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Resveratrol contributes to a plant’s tolerance of various abiotic and biotic stresses
and is highly beneficial to human health. A search for elite alleles affecting resveratrol
production was undertaken to find useful grapevine germplasm resources. Resveratrol
levels in both berry skins and leaves were determined in 95 grapevine accessions
(including 50 wild Chinese grapevine accessions and 45 cultivars) during two
consecutive years. Resveratrol contents were higher in berry skins than in leaves and
in wild Chinese grapevines than in grapevine cultivars. Using genotyping data, 79
simple sequence repeat (SSR) markers linked to 44 stilbene synthase (STS) genes were
detected in the 95 accessions, identifying 40 SSR markers with higher polymorphisms.
Eight SSR marker loci, encompassing 19 alleles, were significantly associated with
resveratrol content on (P < 0.001), and 5 SSR loci showed repeated associations.
Locus Sh5 had four associations: three positive for allele 232 (including leaves in the
2 years) and one negative for allele 236 in four environments. Loci Sh9 and Sh56 for a
total of 7 alleles exhibited positive effects in berry skins in the 2 years. In berry skins,
locus Sh56 with positive effects was closely linked to VvSTS27, and locus Sh77 with
negative effects to VvSTS17, importantly, the two candidate genes both were located on
Chromosome 16. The SSR marker loci and candidate genes identified in this study will
provide a useful basis for future molecular breeding for increased production of natural
resveratrol and its derivatives.

Keywords: resveratrol, stilbene synthase, elite allele, grape, association analysis, SSR

INTRODUCTION

Resveratrol (trans-3, 5, 4′-trihydroxystilbene) is a natural phytoalexin occuring in a limited number
of plant species, including Vitis spp. (Langcake and Pryce, 1976). Stilbenes in grapevine are
very complex, and 18 stilbene derivatives were also identified in two grape samples, including
resveratrol and piceid (Flamini et al., 2013). Resveratrol and piceid, in both cis and trans have
been characterized in wine and grape berry (Pezet et al., 1994; Lamuela-Raventos et al., 1995;
Romero-Pérez et al., 2001; Vitrac et al., 2005). These compounds are formed by oligomerization
of trans-resveratrol in grape tissues under stress conditions such as exogenous attack or pathogen
infections (Cichewicz et al., 2000; Romero-Pérez et al., 2001). It is interesting to note that
trans-resveratrol showed either lower or higher concentration in wine and berry using different
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determination methods, compared with trans-piceid (Lamuela-
Raventos et al., 1995; Ribeiro de Lima et al., 1999; Romero-Pérez
et al., 2001; Vian et al., 2005; Vitrac et al., 2005; Flamini et al.,
2013).

Table grapes and wines are the main food sources of
resveratrol. The studies have focused on trans-resveratrol
due to its various physiological functions in consumers,
including antioxidative, anti-tumor, anti-inflammatory activities
and reduction of cardiovascular disease and obesity (Jang et al.,
1997; Alonso et al., 2002; Frombaum et al., 2012; Konings et al.,
2014). The accumulation of resveratrol in plant tissue is induced
by exogenous hormone, pathogen attack and UV-C irradiation
(Zheng et al., 2009; Shi et al., 2014; Wang et al., 2015, 2016; Yin
et al., 2016).

Stilbene synthase (STS), a key enzyme in the biosynthesis
pathway of resveratrol, belongs to the polyketide synthase
family (Rupprich and Kindl, 1978). Experiments aimed at the
generation of transgenic plants with increased resveratrol content
or improved resistance to fungal pathogens have focused on
inserting foreign STS genes, which were mostly from Vitis vinifera
(Leckband and Lorz, 1998; Zhu et al., 2004; Serazetdinova et al.,
2005; Cheng et al., 2016). Additionally, inserting a foreign STS
gene also influenced piceid accumulation in transgenic lines
(Ruhmann et al., 2006; Liu et al., 2011; Carlos-Hilario et al., 2015).
Recent studies showed that the STS gene family from grapevine
included 40 or so members (Parage et al., 2012; Vannozzi et al.,
2012; Shi et al., 2014). A very recent report characterized the
function of an STS allele (Jiao et al., 2016).

