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Neuropathic pain is associated with hyperexcitability and intrinsic firing of dorsal root ganglia
(DRG) neurons. These phenotypical changes can be long lasting, potentially spanning the
entire life of animal models, and depend on altered expression of numerous proteins,
including many ion channels. Yet, how DRGs maintain long-term changes in protein
expression in neuropathic conditions remains unclear. DNA methylation is a well-known
mechanism of epigenetic control of gene expression and is achieved by the action of three
enzymes: DNA methyltransferase (DNMT) 1, 3a, and 3b, which have been studied primarily
during development. We first performed immunohistochemical analysis to assess whether
these enzymes are expressed in adult rat DRGs (L4–5) and found that DNMT1 is expressed
in both glia and neurons, DNMT3a is preferentially expressed in glia and DNMT3b is
preferentially expressed in neurons. A rat model of neuropathic pain was then used to
determine whether nerve injury may induce epigenetic changes in DRGs at multiple time
points after pain onset. Real-time RT PCR analysis revealed robust and time-dependent
changes in DNMT transcript expression in ipsilateral DRGs from spared nerve injury (SNI)
but not sham rats. Interestingly, DNMT3b transcript showed a robust upregulation that
appeared already 1 week after surgery and persisted at 4 weeks (our endpoint); in contrast,
DNMT1 and DNMT3a transcripts showed only moderate upregulation that was transient
and did not appear until the second week. We suggest that DNMT regulation in adult DRGs
may be a contributor to the pain phenotype and merits further study.
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INTRODUCTION
Neuronal cell bodies located in the dorsal root ganglia (DRGs) gen-
erate the fibers that convey information from the skin, muscles and
joints to the spinal cord (Gardner et al., 2000). This information
includes signals mediated by activation of nociceptors (Ringkamp
and Meyer, 2009). Nociceptive fibers can be myelinated A fibers,
originating from large DRG neurons, or unmyelinated C fibers
originating from small and medium DRG neurons.

In normal conditions nociceptors have a high firing threshold,
and these neurons do not fire action potentials in the absence
of noxious inputs. Only when the innervated organs are exposed
to noxious stimuli are action potentials generated in the periph-
eral axonal endings. In the presence of nerve injury or chronic
pain, however, nociceptors become intrinsically firing and their
intrinsic firing frequency correlates with spontaneous pain (Weng
et al., 2012); moreover, DRG neurons become capable of ectopic
(somatic) firing and this is also considered a cause of neuro-
pathic pain (Nordin et al., 1984; Sukhotinsky et al., 2004). These
changes are often indicated as peripheral sensitization and they
are not restricted to the injured nerve fibers but often include
adjacent neurons, which may also generate spontaneous firing
(Michaelis et al., 1996). These aberrant electrophysiological phe-
notypes are the consequence of large changes in ion channel gene
expression and distribution (Novakovic et al., 1998; Tanaka et al.,

1998; Dib-Hajj et al., 1999; Tan et al., 2006; Xiang et al., 2008; Fan
et al., 2011; Weng et al., 2012).

