability Faghihi et al. (2008)

GAS5 Breast, bladder cancers Decoy for the glucocorticoid receptor; regulation of
CDK6 expression

Mourtada-Maarabouni et al. (2009), Kino et al.
(2010), Liu et al. (2013)

PTENP1 Prostate cancer miR decoy Poliseno et al. (2010)

KCNA2-AS Neuropathic pain Decrease of KCNA2 expression Zhao et al. (2013)

MIAT Schizophrenia Component of the nuclear matrix involved in mRNA
splicing

Barry et al. (2014), Ishizuka et al. (2014)

MALAT1 Lung cancer Alternative splicing regulation Schmidt et al. (2011)
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TP53 protein. This association results in partial TP53 inactivation
(Yang et al., 2012).

Several evidences also indicate that the H19 lncRNA controls
IGF2 expression at the translational and/or post-translational
levels (Li et al., 1998), suggesting that other mechanisms
by which H19 exerts its action remain to be deciphered.
Similarly, the possible role of RNA duplex formation between
H19 and the antisense transcripts 91H and HOTS requires
investigations.

LncRNAs in Human Diseases

Given the wide range of molecular actions achieved by the
lncRNAs and their roles in various physiological processes, it
is not surprising that they have been shown to be involved in
many human diseases. A number of data indicate that alter-
ations of lncRNA expression lead to tumorigenesis through
changes at the chromatin, transcriptional or post-transcriptional
levels that impact target genes expression (Table 1). Since
lncRNAs are regulating a different cellular pathways, grow-
ing evidences suggest that they could play a role in a large
number of other human disorders including metabolic dis-
eases, neurodegenerative and psychiatric disorders, cardiovas-
cular and immune dysfunctions (Taft et al., 2010; Esteller,
2011; Harries, 2012; Shi et al., 2013; Clark and Blackshaw,
2014).

Perspectives and Concluding Remarks

LncRNAs represent a large part of the transcriptome and a
very heterogeneous class of transcripts in terms of genomic
organization and modes of action. Many of them are con-
sidered as key regulators of gene expression and thus, lncR-
NAs constitute an additional layer controlling the cellular pro-
grams. LncRNAs regulate diverse expression steps at the levels

of chromatin rearrangement, transcriptional control, and/or
post-transcriptional processing. By these actions, lncRNAs are
involved in numerous physiological functions and in many cases
lncRNA alterations are associated with human disorders.

The fact that lncRNAs can be deregulated in tumors and
other human pathologies, make them attractive candidates as
biomarkers and as targets for therapy. LncRNAs may be down-
regulated at the RNA levels by targeting their sequence. As so,
short interfering RNAs (siRNAs) designed to perfectly match
exact stretches of nucleotides, guarantee a high degree of speci-
ficity leading to lncRNA degradation. The power of the siRNA
approach is illustrated by the success of a number of preclin-
ical studies where siRNAs targeted mRNAs (Kaur et al., 2014).
Similar approaches can thus be envisioned to target non-coding
RNAs. Indeed, siRNAs have also been used to target miRs, lead-
ing to heart regeneration in an in vivo mouse model (Aguirre
et al., 2014) and the use of siRNAs has been proposed in a ther-
apeutic strategy targeting the lncRNA HOTAIR in endometrial
carcinoma (Huang et al., 2014). Similarly, antisense oligonu-
cleotides, single-strand DNA, or RNA molecules of 8 to 50
nucleotides can be used to target lncRNA. Specifically, in vivo
and in vitro experiments revealed that antisense oligonucleotides
directed against the lncRNA MALAT1 inhibit its expression and
drastically reduce lung cancer metastasis (Gutschner et al., 2013;
Tripathi et al., 2013).

In this context, further exploration in the complexity of the
lncRNA world promises the emergence of novel therapeutic
opportunities.
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