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Cotton has lost many ancestral defensive traits against key invertebrate pests. This is
suggested by the levels of resistance to some pests found in wild cotton genotypes
as well as in cultivated landraces and is a result of domestication and a long history
of targeted breeding for yield and fiber quality, along with the capacity to control pests
with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria
into cotton to control key Lepidopteran pests. Since the mid-1990s, use of GM cotton
cultivars has greatly reduced the amount of pesticides used in many cotton systems.
However, pests not controlled by the GM traits have usually emerged as problems,
especially the sucking bug complex. Control of this complex with pesticides often
causes a reduction in beneficial invertebrate populations, allowing other secondary
pests to increase rapidly and require control. Control of both sucking bug complex
and secondary pests is problematic due to the cost of pesticides and/or high risk of
selecting for pesticide resistance. Deployment of host plant resistance (HPR) provides
an opportunity to manage these issues in GM cotton systems. Cotton cultivars
resistant to the sucking bug complex and/or secondary pests would require fewer
pesticide applications, reducing costs and risks to beneficial invertebrate populations
and pesticide resistance. Incorporation of HPR traits into elite cotton cultivars with high
yield and fiber quality offers the potential to further reduce pesticide use and increase
the durability of pest management in GM cotton systems. We review the challenges that
the identification and use of HPR against invertebrate pests brings to cotton breeding.
We explore sources of resistance to the sucking bug complex and secondary pests, the
mechanisms that control them and the approaches to incorporate these defense traits
to commercial cultivars.

Keywords: Gossypium, genetic resistance, plant breeding, resistance traits, plant defense mechanisms,
arthropod control

COTTON – VALUE AS A CROP

Cotton (Gossypium sp.) is a major crop in many countries around the world and its fiber is a
major raw material for apparel, bed linen, and many other products (Lee and Fang, 2015). About
35 million ha of cotton are planted in the world each year, producing about 26 million tones of
lint (ICAC, 2015). The word ‘cotton’ refers to four separate species in the genus Gossypium that
are grown for the fibers covering the epidermis of their seeds: G. arboreum, G. barbadense (Pima
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cotton), G. herbaceum, and G. hirsutum (Upland cotton) (Wendel
and Cronn, 2001; Wendel and Grover, 2015). This review will
focus on G. hirsutum cotton, as it comprises around 95% of global
cotton production.

CHALLENGES TO PEST MANAGEMENT

Arthropod pests have likely affected cotton since it was
domesticated at least 3,000 years ago (Lee and Fang, 2015).
A large number of arthropod species have been described as
cotton pests, but only less than 40 of them are considered key
pests of the crop (Wilson et al., 2013; Luttrell et al., 2015).
They directly decrease yield or reduce fiber quality, and their
management is a key challenge for cotton growers worldwide.
Potential losses up to 40% occur from invertebrate pests alone
in cotton (James, 2001; Oerke, 2006). Significantly, even after
implementation of control measures, it is estimated that losses
of about 12% occur to invertebrate pests (Oerke, 2006). The
economic implications of invertebrate pests encompass both
crop losses and the costs of control, which mainly consists of
insecticides and their application (James, 2001; Naranjo, 2011).

Domestication and Loss of Plant
Resistance to Invertebrate Pests
Plant domestication has successfully increased agricultural
productivity supply for humans, although this selection has
usually focused on major and highly recognizable traits such
as yield and quality, inadvertently losing some others such as
adaptation to extreme weather or plant resistance to herbivores
(Koricheva, 2002; Macfadyen and Bohan, 2010; Chen et al., 2015).
This pattern can be found in the history of the domestication of
cotton.

A brief review of the history of domestication in G. hirsutum
reveals how and why plant resistance traits may have been lost.
Although, each of the four domesticated Gossypium species has
a unique history of domestication and utilization, they were
all domesticated in parallel so that the short lint covering the
seed was transformed to be a source of textile fiber (Brubaker
et al., 1999; Wendel and Cronn, 2001). Following this initial
domestication and geographical spread of cotton, some preferred
traits were specifically selected, such as: compact and annual
growing habits, early maturity, photoperiod neutrality, longer
and stronger fiber, and higher yield (more abundant lint on
the seed) (Brubaker et al., 1999; Applequist et al., 2001; Gross
and Strasburg, 2010). Invertebrate pests probably benefited from
selecting cotton plants for increased yield and fiber quality,
as this most likely led to trade-offs with the traits controlling
invertebrate resistance (Chen et al., 2015). Furthermore, modern
high input systems lead to cultivars with higher nutritional value
for invertebrates.

The domestication and selection for desirable production
and agronomic traits in cotton has gone through phases
that have resulted in limited genetic diversity within modern
cotton cultivars. Firstly, intense selection during the initial
domestication (Iqbal et al., 2001), secondly, industrialization and
demand for higher yields of improved-quality cotton meant the

US became the focus of cotton germplasm improvement for
G. hirsutum during the second half of the 19th century (Moore,
1956). Finally, the Mexican boll weevil (Anthonomus grandis)
appeared in Texas in 1892 causing a significant reduction in
cotton production in the southern US. Rapid selection for shorter
season cultivars which avoided severe losses to the boll weevil
(Smith et al., 1999; Allen, 2008) resulted in a further bottleneck
for genetic diversity. There has been some reintroduction of
diversity during the last century due importation of genetic stocks
of wild G. hirsutum cotton imported from Mexico as part of the
search for resistance to the cotton boll weevil. However, there are
few reports of commercial cultivars with effective plant resistance
to sucking bugs, spider mites, aphids, mealybugs or whitefly.