Changes in ion channel expression are well documented and
may explain the increased electrical excitability of DRG neu-
rons, yet, one of the key issues that remain unaddressed concerns
the mechanisms responsible for maintaining this altered gene
expression that contributes to the chronification of pain. DNA
methylation represents one of the most widely used mechanisms
of enduring cellular memory and recently it was shown to medi-
ate transient changes in gene expression in the hippocampus as
well as long term changes in the cortex that occur during mem-
ory processes such as contextual fear conditioning (Miller and
Sweatt, 2007; Miller et al., 2010). DNA methylation occurs on
CpG sites by the action of enzymes known as DNA methyltrans-
ferases (DNMTs). Methylation is implicated in X chromosome
inactivation (Wolf et al., 1984; Gendrel et al., 2012; Dupont and
Gribnau, 2013) and is associated with gene silencing in general
(Wolffe and Matzke, 1999), most likely by attracting methylation-
specific transcriptional inhibitors. In DNA from mammalian
somatic tissues ∼70% of all CpG sites are methylated (Ehrlich,
2003). It is widely believed that active demethylation also takes
place (Bruniquel and Schwartz, 2003; Barreto et al., 2007; Ooi
and Bestor, 2008; Kaas et al., 2013), although no demethylase
has been isolated so far. 5 DNMTs have been identified to date,
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although only DNMT1, DNMT3a, and DNMT3b possess cat-
alytic activity (Bestor et al., 1988; Okano et al., 1998; Chedin,
2011; Qin et al., 2011). Interestingly, while the developmental
importance of methylation was apparent from the start, its impor-
tance in the adult nervous system has been demonstrated only
recently; knockout of DNMT1 and DNMT3a in adult forebrain
neurons leads to several deficits in neuronal plasticity (Feng et al.,
2010). An increasingly large number of papers are addressing the
role of DNMTs in cancer and, more recently, in early life expe-
riences (McGowan et al., 2009; Szyf and Bick, 2013), memory
processes (Miller and Sweatt, 2007; Miller et al., 2010), addic-
tion (LaPlant et al., 2010), and Schizophrenia (Grayson et al.,
2005; Veldic et al., 2005). However, little work has been done
thus far investigating the potential role of these enzymes in
pain.

Hints that epigenetic changes in the spinal cord may be
involved in pain chronification have come from reports that
expression of DNMT’s is modulated in dorsal horn neurons
following inflammation or nerve injury (Tochiki et al., 2012)
and intrathecal spinal injection of a DNMT inhibitor improved
pain behavior in the chronic constriction injury (CCI) model
(Wang et al., 2011). Two recent reports of changes in histone
acetylation in DRGs of a mouse model of neuropathic pain
suggest that epigenetic mechanisms may also be important in
maintaining DRG phenotype (Uchida et al., 2010a,b). However,
no data are available concerning DNMT expression in adult
DRGs or its potential modulation by pain. Here we show that
DNMTs are expressed in adult DRGs and that expression of
isoform DNMT3b is upregulated almost fourfold after nerve
injury, while DNMT1 and DNMT3a are upregulated moderately
and only transiently. This suggests a potential role for changes
in DNA methylation in initiation and/or maintenance of the
alterations in gene expression in DRGs in animal models of
pain.

MATERIALS AND METHODS
ETHICS STATEMENT
All studies were approved by the Animal Care and Use Committee
of Northwestern University.

SPARED NERVE INJURY MODEL
Twenty to 21-day-old rats were anesthetized using gas anesthe-
sia (isoflurane 1–2%, 30% N2O, and 70% O2). For induction of
spared nerve injury (SNI)-neuropathy, the sciatic nerve of the left
paw was exposed at the level of the trifurcation into the sural,
tibial, and common peroneal nerves. The tibial and common per-
oneal nerves were tightly ligated and severed, leaving the sural
nerve intact (Decosterd and Woolf, 2000). A second group of ani-
mals was used for control sham surgery. In this case, the left sciatic
nerve was exposed just as in the SNI procedure but was not further
manipulated.

BEHAVIORAL TEST FOR TACTILE SENSITIVITY
Tactile sensitivity of the spared region of the operated paws was
measured from the withdrawal responses to mechanical stimu-
lation with von Frey filaments. Animals were placed in a cage
with wire grid floor and allowed to habituate to the environment

for 15 min. Filaments (Stoelting) of varying forces were applied
to the plantar surface of the hind paw in ascending order. Each
filament was applied for a maximum of 10 s. Paw withdrawal
during the application was considered a positive response. 50%
response thresholds were calculated according to (Chaplan et al.,
1994). All animals that underwent SNI surgery developed tac-
tile allodynia in the left paw that persisted until they were
sacrificed.