Although the identity and/or function of some members of
the STS gene family have been demonstrated, little information
is available on how allelic diversities among STS genes contribute
to variation in resveratrol accumulation in Vitis germplasm. In
our previous study, members of the STS gene family showed
one of two expression patterns and different expression levels
in response to powdery mildew (Shi et al., 2014). Examination
of allelic variation and linkage disequilibrium by a candidate
gene-based approach would help to decipher the genetic basis
of resveratrol biosynthesis. To do this, a representative sample
of 95 grapevine accessions were selected, comprising both wild
Chinese and cultivated grapevines, both green- and red-skin
berries, and both seedless and seeded berries. SSR markers
(79 pairs) distributed over the known STS genes from the
grapevine PN40024 genotype were designed. Association analysis
between STS genes and resveratrol content was performed on
this wide collection of wild Chinese grapevines and cultivated
European grapevines in order to find the elite alleles responsible
for resveratrol accumulation. The results identify grapevine
resources that can be used to obtain new grapevine cultivars with
high levels of resveratrol in their berries, and can provide useful
information for further research on resveratrol biosynthesis.

MATERIALS AND METHODS

Plant Materials and Treatments
Grape accessions, including 50 wild Chinese grapevine species
and 45 cultivars from the European species V. vinifera or the

American species V. labrusca (Table 1), were grown under
natural field conditions at the National Grape Germplasm
Resources Repository of Zhengzhou Fruit Research Institute,
Chinese Academy of Agricultural Sciences. Warm temperate
continental climate of Zhengzhou has clear four seasons. The
average annual precipitation is about 630 mm and mean
temperature is 14.4◦C. The details of climatic data were shown
in Supplementary Table S1. The experiment vines were planted
9 or 10 years ago in sandy fluvo-aquic soil. And no special
cultural practices were taken. All of the vines were in good
condition. Grape berries were collected from June to September
and leaves were picked at the end of June in 2013 and
2014. Samples were harvested from three grape vines for
each accession. For the berries, three grape clusters on each
plant were picked, one from the top, middle, and bottom
of the canopy, respectively. To ensure that all berries were
harvested at their full ripeness, we checked the seeds in the
berries every 2 days from June till September. When the
seeds completely ripened, the size of berries was no longer
increasing, and the red grapes were fully colored, the berries
were sampled from that accession. For the leaves, the second
or third leaves (depending on healthiness) from the bottom of
three different branches with more than 10 leaves were picked
in the end of June. Unhealthy berries (cracking, smaller and
other underdeveloped fruits) were removed before the samples
were quickly frozen in liquid nitrogen and held at−80◦C
until use.

Determination of Trans-resveratrol
Content by HPLC Method
Trans-resveratrol levels in berry skins and leaves were measured
using HPLC as described by Li et al. (2006) with some
modifications, in 95 grapevine accessions in 2013 and 2014.
The standard for trans-resveratrol was purchased from Sigma–
Aldrich (USA). Fruits were peeled and juice was soaked up using
filter paper.

Three gram samples were ground to powder using a
porcelain mortar and pestle in liquid nitrogen, extracted by
15 mL ethyl acetate in the dark at 25◦C for 48 h, and
centrifuged at 10,000 r·min−1 for 10 min. The supernatants
were transferred into a tube containing 5 mL ethyl acetate,
followed by centrifugation at 10,000 r·min−1 for 10 min. All
supernatants were evaporated to dryness by Nitrogen blowing
instrument (DCY-12S, Qingdao Haike, China) at 40◦C. Dried
samples were then dissolved in 2 mL of methanol and stored
at −80◦C. The samples were filtered through a 0.22 µm PTFE
membrane filter before resveratrol analysis. Extractable amounts
of resveratrol were analyzed using a Waters e2695 HPLC system
(USA). Elution was carried out with a mobile phase delivered
using a Waters C18 HPLC pump at a flow rate 0.8 mL·min−1.
A Waters 2996 UV detector was used at 306 nm. Mean values
and standard deviations were obtained from three biological
replicates. An HPLC chromatogram of resveratrol was made
with a standard solution. The resveratrol content was analyzed
by Excel 2003 (Microsoft, USA) and SPSS 17.0 software (IBM,
USA).
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TABLE 1 | Fifty wild Chinese grapevine accessions and 45 cultivars were used in this study.