Reliance on Insecticides and the Genesis
of Integrated Pest Management (IPM)
The development and commercialisation of synthetic pesticides
(insecticides and acaricides) during the mid-20th century offered
highly efficacious and cost effective control of many pests,
leading to significant increases in productivity. They also reduced
emphasis on selection for traits that may confer resistance
to pests. Further, reliance on pesticides lead to selection of
pesticide resistance in key pest species, the resurgence of
secondary pest outbreaks (e.g., spider mites, aphids) induced by
the destruction of natural enemies with pesticides applications
(Wilson et al., 1998; Wu and Guo, 2003; Luttrell et al., 2015),
elevated costs and environmental contamination (Naranjo,
2011; Wilson et al., 2013). These issues were the catalyst for
the development of the IPM approach which considers all
available pest control techniques and their combination to reduce
both pest populations and reliance on pesticides (FAO, 2015).
This can include a wide array of strategies and tactics, e.g.,
effective sampling, use of economic thresholds, conservation
or augmentation of natural enemies and host plant resistance
(HPR). Pesticides are an important tool in IPM systems but used
primarily to manage pest populations that justify control. The use
of pesticides is based on economic thresholds and with preference
for use of more selective options that control the target pests
but have less negative effect on natural enemies. However, the
practical implementation of IPM approaches is often difficult
due to the lack of compatibility between conservation of natural
enemies and the availability of selective pesticides, as well as to the
higher cost of more selective compounds (if available) compared
with older broad-spectrum compounds.

GM Cotton
In many cotton systems the primary pests are lepidopterans such
as Helicoverpa or Heliothis sp., Earias sp., and Pectinophora sp.
Capacity to manage these pests without spraying insecticides
would strongly support IPM approaches. Genetic modification
(GM) of cotton containing genes to express protein(s) from the
bacteria Bacillus thuringiensis (Bt), which are highly effective at
killing the larvae of some lepidopterans (Naranjo, 2011; Wilson
et al., 2013), was introduced in the mid-1990s and greatly reduced
pesticide use. Bt-cotton is highly efficacious against target pests
(Lu et al., 2012), at the same time having a negligible effect on
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non-target insects (Whitehouse et al., 2005, 2014; Tian et al.,
2015) and causing little or no harm to most other organisms,
including people (Mendelsohn et al., 2003; Herman et al., 2009).
Globally, 25 million hectares were planted in 2013 to Bt-cotton,
representing 68% of all cotton grown in the world. Including
other crops, 76 million hectares were planted to genetically
engineered crops producing insecticidal proteins from Bt (James,
2014).

However, GM cotton is not a ‘perfect’ solution. Firstly, target
pest species may become resistant, requiring the implementation
of strategies to reduce this risk (Downes and Mahon, 2012).
This risk is especially high for cultivars expressing a single Bt
protein. Several of these genes therefore need to be stacked
to delay the development of resistance in the target insect
population (Downes and Mahon, 2012; Tabashnik et al., 2013).
However, HPR traits may help support resistance management
for the Bt-cottons as Carrière et al. (2004) and Williams et al.
(2011) reported that the presence of the terpenoid gossypol,
which provides resistance to a range of cotton pests, can
contribute to delaying the development of insect resistance
against Cry proteins. Secondly, Bt-cotton crops can sometimes
provide a more favorable environment for other pests that are
not susceptible to the Bt proteins. The sucking bug complex
in particular was historically controlled co-incidentally by
insecticides applied against lepidopteran pests (Naranjo, 2011;
Wilson et al., 2013). Consequently, with dramatically reduced
pesticide use against lepidopteran pests the sucking pest complex
has increased in importance in most Bt-cotton systems. These
‘emergent’ pests may require targeted control, which creates
further issues as control options are often limited and the less
expensive options, such as pyrethroids or organophosphates,
are disruptive of natural enemy populations. Use of these
compounds against sucking pests ultimately leads to an increase
in risks of secondary pests outbreaks, such as spider mites,
aphids, or whitefly (Naranjo, 2011; Wilson et al., 2013). These
secondary pests then require control, hence, selecting them
for pesticide resistance. In Australia for example, spider mites
have become resistant to both organophosphates (Herron et al.,
1998) and pyrethroids (Herron et al., 2001). Although insecticide
applications have greatly decreased with the adoption of Bt-
cotton, even with the presence of some important outbreaks
caused by secondary pests (Naranjo, 2011), some specific
situations have been reported with increases in the number of
applications required due to these outbreaks (Catarino et al.,
2015).

Among the key pests that are challenges in Bt-cotton systems
are the sucking bugs, spider mites, thrips, silverleaf whitefly, and
aphids (Wilson et al., 2013; Luttrell et al., 2015). Sucking bugs
are currently considered the primary pest in many of the Bt-
cotton growing regions such as Australia (Wilson et al., 2013),
China (Lu et al., 2010), India (Sharma et al., 2005), and the
United States (Naranjo, 2011) and in most seasons will require
targeted control. The sucking bug complex comprises primarily
of Adelphocoris sp., Lygus sp., Creontiades dilutus and C. pacificus,
mealybugs (Phenacoccus solenopsis, Pseudococcus corymbatus,
Pulvinaria maxima, and Saissetia nigra) and the green vegetable
bug (Nezara viridula). These species feed on young squares and