RT-PCR ANALYSIS
L4 and L5 DRGs were dissected from sham operated and SNI rats;
DRGs both ipsilateral and contralateral to the injury were col-
lected 1, 2, and 4 weeks after onset of SNI injury and frozen in
liquid nitrogen and stored at −80◦C. RNA was extracted using a
Qiagen RNeasy RNA extraction kit that includes a column that
binds DNA while allowing RNA to flow through in order to pre-
vent DNA contamination. Sufficient RNA quantity and purity for
each sample was verified by RNA Nanodrop measurements. RNA
was then reverse transcribed into cDNA using Roche’s First Strand
cDNA Synthesis kit and oligo dT primers. Quantitative RT-PCR
was performed using a Roche Lightcycler 480 (LC480) with Roche
probes or SYBR green master mix, primers (0.4 μM), and DRG
cDNA. All PCR reactions were run using a 5 min hot start at
95◦C, followed by 45 cycles of 10 s at 95◦C, 15 s at 60◦C, and 10 s
at 72◦C. All samples were run in duplicate. Gel electrophoresis
(1.8% agarose) demonstrated a single band for amplification tar-
gets. Although all primers were intron spanning, cDNA negative
and reverse transcriptase negative controls were done for genes
of interest and were negative. GAPDH was used as the reference
gene and all genes of interest were normalized to it. As recom-
mended in the MIQE qRT-PCR guidelines, β actin transcript was
quantified relative to GAPDH (data not shown) to validate the
stability of GAPDH as a reference gene (Bustin et al., 2010). Stan-
dard curves were also done to calculate reaction efficiency for
each gene product using dilutions of cDNA. All data were effi-
ciency corrected using Roche LC480 software and the delta delta
Ct method (Schmittgen and Livak, 2008). For the gene expres-
sion analysis 1, 2, and 4 weeks post surgery n = 8, 4, and 6
SNI/sham pairs, respectively. All primers and efficiencies are listed
in Table 1.

For the experiment determining relative abundance of DNMT’s
in DRGs 5 naïve rats aged 4 weeks were used. L4 and L5 DRGs were
dissected, frozen in liquid nitrogen and transcript levels quantified
via qRT-PCR with CYBR green master mix as described above. As
there was no significant difference in DNMT expression on the left
or right side of the rats, data from the right and left DRGs from
each rat were pooled and relative abundance determined.

IMMUNOHISTOCHEMISTRY
Five to seven week-old naïve or SNI male Sprague Dawley rats
were anesthetized using ketamine/xylazine (80 and 10 mg/0.1 kg,
respectively) and perfused transcardially with saline and then with
4% paraformaldehyde. L4 and L5 dorsal DRGs were dissected
out and post fixed in paraformaldehyde for 1 h after which they
were cryoprotected with 10% sucrose overnight followed by 20%
sucrose. DRGs were then embedded in OCT, frozen on dry ice,
and cut into 20 μm slices using a Microtome Cryostat HM 505E.
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Table 1 | Primer sequences, efficiencies, slopes, and Roche probes used for genes of interest.

Gene Primers Efficiency Slope Roche probe and product #

DNMT1 L ccatcacgtctcacttcaagg R tgcgtttcttatcctggtctc 1.99 −3.36 NA-CYBR green

DNMT3a L ctgatgacgagcccgagtat R ctgtcatccaccaagacacaa 1.96 −3.44 NA-CYBR green

DNMT3b L gatgatcgacgccatcaag R cgagcttatcattctttgaagcta 1.98 −3.37 8404689089001

GAPDH L ctgcaccaccaactgcttag R tgatggcatggactgtgg 2.00 −3.32 Rat GAPDH Ref 05046220001

Beta actin L aaggccaaccgtgaaaagat R accagaggcatacagggaca 1.91 −3.56 NA-CYBR Green