No. Species Accession or cultivar No Species Accession or cultivar

1 V. labrusca Champion 49 V. adenoclada Shuangxi 01

2 V. vinifera Zhengguo 6 50 Shuangxi 03

3 ′′ Jan-87 51 Zhijiangshui

4 ′′ Amilia 52 V. davidii Huitong No.1

5 ′′ Guifeimeigui 53 ′′ Huitong No.2

6 ′′ Irsay Oliver 54 ′′ Wuhan

7 ′′ Olimpia 55 ′′ Dongxiangjiao

8 ′′ Baijixin 56 ′′ Hongjiangyanlong 05

9 ′′ Bolgar 57 ′′ Hongjiangtongmu 07

10 ′′ Pink varieties Taipei 58 ′′ Zhijiang 01

11 ′′ Mathias Aromatic 59 ′′ Hongjiang 04

12 ′′ Fenghuang 51 60 ′′ Hongjiang 08

13 ′′ Guibao 61 ′′ Hongjiang 09

14 ′′ Red Globe 62 ′′ Hongjiang 10

15 ′′ Malaga Rose 63 ′′ Fuan

16 ′′ Huangmisi 64 ′′ Tangwei seedling

17 ′′ Jingxiu 65 ′′ Zhejiangtianmushan No.2

18 ′′ Muscat Hamburg 66 ′′ Zhejiangtianmushan No.3

19 ′′ Manai 67 ′′ Xiangzhenzhuhongye

20 ′′ Munage 68 ′′ Xiangzhenzhulvye

21 ′′ Senio de Malingre 69 ′′ Hunan

22 ′′ Miskat Plevenski 70 ′′ Gaoshan No.1

23 ′′ Queen of Vineyard 71 ′′ Gaoshan No.2

24 ′′ Zhengguo 5 72 V. amurensis S48-3

25 ′′ Xiangfei 73 ′′ N43-3

26 ′′ Shenyangmeigui 74 ′′ Changbai No.9

27 ′′ Ribier 75 ′′ Shuangyou

28 ′′ Yangputao 76 V. ficifolia 946

29 ′′ Yalishanda 77 ′′ 943

30 ′′ Muscat MathiaszJanosne 78 ′′ Qinling No.2

31 ′′ Xiabai 79 ′′ Wugang

32 ′′ Italia 80 ′′ Xinyang 01

33 ′′ Zaomanao 81 ′′ Fengjugou 02

34 ′′ Zaotianmeiguixiang 82 ′′ Fengjugou 03

35 ′′ Zhengzhouzaoyu 83 ′′ Shibanyan 02

36 V. vinifera x V. labrusca Zifeng 84 ′′ Shibanyan 05

37 V. vinifera Zexiang 85 ′′ Shibanyan 06

38 ′′ Zijixin 86 ′′ Shibanyan 08

39 ′′ Jingzaojing 87 ′′ Luoning 06

40 ′′ Thompson Seedless 88 ′′ Qinling 03

41 ′′ Pinot Noir 89 ′′ Jiuligou

42 ′′ Cabernet Sauvignon 90 V. betulifolia Songxian

43 V. vinifera x V. amurensis Beimei 91 V. romanetii Lingbao

44 ′′ Beichun 92 V. pseudoreticulata Huadong

45 V. vinifera Zhengguodawuhe 93 ′′ 1057

46 V. quinquangularis Guizhou 94 V. yeshanensis Yanshan

47 V. amurensis Baitianman 03 95 V. adstricta Yingyu

48 V. wilsonae Baotianman

Numbers 1–45 were Vitis cultivars, and Numbers 46–95 were wild grapevine species.

DNA Isolation and PCR Amplification
Genomic DNA was extracted using Ezup Column Plant Genomic
DNA Purification Kit following the manufacturer’s protocol

(Sangon Biotech, Shanghai, China). The concentration of
the extracted DNA was assessed using a Thermo ND 2000
spectrophotometer (ThermoFisher, USA). Genomic DNA was
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FIGURE 1 | Range and distribution of trans-resveratrol content in skins and leaves of 95 grapevine accessions (50 wild Chinese accessions and 45
grapevine cultivars) in 2013 and 2014.

adjusted to a final concentration 50 ng/µL and was used for PCR
amplification.PCR reactions were carried out in a final volume of
20 µL. Amplification reactions were carried out on a ABI Veriti
thermal cycler (USA) using the following cycling profile: 95◦C
for 5 min, followed by 35 cycles at 95◦C for 45 s, 48–56◦C for
45 s, and 72◦C for 1 min, and a final extension step at 72◦C
for 10 min. The amplification products were separated through
polyacrylamide gel electrophoresis.