bolls, causing their abortion or damage to developing bolls.
Spider mites (predominantly Tetranychus urticae) feed on the
underside of leaves by sucking out the contents of the mesophyll
cells, resulting in reduced yield and fiber quality (Wilson, 1993).
Thrips (predominantly Frankliniella sp. and Thrips sp.) are able
to damage cotton seedlings and therefore cause a delay in plant
growth and maturity, sometimes reducing yield when the attack
is severe (Sadras and Wilson, 1998; Cook et al., 2013). Conversely,
later in the season thrips are also considered beneficial insects
as they are key predators of spider mites (Trichilo and Leigh,
1986; Wilson et al., 1996; Milne and Walter, 1998). Silverleaf
whitefly (Bemisia tabaci) secretes honeydew which contaminates
lint, causing difficulties in the mill when the fiber is processed
(Hequet and Abidi, 2002). The development of silverleaf whitefly
populations resistant to a wide range of insecticides exacerbates
the problem (Rao et al., 2012). Cotton aphids (Aphis gossypii)
cause a similar damage to the lint as they excrete honeydew
when they feed on the plants. They are vectors for viruses
(Ellis et al., 2013) and their feeding distorts plant growth and
causes a reduction in photosynthetic activity (Shannag et al.,
1998).

AVAILABLE SOURCES AND TRAITS FOR
HOST PLANT RESISTANCE

Controlling these ‘emergent’ sucking pests with pesticides poses
a risk to successful IPM approaches, and at the same time
undermines the value of GM technology, as Bt-cotton facilitates
the control of non-target pests by their natural enemies (Tian
et al., 2015). HPR could support sustainable IPM in GM cotton
systems by reducing the need to apply insecticides against
emergent pests or other secondary pests. Cultivars resistant to
key emergent or secondary pests would require less pesticide
applications, thus reducing costs, increasing the population of
beneficial insects and helping the environment.

Sources of Resistance in Gossypium sp.
The first step to improve HPR to invertebrate pests is to
identify the resistance traits that can be incorporated into
elite cotton cultivars through breeding. These traits can be
found in the cotton genetic pool or created through molecular
techniques. Therefore, the availability of gene pools with enough
variability to include some genotypes with high levels of HPR
is essential. The genus Gossypium comprises about 50 species
with a high genetic diversity between them. It appeared between
10 and 15 million years ago and diversified in three different
centers of origin: Africa–Arabia, Australia, and Central America
(Wendel and Grover, 2015). The genus can be divided into
eight diploid genome groups (2n = 26 chromosomes), as well
as five allotetraploid species (2n = 52). Of these, only four
species are grown commercially (G. arboreum, G. barbadense,
G. herbaceum, and G. hirsutum). The African G. herbaceum and
the Indian G. arboreum are both diploids while the American
G. barbadense and G. hirsutum are both allotetraploids (Wendel
and Grover, 2015). The diversity within the cultivated species
has declined due to domestication and breeding for increased
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productivity, as described in Chapter 2. Despite this lack of
diversity, especially in G. hirsutum, there has been research to
identify HPR traits to key pests, summarized in Table 1. The
bollworm complex has been excluded from the table as this
review focuses on management of emergent or secondary pests
in Bt-cotton systems.

In many of the cases, sources of resistance have been
identified but not incorporated to commercial cultivars, probably
because of the time and effort that is required. Only in
situations where pest control costs have been very extreme or
unaffordable (e.g., jassids in India/Africa), has there been a
strong effort to breed for HPR (Table 1). Sometimes HPR has
been identified in the target species, for example high leaf hair
density in some G. hirsutum populations while in other cases
higher HPR have been identified in other cultivated species,
for instance G. arboreum and G. barbadense are more resistant
than G. hirsutum to some pests such as spider mites and
thrips (Miyazaki et al., 2012; Zhang et al., 2014b). Similarly,
significant differences have been found in gossypol content
between Gossypium species (Khan et al., 1999; Stipanovic et al.,
2005; Hagenbucher et al., 2013a), and within cotton cultivars (Cai
et al., 2010).

Less domesticated populations and wild Gossypium species
can also be valuable sources of HPR traits. Resistance to various
cotton pests have been reported in these diploid cottons (Table 1),
though in many cases the cause of resistance is unknown.
These include; G. arboreum against thrips and spider mites
(Stanton et al., 1992; Miyazaki et al., 2012), G. armourianum
and G. raimondii against jassids (Pushpam and Raveendran,
2006), G. australe and G. lobatum against spider mites (Schuster
et al., 1972), G. darwinii against thrips (Zhang et al., 2013),
G. tomentosum against jassids and thrips (Knight, 1952; Zhang
et al., 2013), G. thurberi against whitefly (Walker and Natwick,
2006) and G. trilobum against spider mites and silverleaf
whitefly (Miyazaki et al., 2012, 2013a). However, introgression of
resistance from wild species is a very long process and sometimes
unsuccessful due to the difficulty of introducing HPR traits from
a diploid into a tetraploid (Ganesh Ram et al., 2008), usually by
creating a synthetic tetraploid, while improving or maintaining
yield and fiber quality. Landraces and old cultivars may also offer
valuable HPR traits, and as they are tetraploid the process of
introgression is significantly shorter. The value of all of these
underutilized Gossypium genetic resources will be reinforced with
the development of new molecular techniques which will greatly
enhance the introgression of the resistant traits into commercial
cultivars.