Sections were incubated at 40◦C for 15 min prior to staining
and then incubated for 36 h in primary antibody in TBS with
0.2% triton-X and 3% NGS. Sections were then washed with
TBS and incubated for 2 h at 22–24◦C in secondary antibod-
ies in TBS. Sections were again washed (6–8 times) in TBS with
one final wash in PBS. Sections were mounted and imaged on
a Zeiss UV LSM 510 META confocal microscope. Z-stacks (8–
12 in 2 micron steps) were taken for all image analyses. Primary
antibodies were DNMT1 (Santa Cruz #20701; Sharif et al., 2007;
Metivier et al., 2008; DNMT3a, Santa Cruz #20703; Ooi et al.,
2010; Zhang et al., 2011a; Zhu et al., 2012; DNMT3b, Santa Cruz
#20704; Di Giaimo et al., 2005; Zhang et al., 2011a). Secondary
antibody was Invitrogen Goat anti-Rabbit 488. Controls including
primary antibody alone and secondary antibody alone were nega-
tive. Additionally, specificity for DNMT1 and DNMT3a antibodies
was verified using western blot (WB) analysis. The DNMT3b anti-
body did not give a detectable signal in WB, most likely because
of the very low expression level of this molecule in adult DRG
tissue.

STATISTICAL ANALYSIS
Statistical significance of differences in expression data was deter-
mined at the 0.05 level using Analysis of Variance with post hoc
correction (Student-Newman-Keuls). Data from sham left and
right DRG were pooled and used for comparison with contra- and
ipsi-lateral SNI. The “sham” expression level in the figures rep-
resents these pooled data. All data in the paper are presented as
average ± standard error of the mean (SEM). Error bars in figures
also represent SEM.

RESULTS
DNMT1 EXPRESSION IS ROBUST AND WIDESPREAD IN ADULT DRGs
Immunochemical analysis was performed on 20 μm-thick slices
obtained from L4 and L5 DRGs of 5–7 week old naïve rats to
study the expression of the DNMT1, DNMT3a, and DNMT3b
in L4 and L5 DRGs of adult rats. Immunostaining of DNMT1
demonstrated that expression is robust and is detected ubiq-
uitously in the nuclei of DRG neurons as well as in Schwann
cells (Figure 1). Indeed labeling with the nuclear dye 4′,6-
diamidino-2-phenylindole (DAPI) revealed almost perfect over-
lap with DNMT1 expression in both DRG neuronal nuclei
(Figures 1A–C, see arrowheads for examples) and the nuclei
of Schwann cells surrounding DRG axons (Figures 1D–F).
Interestingly, DNMT1 expression was not detected in the satellite

cells that surround and support DRG neuronal cell bodies
(Figures 1A–C).

DNMT3a EXPRESSION IS FOUND IN GLIA OF ADULT DRGs
In contrast to DNMT1 staining in nuclei of DRG neurons,
immunostaining L4 and L5 DRG sections for DNMT3a revealed
robust expression in the nuclei of supporting satellite glia
(Figures 1G–I). In addition DNMT3a was detected in the nuclei of
many Schwann cells (Figures 1J–L). Thus, surprisingly, DNMT3a
was not detected in nuclei of DRG neurons (Figures 1G–I).

DNMT3b EXPRESSION IS LIMITED TO DRG NEURONS
Labeling of L4 and L5 DRG sections for DNMT3b demon-
strated expression of DNMT3b in nuclei of all DRG neurons
(Figures 1M–O). Notably, no overlap was detected for DNMT3b
and DAPI in axons, suggesting that DNMT3b expression is
selective for neurons and is absent in glia (Figures 1P–R).