Analysis of SSR Markers
Based on predicted STS gene sequences in the 12x grapevine
PN40024 genome1 and the gene positions of these 44 STS
genes (Shi et al., 2014), a total of 79 pairs of SSR primers
on chromosomes 10 and 16 were designed using GRAMENE
ssrtool2. Parameter settings were as follows: tetramer for the
maximum motif-length group, and 4 for the minimum number
of repeats.

Allelic variation was analyzed by calculating the number
of alleles (Na), effective number of alleles (Ne), observed
heterozygosity (Ho), and expected heterozygosity (He) using
Popgene software. Polymorphism information content (PIC) was
calculated using PIC-CALC.

1http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/
2http://archive.gramene.org/db/markers/ssrtool

Genetic distance matrices were obtained using SSR data
in DPS software3. A phylogenetic tree was constructed by
the unweighted pair-group method with arithmetic averages
(UPGMA) with MEGA 6.0 software4.

Population Structure and Association
Analysis
Using 40 STS-gene-associated SSR markers, the genetic
population structure of the 95 accessions was determined
by Structure 2.15. A burn-in phase of 10,000 iterations was
followed by 100,000 Monte Carlo Markov Chain iterations. The
optimal population number k (from 1 to 10 assumed in this
study) was estimated (Evanno et al., 2005). Ten replicates were
performed for each cluster, k. When an inflection emerged in
the LnP (D) curve, the corresponding k value was adopted as the
optimal group number. The values of the estimated membership
probability (Q) were calculated to serve as covariates in the
association analysis with general linear model (GLM) in Tassel
2.16. Phenotypic effect values of some marker alleles were

3http://www.chinadps.net/download.html
4http://www.megasoftware.net
5http://pritch.bsd.uchicago.edu/software/structure21.html
6http://www.maizegenetics.net/tassel/tassel2.1_standalone.zip
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FIGURE 2 | Population structure of the 95 grapevine accessions. The numbers represent plant material according to Table 1. Population one (P1, red)
included 45 table and wine grapes, whereas Population 2 (P2, green) included 50 wild Chinese grapevine accessions.

FIGURE 3 | Phylogenetic relationships of the accessions based on genetic distances calculated using SSR data and UPGMA clustering constructed
using MEGA 6.0 software. Four icons,  �N�, represent four sub-divisions. Red and black represent two main groups, respectively.
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FIGURE 4 | Continued

evaluated according to null allele as suggested by Breseghello and
Mark (2006).

RESULTS

Trans-resveratrol Content
The trans-resveratrol levels in skin and in leaf collected
from all accessions were determined by HPLC (Figure 1).
The trans-resveratrol content in berry skins ranged from
0.05 to 67.82 µg·g−1 FW in 2013 and from 0.03 to
68.44 µg·g−1 FW in 2014. For both seasons, the highest
levels were from the wild Chinese grapevine V. adenoclada
accession Shuangxi 03. In leaves, the trans-resveratrol
content ranged from 0.04 to 10.27 µg·g−1 FW in 2013
and from 0.09 to 11.69 µg·g−1 FW in 2014. The highest
levels for both years were in leaves from wild Chinese
grapevine V. amurensis accession Gaoshan No.2. Resveratrol
contents were higher in berry skins than in leaves for each
genotype.

Between the 2 years, the variation of resveratrol content
was more stable in wild grapevine accessions than that of

cultivated ones. More of the cultivated accessions (51%) showed
year-to-year variations of resveratrol content in skin greater
than 50%, compared to only 8% of wild grapevine ones,
showing such large variations. Similarly, in leaves, 22% of
wild accessions and 67% of cultivated ones showed resveratrol
content variations greater than 50% (Supplementary Table S2).
The results suggested that wild ones retained stable resveratrol
biosynthetic capacity.

Polymorphisms of Molecular Markers
Based on the predicted STS gene sequences of the 12x
grapevine PN40024 genome, 79 SSR primers were designed.
These 79 markers were analyzed in the 95 grapevine accessions.
Forty SSR markers showed higher polymorphism, and 123
alleles were identified. The PICs of the SSR loci ranged from
0.0206 to 0.6712, with an average of 0.2877 (Supplementary
Table S3).