Plant Defense Mechanisms
Host plant resistance against herbivorous invertebrate pests is
generally defined as “the sum of genetically inherited qualities
that results in a plant of one cultivar or species being less
damaged by a pest arthropod than a susceptible plant lacking
these qualities” (Panda and Khush, 1995; Smith, 2005). Among
its benefits as a pest control measure, HPR is durable, easy
to use, environmentally friendly and compatible with other
management practices (Smith, 2005; Wilson et al., 2013). On the
other hand, breeding for HPR is generally a slow and difficult

process that has mostly been overlooked in preference to use
of chemical control of pests. In recent times, breeding for HPR
is becoming a more feasible alternative due to several facts:
the reduction in the impact of the Lepidopteran pests by Bt-
cotton, increasing pest resistance to insecticides, enactment of
strict environmental regulations on insecticides and their use,
and advances in molecular technologies.

Plant defense mechanisms have been traditionally classified
into three main categories (Painter, 1958; Panda and Khush,
1995; Smith and Clement, 2012): antixenosis or non-preference
mechanisms, that prevent or deter the herbivore from feeding
on the plant; antibiosis mechanisms, that affect the insects
performance and survival by a physical or chemical trait; and
tolerance, that represents the plant’s ability to compensate for
herbivore damage and yield productivity. Currently, tolerance
is usually regarded as a plant defense strategy separate from
resistance (Rosenthal and Kotanen, 1994; Núñez-Farfán et al.,
2007). Resistance is to cover “those plant traits that reduce
the extent of injury done to a plant by a herbivore” as in
practice antixenosis and antibiosis are often difficult to separate
(Stout, 2013). Resistance mechanisms or categories can also
be direct (e.g., antibiosis, leaf morphology) and indirect (e.g.,
attraction of natural enemies of the herbivore), and they
can be expressed constitutively (e.g., leaf morphology) or be
induced following a cascade of processes after some damage
is caused by the herbivory (e.g., induced chemical responses)
(Schuman and Baldwin, 2016). All of these mechanisms are
unusually controlled polygenetically (Stout and Davis, 2009;
Smith and Clement, 2012), but a number of cases of single-
gene resistance have also been reported (Kaloshian, 2004; Stuart,
2015).

HPR Traits Available in Cotton
Traits providing HPR in cotton can include one or several
defense mechanisms functioning in a complex way. Some of the
morphological traits provide a mechanical barrier to the pest,
such as trichomes or hairs on leaves, while others influence the
general growing habit and appearance of the plant, such as okra
leaf or red coloration of the plant (Jenkins and Wilson, 1996;
Wilson and Sadras, 1998) or even the microclimate conditions
present on the leaf, such as in okra leaves (Wilson, 1994b).
There is also a wide array of chemical compounds used by
cotton plants to defend themselves from herbivores, such as
flavonoids, tannins and particularly terpenoids such as gossypol
(Wink, 1988; Sadras and Felton, 2010; Hagenbucher et al., 2013a).
The latter is produced by plants of the genus Gossypium and
has been shown to be toxic to many pests that affect cotton
(Jenkins and Wilson, 1996; Cai et al., 2010; Hagenbucher et al.,
2013a). The application of HPR traits is complex as different
traits can operate at the same time to provide a given level of
resistance. A number of reviews focused on HPR traits in cotton
are available (Jenkins and Wilson, 1996; Wilson and Sadras,
1998; Sadras and Felton, 2010; Hagenbucher et al., 2013a). In
the present review, HPR traits will be discussed from the point
of view of the genetic source providing the resistance and the
prospects for the incorporation of these traits in commercial
cultivars.

Frontiers in Plant Science | www.frontiersin.org 4 April 2016 | Volume 7 | Article 500

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00500 April 21, 2016 Time: 13:52 # 5

Trapero et al. Host Plant Resistance in Cotton

TABLE 1 | Genetic sources of host plant resistance and identified traits employed in cotton against pests usually considered as secondary.

Pest Source of resistance Resistance trait(s) Grown commercially
(Y/N)

Reference

Sucking bug
complex

Gossypium hirsutum cultivars and
breeding lines

Nectariless plus probably
antibiosis

Y Benedict et al., 1981;
Bourland and Myers, 2015

G. hirsutum cultivars and breeding lines Glandless N Leigh et al., 1985

G. hirsutum cultivars and breeding lines Antibiosis Y Tingey et al., 1973

G. hirsutum breeding line Reduced oviposition preference N Tingey et al., 1973

G. hirsutum cultivars and breeding lines High leaf hair density Y Meredith and Schuster,
1979

Spider mites G. hirsutum okra-leaf cultivars Okra leaf Y Wilson, 1994b

G. barbadense Antibiosis Y Schuster et al., 1972;
Miyazaki et al., 2012;
Zhang et al., 2013

G. arboreum single genotype Antibiosis N Miyazaki et al., 2012

G. hirsutum landraces Antibiosis N Schuster et al., 1972

G. australe Antibiosis N Schuster et al., 1972

G. lobatum Antibiosis N Schuster et al., 1972

Thrips G. barbadense Unknown,
G.barbadense-related

N Zhang et al., 2013

G. hirsutum glandless Acala lines Glandless N Zhang et al., 2014a

G. hirsutum high leaf hair density lines High leaf hair density N Rummel and Quisenberry,
1979

G. arboreum single genotype Unknown N Stanton et al., 1992

G. tomentosum Tomentum in leaves N Zhang et al., 2013

G. darwinii Not reported N Zhang et al., 2013

Silverleaf whitefly G. hirsutum okra leaf genotypes Reduced feeding preference N Chu et al., 2002; Miyazaki
et al., 2013a