RELATIVE ABUNDANCE OF DNA METHYLTRANSFERASE TRANSCRIPT
IN DRGs IN NAIVE RATS
As no data are available concerning DNMT expression in rat DRG,
we next quantified the relative abundance of DNMTs in L4 and L5
DRGs from naive rats. One month old rats were used to per-
form qRT-PCR measurements of DNMT transcript. qRT-PCR
data was efficiency corrected, normalized to the GAPDH refer-
ence gene, and expression levels compared. PCR products were
first run on a gel to demonstrate primer accuracy and confirmed a
single band for each reaction (Figure 2A). DNMT1 and DNMT3a
had much higher transcript levels than DNMT3b (Figure 2B).
This is consistent with immunocytochemistry data showing that
DNMT1 and DNMT3a staining was present in both neurons
and glia, while staining for DNMT3b was restricted to the neu-
ronal population (Figure 1). These experiments confirmed that
DNMTs are expressed in rat DRG at the level of both mRNA and
protein.

UPREGULATION OF DNMT’s IN THE SNI MODEL OF NEUROPATHIC PAIN
Having found that all DNMTs are expressed in the adult DRG,
although in a cell-type dependent pattern, we wondered whether
their expression levels are affected following neuropathic injury.
Widespread changes in gene expression have been reported in
animal models of neuropathic pain, and it is possible epigenetic
mechanisms may underlie at least some of these changes. To test
this hypothesis we took advantage of the SNI model, a robust and
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FIGURE 1 | DNA methyltransferase expression in DRG is cell-type

specific. 20-micron L4 and L5 DRG sections from control rats aged
5–7 weeks were immuno-labeled with DNMT antibodies as well as
incubated with the nuclear labeling dye 4’,6-diamidino-2-phenylindole (DAPI).
(A–C) Show robust and ubiquitous labeling of DNMT1 in nuclei of DRG
neurons. Notably, there is little expression of DNMT1 detected in the satellite
cells surrounding DRG neurons. In addition, widespread overlap of DAPI and

DNMT1 was detected in axons, demonstrating ubiquitous expression in
Schwann cells (D–F). (G–I) In contrast to DNMT1, DNMT3a was not detected
in neuronal nuclei but rather in satellite cells surrounding DRG neurons.
(J–L) DNMT3a also showed widespread overlap with DAPI in nuclei of
Schwann cells. (M–O) DNMT3b was detected in nuclei of all DRG neurons.
(P–R) Notably, DNMT3b staining did not reveal overlap with DAPI in DRG
axons, suggesting DNMT3b is not expressed in glia. Scale bar: 20 μM.
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FIGURE 2 | Relative abundance of DNMT transcripts in adult rat DRGs.

(A) PCR products run on a 1.8% agarose gel demonstrate a single
amplification product for each gene of interest. DNMT3b and GAPDH were
run together as this assay involved multiplexing DNMT3b and GAPDH in
the same PCR well, thus the two bands in one lane. (B) Quantitative
RT-PCR was first used to determine the relative abundance of DNMTs from
five naive rats at 1 month of age. All DNMT gene expression is normalized
to GAPDH. Note the higher expression levels of DNMT1 and DNMT3a
while DNMT3b is lower, consistent with immunocytochemistry data
(Figure 1). Note the plot is on a logarithmic scale.

well-established model of neuropathic pain, which involves sever-
ing the tibial and peroneal portions of the sciatic nerve (Decosterd
and Woolf, 2000). Tactile sensitivity was measured to verify the
efficacy of the surgery. von-Frey filament testing was performed
on all SNI and sham operated rats prior to experimental use
and confirmed the presence of allodynia in all SNI rats but not
sham controls. The left (operated) paw von Frey thresholds were

3.93 ± 0.58 g and 0.55 ± 0.41 g at 1 week, 5.16 ± 0.49 g and
0.64 ± 0.16 g at 2 weeks, and 7.93 ± 0.77 g and 0.97 ± 0.44 g at
4 weeks after surgery for sham-operated and SNI rats, respectively
(Figure 3). qRT-PCR experiments were done 1, 2, and 4 weeks post
surgery using L4 and L5 DRG tissue of control (sham operated)
and SNI rats; genes of interest were normalized to the GAPDH ref-
erence gene. All data are shown normalized to age matched sham
controls. First, the amount of beta actin transcript was quanti-
fied relative to GAPDH for all SNI and sham groups to test the
stability of GAPDH and verify it’s suitability for use as a ref-
erence gene. No significant changes were detected in beta actin
transcript levels between SNI and sham at 1, 2, or 4 weeks post
surgery, thus confirming its suitability as a reference gene (data
not shown).