SSR Analysis
When the STRUCTURE software was run using all 95
grapevine accessions, the delta k showed a significant peak
when k = 2; thus the grapevine accessions were divided into

Frontiers in Plant Science | www.frontiersin.org 6 April 2017 | Volume 8 | Article 487

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00487 April 5, 2017 Time: 15:34 # 7

Zheng et al. Elite Alleles for Resveratrol Concentration

FIGURE 4 | Continued

two populations, termed P1 and P2 (Figure 2). This division
of the population was supported by statistical probability and
could ensure the accuracy of association analysis with minimum
false association. P1 included 45 grapevine cultivars, both table
and wine grapes, whereas P2 included 50 accessions, all of
which were wild Chinese grapevine accessions (Figure 2).
A phylogenetic tree was constructed by UPGMA analysis based
on genetic distances calculated from the SSR data of the 95
accessions (Figure 3). Due to sufficient variability, all selected
accessions were discriminated. The accessions clustered into
two main groups, with six accessions (Nos. 50, 54, 89, 90,
93, and 95) forming a third, distinct cluster (black square).
All accessions formed a branch with other accessions and
cultivars, except two, namely V. davidii accession Dongxiangjiao
(No. 55, black circle), which did fall in close to another
branch, and V. yeshanensis accession Yanshan (No. 94), which
did not sort into near wild grapevines. This corresponded to
the evaluated populations with STRUCTURE software, with
a few exceptions. The above SSR analysis generally agreed
with the geographic origins and pedigree of the grapevine
accessions.

Association Analysis between
Resveratrol and SSR Marker Loci
Linkage disequilibrium (LD) among genes was the basis of the
association analysis. Distribution of LD among the 40 SSR loci in
the two groups (according to Figure 2) was shown as Figure 4A.
Loci with high LD values (D′ > 0.7; upper right corner) were
Sh13, Sh16, Sh22, Sh31, Sh37, Sh68, and Sh78.The LD among
the wild Chinese grapevines (Figure 4B) was significantly higher
than those of the grapevine cultivars (Figure 4C, including table
grapes and wine grapes). The mean frequency distribution of the
D′ value (P < 0.001) was 0.5329 for all experimental samples
(Table 2A), 0.6046 for the V. vinifera cultivars, and 0.7037 for
the wild Chinese accessions (Table 2B). The higher D′ in the wild
population indicates more variation. In addition, the number of
LD loci among the grapevine cultivars was fewer than in the wild
Chinese accessions (Table 2B).

Based on LD analysis and the current suitable population,
association analysis was performed with candidate markers
using Tassel 2.1 software. Eight SSR loci, namely Sh5, Sh9,
Sh21, Sh28, Sh56, Sh63, Sh76, and Sh77, were significantly
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FIGURE 4 | Distribution of Linkage disequilibrium (LD) among 40 SSR loci in two groups of 95 grapevine accessions. SSR markers are organized in
linkage groups marked along the X- and Y-axis; each pixel above the diagonal indicates the D′value of the corresponding marker pair as shown in the color code at
the upper right, while each pixel below the diagonal indicates the p-value size of the testing LD of the corresponding marker pairs as shown in the color code at the
lower right. (A) Distribution of LD in 95 grapevine accessions. (B) 50 wild Chinese accessions. (C) 45 grapevine cultivars.

TABLE 2 | The frequency distribution of D′ value.

(A) Linkage disequilibrium (LD) for pairwise SSR loci among all 95 grapevine accessions.

Number of LD locus pairs Frequency distribution of D′ (P < 0.001)

0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 Mean of D′

68 (8.72%) 0 14 32 20 2 0.5329

(B) Comparison of LD values for pairwise SSR loci between V. vinifera cultivars and wild Chinese grapes.

Population Number of LD locus pairs Frequency distribution of D′ (P < 0.001)

0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 Mean of D′

Vitis cultivars 18 (2.44%) 0 2 6 8 2 0.6046

Wild Chinese grapes 28 (3.59%) 0 0 9 11 8 0.7037

(P < 0.001) associated with resveratrol content and their
explained phenotypic variation (EPV) were all higher than 10%
(Table 3). Loci Sh5, Sh21, Sh28, Sh63, and Sh76 were associated
with high resveratrol content in the leaves, whereas loci Sh5, Sh9,

Sh56, and Sh77 were associated with high resveratrol in berry
skins (Table 4). Moreover, these associations were independent of
the year. Locus Sh5 was associated with high resveratrol content
in both tissues in both seasons.