G. hirsutum glabrous leaf genotypes Reduced oviposition preference N Butler et al., 1991; Miyazaki
et al., 2013a

G. thurberi Okra and glabrous leaves, plus
probably antibiosis

N Walker and Natwick, 2006

G. arboreum single genotype Antibiosis N Miyazaki et al., 2013a,
2014

Jassids or
Leafhoppers

G. armourianum Leave thickness, plus probably
antixenosis

N Pushpam and Raveendran,
2006

G. raimondii High leaf hair density N Pushpam and Raveendran,
2006

G. hirsutum selections High leaf hair density and length Y Muttuthamby et al., 1969

G. hirsutum selections High leaf hair density and length N McLoud et al., 2015

G. hirsutum old accessions Unknown N Knutson et al., 2014

G. tomentosum Tomentum in leaves N Knight, 1952

Traits for direct resistance mechanisms are frequently targeted
in HPR breeding because they usually have major effects and
they are also easier to identify and select for. On the other hand,
traits for indirect HPR are not as simple to identify and are rarely
targeted. Traits for both constitutive and induced HPR can play
a major role controlling HPR, but constitutive mechanisms are
more usually targeted as once they are identified, plants carrying
them can be selected without having to perform a bioassay.
For that reason, traits for constitutive morphological resistance,
such as a high leaf hair density or thickness are often initially
targeted in breeding programs. Other traits for constitutive
HPR, such as constitutive chemical compounds, can also be
relatively simple to target. However, the initial identification
of the specific compounds involved in the resistance is often

more challenging than identifying morphological HPR traits.
Antibiosis traits can have the biggest impact on HPR and are
probably the most successfully used in cotton, both in breeding
for secondary pests (Table 1) and in main pests (Bt-cotton).
However, identifying antibiosis is not as straightforward as other
HPR traits such as morphological traits, often requiring the use
of bioassays.

Using HPR Traits against Emergent and
Secondary Pests in Cotton
Although, not an emergent pest in Bt-cotton systems, the cotton
boll weevil has historically been the catalyst for considerable
effort toward selection of HPR genotypes (Bourland and Myers,
2015). In areas where it was a pest there was a shift in
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the cultivated germplasm toward short-season early maturing
cultivars to reduce the period of exposure to the pest (Smith
et al., 1999). Cotton boll weevil has since been eradicated from
most areas of the eastern USA and this has allowed a significant
increase in cotton productivity in these areas (Allen, 2008).
Unfortunately, cotton boll weevil is causing major challenges to
cotton production in some parts of South America, especially in
Brazil where it is currently considered the most important cotton
pest (Lima et al., 2012).

Resistance to spider mites has been studied and reviewed by
Wilson and Sadras (1998) and Miyazaki et al. (2012, 2013b).
Okra leaf (Wilson, 1994b) has been related to an increased
resistance to this pest. However, biochemical traits seem to
offer more effective resistance, as reported for G. arboreum and
G. barbadense genotypes (Miyazaki et al., 2013b) and some
G. hirsutum landraces (Schuster et al., 1972; Table 1).

Gossypium barbadense cultivars possess a major gene
conferring a higher level of resistance to thrips, according to the
segregation of resistant plants reported by Zhang et al. (2013).
Glandless cotton (no gossypol glands; Zhang et al., 2014a) and
high leaf hair density genotypes (Rummel and Quisenberry,
1979) have also been reported to provide some level of HPR
to thrips, but the exact mechanisms have not been studied.
Tolerance or compensatory responses have also been reported in
damaged cotton seedlings by thrips (Sadras and Wilson, 1998;
Wilson et al., 2003).

Several morphological traits have been associated with partial
resistance to silverleaf whitefly. Okra shaped leaves (Chu et al.,
2002), and very smooth (glabrous) or very hairy leaves harbor
less whiteflies than moderately hairy leaves (Butler et al., 1991;
Miyazaki et al., 2013a). Very high level of resistance against SLW
has been reported in the wild diploid species G. thurberi (Walker
and Natwick, 2006), which has both okra and glabrous leaf traits.
Whitefly resistance has also been associated with biochemical
traits, and particularly with the amount of total sugars, tannins,
flavonoids, phenols, and gossypol (Butter et al., 1990).

Regarding the sucking bug complex, compensatory or tolerant
responses have also been reported in later stages of the plant
for damage caused by Lygus sp. (Barman and Parajulee, 2013)
and Creontiades dilutus (Duggan et al., 2007), although the effect
of the genotype was not studied. Nectariless (absence of glands
exuding nectar) cotton genotypes have been reported to harbor
lower plant bug populations (Benedict et al., 1981; Bourland and
Myers, 2015). High leaf hair densities have also been reported
to provide a higher level of resistance (Meredith and Schuster,
1979). High leaf hair density has also been associated with
resistance to the cotton jassid or leafhoppers (Muttuthamby et al.,
1969; Bhat et al., 1982; McLoud et al., 2015), as it interferes with
oviposition.

With the exception of the nectariless trait, indirect
mechanisms of HPR have never been targeted in cotton,
and rarely in other crops (Wäckers, 2005). However, there are
some new promising achievements in this field, such as the
selection of maize plants with a high emission of induced plant
volatiles that attract natural enemies of the target pest (Tamiru
et al., 2015). Further exploration of these mechanisms in cotton
genotypes may be worthwhile within an IPM strategy.