At 1 week post injury, qRT-PCR experiments for DNMT tran-
scripts demonstrated no significant changes in expression levels
for both DNMT1 and DNMT3a transcripts, in the DRGs ipsi-
or contralateral to the injured nerve relative to sham controls
(Figure 4A). However, analysis of the DNMT3b transcript in the
DRG ipsilateral to the injured nerve revealed a significant, almost
fourfold increase (p < 0.001) in expression levels relative to sham
(Figure 4A). DNMT3b expression was unchanged in the DRG
contralateral to nerve injury.

In order to better understand the changes occurring in DRG
neurons during more chronic conditions, DNMT transcript levels
were also measured at 2 and 4 weeks post surgery. Interest-
ingly, at 2 weeks post injury DNMT1 transcript was increased
by 38% (p < 0.05) relative to sham controls in the DRG
ipsilateral to nerve injury (Figure 4B). Also, DNMT3a tran-
script was increased by 58% (p < 0.05) relative to sham in

FIGURE 3 | Von Frey measurements in SNI and sham rats. The spared
nerve injury (SNI) model of neuropathic pain was used. The left or ipsilateral
nerve was injured while the right or contralateral nerve was intact. Tactile
sensitivity of the spared region of the operated paws was measured from
the withdrawal responses to mechanical stimulation with von Frey
filaments. 50% response thresholds were calculated according to Chaplan
et al. (1994). Data are shown by dividing the contralateral/right paw over the
ipsilateral/left paw, at 1, 2, and 4 weeks post SNI or sham surgery. All
animals that underwent SNI surgery developed significant tactile allodynia
in the ipsilateral/left paw that persisted until they were sacrificed, while
sham rats showed no changes, *p < 0.01. n = 8 SNI and sham for 1 week,
4 for 2 weeks, and 6 for 4 weeks. The left foot von Frey thresholds for
sham-operated and SNI rats, respectively, were 3.93 ± 0.58 g and
0.55 ± 0.41 g at 1 week, 5.16 ± 0.49 g and 0.64 ± 0.16 g at 2 weeks, and
7.93 ± 0.77 g and 0.97 ± 0.44 g at 4 weeks after surgery.
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FIGURE 4 | Nerve injury induces a robust and long lasting

increase in DNMT3b expression. Gene expression is normalized to
GAPDH. All SNI data are normalized to sham controls. (A) At 1 week
post nerve injury, qRT-PCR experiments demonstrate a significant,
almost fourfold increase in DNMT3b transcript in the DRG ipsilateral
to the injured nerve. DRGs contralateral to nerve injury showed no
significant changes, *p < 0.001. n = 8 SNI and 8 sham. (B) At
2 weeks post nerve injury, qRT-PCR experiments demonstrate a
significant increase in DNMT1 (38%), DNMT3a (58%), and DNMT3b
(twofold) transcripts in the DRGs ipsilateral to the injured nerve.
DRGs contralateral to nerve injury showed no changes, *p < 0.05.
n = 4 SNI and 4 sham animals. (C) At 4 weeks post nerve injury,
qRT-PCR experiments demonstrate a significant, approximately 40%
increase in DNMT3b transcripts in the DRGs ipsilateral to the injured
nerve. DRGs contralateral to nerve injury showed no changes. For
DRGs ipsilateral to injury in SNI rats, DNMT1 showed a trend toward
being increased by 27% with p = 0.09 while DNMT3a also showed
a slight trend of being increased by 42% with p = 0.22, *p < 0.05.
n = 6 SNI and 6 sham.

the DRG ipsilateral to nerve injury. For both DNMT1 and
DNMT3a, no significant changes were found in the DRG con-
tralateral to nerve lesion. In addition DNMT3b expression was
still increased more than twofold (p < 0.05) in the DRG ipsilat-
eral to nerve injury, with no change contralateral to the injury
(Figure 4B).