Frontiers in Plant Science | www.frontiersin.org 8 April 2017 | Volume 8 | Article 487

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00487 April 5, 2017 Time: 15:34 # 9

Zheng et al. Elite Alleles for Resveratrol Concentration

TABLE 3 | Marker loci associated with resveratrol content and their
explained phenotypic variation (significance at P < 0.001).

Trait Locus p_Marker EPV (%)

Leaf in 2013 Sh5 0.00044317 0.1891

Sh21 0.00034856 0.1916

Sh28 0.00008824 0.1922

Leaf in 2014 Sh5 0.00080000 0.1429

Sh63 0.00001241 0.2018

Sh76 0.00000073 0.2760

Skin in 2013 Sh5 0.00000027 0.3121

Sh9 0.00098624 0.1939

Sh56 0.00069694 0.1187

Sh77 0.00000003 0.2850

Skin in 2014 Sh5 0.00000028 0.3033

Sh9 0.00050000 0.1800

Sh56 0.00062219 0.1172

Sh77 0.00000001 0.2930

The phenotypic effects of the different alleles of the eight loci
significantly associated with resveratrol content were evaluated
(Table 4). Allele 236 at locus Sh5 produced negative effects four
times. On the other hand, allele 232 produced positive effects
three times, including in leaves in the 2 years. Loci Sh9 and Sh56,
through seven alleles, exhibited only positive effects in berry
skins, whereas one allele of locus Sh77 created negative effects in
berry skins in the 2 years. The rest of the loci showed negative
effects at least once.

The eight loci significantly associated with resveratrol content
were mapped to the 12x grapevine PN40024 genome. This
revealed that locus Sh56 (location 16506665–16506789 on
Chromosome 16) was closely linked to VvSTS27 (16507444-
16503155) and that locus Sh77 (16:366055-16:366171) was closely
linked to VvSTS17 (16372414-16366426) (Table 5). The other six
loci were not very closed to known STS genes. However, future
investigation of predicted genes at these loci may reveal their
functions in secondary metabolism.

DISCUSSION

Grapevine is one of the most important fruits in the world. Table
grapes are a healthy snack, grape leaves are a staple in some diets,
and wine grapes produce a favorite beverage. Resveratrol in both
berries and leaves benefit human health, an attribute which has
attracted widespread interest. Breeders aim to select and improve
the content of resveratrol and other secondary metabolites, such
as stilbenes, in grape. Moreover, stilbene concentrations vary
depending on multiple factors, including grape cultivar, fungal
infection, and climate condition (Jeandet et al., 1995; Mattivi
et al., 1995; Ribeiro de Lima et al., 1999). In the present study,
the resveratrol contents in 95 accessions were determinated by
HPLC method in two growing seasons. Trans-resveratrol content
ranged from 0.03 to 68.44 µg·g−1FW in berry skins and from
0.04 to 11.69 µg·g−1 FW in leaves. A previous study found
that resveratrol was significantly higher (1) in berry skin of
seeded cultivars than of seedless ones; (2) in berry skin and

seeds in wine grapes than in table grapes; (3) and in red grapes
than in green (Li et al., 2006). A recent study reported that an
STS allele from the wild Chinese grapevine V. pseudoreticulata
could confer accumulation of stilbenes and resistance against
powdery mildew in an Arabidopsis heterologous system, whereas

TABLE 4 | Phenotypic effects of some marker alleles at loci significantly
associated with resveratrol content.

Trait Locus Allele size (bp) Phenotypic effect

Leaf in 2013 Sh5 232 17.49

236 −1.81

Sh21 264 −4.48

266 −4.92

Sh28 220 −4.09

222 −3.93

Leaf in 2014 Sh5 232 10.43

236 −10.11

Sh63 120 −6.17

122 −5.82

124 −5.89

Sh76 113 −3.34

115 −4.02

Skin in 2013 Sh5 232 19.28

236 −0.19

Sh9 239 18.05

243 0.24

247 2.77

253 0.10

256 1.30

Sh56 125 1.45

129 8.60

Sh77 117 −38.45

Skin in 2014 Sh5 232 −1.50

236 −3.12

Sh9 239 20.06

243 2.49

247 4.23

253 2.08

256 2.99

Sh56 125 1.28

129 8.99

Sh77 117 −39.90

TABLE 5 | Repeat motif and physical location of eight SSR loci
significantly associated with resveratrol (P < 0.001) on the 12x grapevine
PN40024 genome.