BREEDING APPROACHES FOR
RESISTANCE TO EMERGING AND
SECONDARY PESTS

There is sufficient genetic diversity to warrant HPR breeding
programs to a range of emerging pests within G. hirsutum and
its primary and secondary gene pools. The success of HPR
breeding, as for any other program, depends on the complexity
of the inheritance of the trait and the ease and reproducibility of
the phenotype. The major additional complication for breeding
for HPR is that it is essential to understand the nature of
the resistance, and the potential benefits and risks from that
characteristic. Resistance mechanisms often mean a trade-off for
the plant, either among these mechanisms and other plant traits
(Strauss et al., 2002), or among different defense mechanisms
working on the plant (Kariñho-Betancourt and Núñez-Farfán,
2015), which has also been demonstrated in cotton (Rudgers
et al., 2004). For instance, resistance to one pest may result in
increased susceptibility to other pests, such a leaf hairness which
provides resistance against jassids (Muttuthamby et al., 1969) but
can make plants more susceptible to spider mites (Wilson and
Sadras, 1998). Ecological interactions are also important as HPR
traits can reduce a target pest but also negatively affect beneficial
populations, such as the nectariless trait where leaves do not
develop the extraflora nectaries, making the cotton less attractive
to plant bugs but also reducing abundance of beneficials species
that use nectaries as supplementary food (Adjei-Maafo and
Wilson, 1983). This result suggests that some HPR traits can lead
to ‘enemy-free space’ and thereby inadvertently advantage a non-
target herbivore species (Hagenbucher et al., 2013b). Interactions
at multitrophic levels must also be considered as HPR traits
may directly affect both beneficials and non-target herbivores.
For instance, the presence of extrafloral nectaries can attract and
increase the population of natural enemies by providing them
food (Adjei-Maafo and Wilson, 1983; Wäckers, 2005) but can
also enhance the fitness of some herbivores, such as plant bugs,
or make the crop more attractive for oviposition of Helicoverpa
punctigera moths that also use nectar as a supplementary food
source (Benedict et al., 1981; Flint et al., 1992). Nevertheless, most
commercial G. hirsutum varieties have extrafloral nectaries.

Interactions between HPR traits, GM traits and herbivores
are also important. In most Bt-cotton systems the sucking bug
complex has become more important, requiring targeted control
with insecticides. The cause of this increased pest status may be
partially due to ‘insecticide release’ as they are no longer being
coincidentally controlled by insecticide applications targeting
lepidopteran pests (Naranjo et al., 2008). However, it has also
been suggested that competitive release of the plant bug complex
from competition with lepidopteran pests is also a possible
contributing factor to increases in abundance of sucking bugs
in Bt-cotton systems (e.g., Whitehouse et al., 2007; Zeilinger
et al., 2011) or because Bt-cotton plants have less induced
production of terpenoids due to reduced feeding damage from
lepidopteran larvae (Hagenbucher et al., 2013b). In any case this
example highlights the potential complexity and hence capacity
for unexpected changes that could occur when combining GM
and HPR traits.
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Some traits come at a high metabolic cost or altered phenology
that lowers yield, such as use of short season cultivars to avoid
pest attack, or result in an unwanted side effect, for instance-
high leaf hairiness is incompatible with mechanized picking
(Anthony and Rayburn, 1989), and gossypol in the seed is toxic
to animals that are fed with cottonseed (Berardi and Goldblatt,
1980). However, the presence of gossypol has been removed by
breeding glandless cotton cultivars (Cai et al., 2010), though these
are more susceptible to invertebrate (both the fruit and leaves;
Jenkins et al., 1966) and vertebrate pests (mice attacking seeds).
A more effective approach has been the development of ultra-low
gossypol cottonseed GM varieties, where gossypol production is
selectively inhibited in the seeds but not in the rest of the plant
(Rathore et al., 2012). Due to these issues, breeding for HPR
is usually regarded very cautiously and a cost/benefit analysis
must be applied to determine what HPR traits are targets for
introgression into elite cultivars.

Identifying New Sources of HPR
Identifying new sources of resistance by phenotyping involves
exposing a range of cotton genotypes to the pest population,
either in the field, greenhouse or laboratory and assessing some
measure of pest fitness (developmental rate, survival, fecundity,
life span) and/or plant damage – essentially a large scale bioassay.
Selection of genotypes can be directed by previous published
literature, however, these studies are limited and mechanisms
involved in the HPR reaction are not always reported. If there is
no useful resistance available amongst domesticated G. hirsutum
genotypes, the range of material tested will need to be expanded
to include race lines and other Gossypium species. Once material
has been assembled, experiments need to be set up in the field or
greenhouse to evaluate pest fitness and plant damage responses.
This can be challenging as the pest may not reliably appear at
densities sufficient to discriminate between cotton genotypes,
and experiments may require significant amounts of land or
greenhouse space to allow a realistic number of genotypes to
be evaluated with sufficient replication for the results to be
statistically reliable. Non-target pest species may invade the
experiments and require selective management and beneficial
species may reduce pest abundance.

Culturing pests and releasing them onto candidate genotypes,
either in the field, greenhouse or laboratory is an approach
that has been used to ensure sufficient pest density with some
success (Wilson, 1994a; Parajulee et al., 2006). This ensures
more reliable results, but cultures must be maintained, keeping
them free of other pest contaminants (e.g., spider mites in
aphid cultures), free of problems with beneficial invertebrates
attacking the pests (e.g., aphid or whitefly parasitoids invading
cultures or field experiments) and vigorous so that they accurately
represent the likely behaviors of ‘wild’ populations. Research
in greenhouse situations can be indicative of field performance
but conditions may mask differences in microclimate (Wilson,
1994b) and plants may perform differently in the field and
greenhouse, such as differences in expression of leaf hairiness
between field and greenhouse grown plants (Miyazaki et al.,
2013a).

In an ideal situation the performance of the candidate
genotypes would be evaluated under protected (no pests) and
unprotected (pests present) scenarios to assess the resistance of
the genotypes to the pest by comparing pest abundance and
relative yield between protected and unprotected treatments.
This again creates challenges with logistics of sampling pest
abundance, managing other pests, land, labor and costs. These
issues are all manageable in the search for sources of resistance,
however, once resistance has been identified and a breeding
program initiated to introgress traits into more desirable genetic
backgrounds there is a need to screen many genotypes at
successive stages in the HPR trait introgression process. In this
situation the screening of genotypes in bioassays to confirm
resistance to pests can quickly become a limiting factor.

Plant phenotyping for HPR is therefore a key limiting factor
and improving the speed and accuracy is crucial to develop
genotypes with effective HPR. High-throughput phenotyping
using automation, robotics and remote data collection is
changing the way cultivars are developed (Goggin et al., 2015).
These new techniques can speed up the process of collecting
and analyzing data, but the use of bioassays, with all their
issues identified above, is still necessary. Eliminating a large
proportion of genotypes early in the breeding process without
the need of bioassays is therefore still desirable and might be
possible by genotyping. New molecular tools could help in
fulfilling this need, thus speeding up the HPR conventional
breeding process, however, the HPR traits still need to be
identified and characterized prior to the use of molecular
tools.

Molecular Tools to Complement
Phenotyping of HPR Traits
Once potential HPR traits have been identified, modern
molecular techniques, which are evolving at a rapid pace, provide
the opportunity to dramatically expedite breeding by avoiding the
need to constantly assess the presence of HPR traits in genotypes
by bioassay. The difficulty of bio-assaying for some HPR traits
makes the identification of molecular markers that are closely
linked to HPR traits and can be used a substitutes for performing
HPR bio-assays, essential for breeding. The completion of the
draft genome sequence for G. hirsutum cultivar TM-1 (Li et al.,
2015; Zhang T. Z. et al., 2015) marks a major milestone as it
facilitates a number of molecular assisted breeding strategies
that can speed the identification of molecular markers linked to
HPR traits. Next generation sequencing technologies and high
throughput genotyping technologies has expedited the creation
of high density genetic maps in cotton that have resulted in the
identification of the causal gene for okra leaf (Zhu et al., 2015).
The genes for other genetically simple HPR related traits such
as nectariless and frego bract will be soon identified, resulting
in “perfect” molecular markers that can used as a diagnostic for
the traits in young plants or seeds. In other species, several genes
have been already identified as conferring HPR, for instance HPR
in rice to brown planthopper (Nilaparvata lugens) provided by
genes Bph14 (Du et al., 2009) and Bph3 (Hogenhout and Zipfel,
2015).
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As the desired HPR is often found in agronomically poor
germplasm, additional molecular markers located either side of
the causal gene allows breeders to select for plants that contain
little or no linkage drag that has often masked the benefits of an
introgressed trait. Large scale genotyping platforms such as the
Illumina CottonSNP63K array can readily identify chromosomal
segment substitutions. Therefore by repeated backcrossing of the
trait into an elite cultivar, linked markers to the trait(s) can be
found after only a few rounds of backcrossing. Confirmation that
the donor regions are linked to resistance can be performed in
a further cycle of backcrossing, selfing and selection for resistant
lines. This strategy is especially useful when traits are obtained
from the secondary gene pool via synthetic tetraploid bridges.
High throughput genotyping also makes possible obtaining
linked markers via genome wide association studies on a range of
cultivars and their pedigrees containing different levels of HPR,
which avoids the time and energy required in the creation of
specialized genetic populations. However, a robust and reliable
phenotyping will still be necessary as the level of resistance needs
to be confirmed in bioassays with the target pest during the
discovery and validation phases.

Challenges and Potential Opportunities
with Complex Traits
Marker assisted selection has generally been found to work
well for simple genetic traits, or regions that exert a major
quantitative influence, but have proven ineffective for genetically
complex traits comprising many loci of small effect (Desta and
Ortiz, 2014). Although, few quantitative genetic HPR analyses
have been performed in cotton, from other plant systems it is
thought that many important HPR traits are genetically complex
(Stout and Davis, 2009; Smith and Clement, 2012). Genomic
selection, a form of marker-assisted selection (Heffner et al.,
2009) that has only recently became feasible in cotton, can enable
genetically complicated HPR traits to be incorporated into elite
cultivars (Desta and Ortiz, 2014). Genomic selection requires
large populations to be accurately phenotyped and genotyped,
such that there are markers covering the whole genome so
that all genes are in linkage with at least one marker. The
aim of genomic selection is to computationally predict genomic
estimated breeding values, first by analyzing a training population
composed of plant lines covering all important germplasm (i.e.,
founders) in the breeding program, and then validating the
models on subsequent breeding populations. The advantage of
this methodology is that it takes into account many regions which
have a small effect from the different backgrounds of the breeding
populations targeted. Genomic selection therefore has the ability
to optimize the HPR of cultivars using existing variation within
the breeding population.