Primer name Motif No. of Repeats PN40024 12 X location

Sh5 at 13 16323230 16323465

Sh9 tat 7 16320838 16321080

Sh21 at 26 16247793 16248056

Sh28 ga 5 16257727 16257946

Sh56 at 4 16506665 16506789

Sh63 ag 6 16630877 16631000

Sh76 tc 10 Chr16:363088 Chr16: 363201

Sh77 tc 4 Chr16: 366055 Chr16: 366171

Frontiers in Plant Science | www.frontiersin.org 9 April 2017 | Volume 8 | Article 487

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00487 April 5, 2017 Time: 15:34 # 10

Zheng et al. Elite Alleles for Resveratrol Concentration

the allele from V. vinifera ‘Carigane’ could not be expressed
(Jiao et al., 2016). Together these results demonstrate a wide
range of resveratrol content in wild, table and wine grapes,
which also suggests the existence of potential genetic variation for
resveratrol biosynthesis. Therefore, the use of a wide collection of
95 grapevine accessions in our study lays a foundation for finding
elite alleles for resveratrol production.

STS genes encode key enzymes in the last stage of
resveratrol biosynthesis. In grapevine, the STS gene family
contains at least 40 members, although most relevant studies
thus far have focused on only one or two STS genes from
grapevines and peanuts. Overexpression of STS genes can
improve resistance against a fungal pathogen and other abiotic
stresses and increase either resveratrol accumulation (Zhu et al.,
2004; Kiselev and Aleynova, 2016), or piceid accumulation
(Ruhmann et al., 2006; Liu et al., 2011; Carlos-Hilario et al.,
2015). The expression of 32 STS genes was analyzed after
exposure to UV light, and function of nine STS genes of
them was characterized (Parage et al., 2012). Our previous
findings also showed that about 40 STS genes had different
expression patterns in different tissues and environments (Shi
et al., 2014). Members of the STS gene family were analyzed
for differences in their molecular structure and transcript
accumulation (Vannozzi et al., 2012). In the present study,
40 SSR loci with high polymorphism (an average of 0.2877)
were located on Chromosome 16 of the grapevine PN40024
genome, suggesting that Chromosome 16 may be more
responsible for resveratrol biosynthesis than STS genes on other
chromosomes.

Through correlation analysis, all representative samples of
the population and the polymorphisms of the SSR markers
link an associated locus to several allelic variants. If the
corresponding allelic variation tends to phenotypic diversity, it
might be selected as optimal allelic variation. In the present
study, 8 SSR loci were significantly (P < 0.001) associated
with resveratrol content, with EPV higher than 10%. Of them,
four loci showed repeated associations in four environments.
Locus Sh5 associated with high resveratrol content four times,
with allele 232 linked three times for positive effects, including
in leaves in the 2 years. But allele 236 showed negative
effects four times. For resveratrol content in berry skins,
loci Sh9 and Sh56, with a combined seven alleles, exhibited
positive effects. Recently, many studies using molecular markers
have amplified multiple bands, identified relationships, mapped
markers to chromosomes, and analyzed the association between
molecular markers and agronomic traits (Abdurakhmonov
et al., 2008; Jahnke et al., 2011; Lorenzis et al., 2013; Liu
et al., 2014; Cai et al., 2016). However, there have not been

many studies on the markers of selected genes (Jin et al.,
2016).

As resveratrol is directly catalyzed by STS, correlation
between known STS alleles, our SSR markers, and resveratrol
content were sought. We found eight loci with significant
association to resveratrol content in a wide grapevine germplasm
collection, while controlling false positives potentially deriving
from population structure and multiple testing. Three SSR
loci in berry skins with positive effects were mapped onto
Chromosome 16. These loci were close to VvSTS17 or VvSTS27.
These findings can inform future use of grapevine germplasm
resources in breeding for production of resveratrol and its
derivatives.
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