New Methodologies for Generating and
for Introgressing HPR Traits
There is significant scope for improving HPR by marker assisted
breeding but introgressing traits from distant germplasm such
as from the secondary gene pool, still remains a challenge and
requires generations of crossing and selection. It also precludes

acquiring HPR from the tertiary gene pool that consists of diploid
Gossypium species with a completely different genome type that
generally show poor or no recombination with G. hirsutum. To
access HPR traits from these species will require identification
of the causal gene. These genes can then be transferred into
cultivated G. hirsutum cotton by GM or gene editing technology.
GM traits are subject to complex and expensive regulatory
systems, that cannot be grown in some countries (Tabashnik et al.,
2013; James, 2014) and so the HPR trait must possess a significant
economic value to compensate for the regulatory investment.
The regulatory status of genome editing is currently unknown,
but as simple genome edits are indistinguishable from natural or
induced mutations there is the possibility that that these plants
may not be subject to the same strict regulations as GM cotton.
Genome editing might prove be the main avenue for acquiring
HPR from diverse Gossypium species, especially as both the At
and Dt genomes present in G. hirsutum should be able to be
edited simultaneously (Wang et al., 2014).

Natural genetic diversity for HPR against a pest is not
always available or easily accessible. In such cases, new diversity
can be induced using chemical mutagens, ionizing radiation
or transposable elements. Mutation breeding of G. hirsutum
has resulted in ‘naked and tufted’ seeds, herbicide resistance
and plants with longer fiber (Auld et al., 2007; Bechere et al.,
2009a,b) and may provide a means of obtaining novel forms
of HPR especially via developmental or secondary metabolism
changes.

The history of breeding for HPR against Lepidopteran pests
illustrates that for some pests adequate control can only be
achieved by using GM technology to access resistance that
have evolved in other biological systems. There are a number
of promising GM avenues that may help control the rise of
emergent and secondary pests in Bt-cotton. Sap-sucking insects
(Hemipterans) are generally not susceptible to Bt, however,
Chougule et al. (2013) added a short pea aphid (Acyrthosiphon
pisum) gut binding peptide to Cry2Aa that resulted in enhanced
toxicity to both pea aphid and green peach aphid. A thorough
understanding of the binding and mode of action of the Cry
toxins may enable modified toxins to specifically target other
important pests. Secondary plant metabolites are also a source of
potential resistance (Birkett and Pickett, 2014). Small lipophilic
molecules are a promising group of secondary metabolites that
can have similar physiochemical properties and toxicities to
pesticides or insect pheromones. These metabolites pathways can
be engineered into plants to help manage pests, although the
metabolic pathways are complex and may be energy intensive
leading to a trade-offs with yield (Birkett and Pickett, 2014).

The discovery that ingested double stranded RNA can trigger
RNA interference (RNAi) in nematodes (Caenorhabditis elegans)
has opened up the possibility of plants expressing targeted RNA
species that could silence essential genes in pest species resulting
in their death or reduced fecundity (Fire et al., 1998). Mao et al.
(2011) found that cotton plants expressing a dsRNA that targets
a Helicoverpa armigera P450 monooxygenase gene (CYP6AE14)
associated with detoxification of gossypol, resulted in reduced
growth of bollworms and less plant damage. Yue et al. (2016)
found that cotton expressing dsRNA against a H. armigera gene
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involved in feeding behavior, resulted in significantly reduced
leaf damage and smaller larval body size. This technology has
the potential to be selective as it is based on the sequence of its
target sequence, thus no effect should be observed on non-target
species. The difficulties associated with the technology involve
the selection of target genes that are required for a vital process
to the pest species, and delivering the dsRNA at levels that are
effective (Miller et al., 2012) as these RNAi plants usually inhibit,
but do not kill, their target host (Mao et al., 2011; Zha et al., 2011).
Expression of dsRNA in chloroplasts has resulted in higher levels
of these transcripts and better efficacy against target insects (Jin
et al., 2015; Zhang J. et al., 2015). However, plastid transformation
is only possible in a limited number of plant species and is
not currently practical in cotton. Foliar application of dsRNA
targeted to pest species is also currently being explored as a novel
form of insecticide. It is possible that this method of delivery will
become more prevalent than GM, as it avoids plant registration
costs, is more flexible and appears relatively stable (San Miguel
and Scott, 2015).

CONCLUSION

The history of cotton production is linked with the history of
the emergence of new pests. In recent times, these emergence
events have generally been related to the use of insecticides and/or
the emergence of Bt-cottons (Luttrell et al., 2015). However,
there are few examples of successful deployment of HPR traits
to the emergent pests or linked secondary pests in cotton
cultivars. Recent research indicates that there is significant scope
to improve HPR in cotton especially against key secondary pests.

This review outlines sources of germplasm and the opportunities
to improve HPR in cotton against invertebrate pests in GM
cotton systems. Unfortunately, traits providing a high level of
HPR sometimes have other undesirable effects. Therefore, it is
necessary to use caution when introgressing these HPR traits
into elite cultivars. Modern techniques can also help to identify
and expedite the process of incorporating HPR traits into elite
germplasm.

Some caution is also required, as there is a risk that the
target population of herbivores can overcome the improved
defense mechanisms of the plant, leading to an “arms race.”
Lessons from the development of pesticide resistance in many
insect and mite species suggest that any HPR mechanism which
is based on a single toxin affecting pest fitness would impose
strong selection for resistance in the target pest population.
Issues with emerging resistance in Bt-cottons reinforce this
fact and highlight the need of integration of HPR within IPM
tactics.

Ultimately, the success of incorporating HPR will depend on
the benefit it can provide compared with current strategies to
manage the pest and any potential agronomic cost in terms of
yield and fiber quality compared with elite cultivars. Nevertheless,
HPR represents an opportunity to improve the value to cotton
production systems that the current pest resistant Bt-cottons
offer.
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