At 4 weeks post injury, in the ipsilateral DRG both DNMT1
and DNMT3a transcripts still showed a trend for a slight increase
relative to sham controls (28% for DNMT1, p = 0.09, 42%
for DNMT3a, p = 0.22); no significant increase was found in
the DRG contralateral to nerve injury (Figure 4C). DNMT3b
transcript was still significantly elevated by 41% in the DRG
ipsilateral to nerve injury (p < 0.05). DRGs contralateral to
injury showed no changes. Thus, these data demonstrate that
nerve injury associated changes in DNMT3b expression are early
and robust, while changes in DNMT1 and DNMT3a occur later
and more transiently. Thus, only DNMT3b transcript expres-
sion was significantly increased at all time points after surgery.
Because, in control conditions, this transcript is found in all
neurons, but not in glia, we wanted to verify whether this qualita-
tive pattern is maintained after peripheral nerve injury. There-
fore, immunohistochemistry was performed on DRG sections
from 2 SNI animals 1 week after the surgery, when the tran-
script expression was the highest (Figure 5). We found that,
similar to the naïve rat condition, DNMT3b expression was
still neuronal-specific and no evidence for glial expression was
found.

DISCUSSION
DNA METHYLATION IN ADULT ANIMALS
While the role of DNMTs during development has been the focus
of intense study for many years (Lyko et al., 1999; Okano et al.,
1999; Ko et al., 2005), much less is known about their role in
the adult. However, an increasing amount of data supports a
critical role for DNA methylation in adult animals, and in the
brain in particular. For instance, changes in DNA methylation
have been linked to long-lasting alteration of local circuits, such
as those implicated in memory consolidation (Miller and Sweatt,
2007; Lubin et al., 2008). Furthermore, conditional knockdown
of DNMT1 and DNMT3a in adult mouse forebrain excitatory
neurons resulted in disruption of long term plasticity in area
CA1, including deficits in learning and memory, and changes
in gene expression and DNA methylation (Feng et al., 2010).
This confirmed the crucial role played by DNMTs in adult post-
mitotic neurons. Changes in DNMT gene expression as well as
DNA methylation have also been shown to take place in psy-
chiatric diseases such as schizophrenia (Tremolizzo et al., 2002;
Veldic et al., 2005). Observations have also been made that involve
other epigenetic mechanisms, such as histone acetylation that
has been shown to be implicated in numerous brain activi-
ties such as memory formation (Fischer et al., 2007; LaPlant
et al., 2010); and neurodegenerative diseases such as Hunting-
ton’s disease (Butler and Bates, 2006). Thus, strong evidence
supports a critical role for epigenetic regulation of CNS activ-
ity in adult animals. So far, however, no reports have identified
whether DNMT transcripts are expressed in adult DRGs and if
they may be affected in the setting of neuropathic pain. Here
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FIGURE 5 | DNMT3b transcript expression remains exclusively

neuronal after peripheral nerve injury. Immunohistochemisry was
performed on sections obtained from DRG ipsilateral to the peripheral
injury in two SNI rats 1 week post-surgery. (A,B) are two examples of
images obtained by staining the DRG sections with DNMT3b (green)
antibody and DAPI (blue). Note that, similar to the naïve tissue, DNMT3b
expression is ubiquitous in neurons, but absent from glia.

we used immunohistochemical analysis to identify expression
of DNMT1, 3a and 3b in adult rat DRG and show that all
three DNMTs are expressed, although at different levels and in
a cell-type dependent manner. We also demonstrate significant
upregulation of DNMT’s in an animal model of neuropathic
pain.

DRG DNA METHYLATION AND PAIN
A major component of pain suffering in modern societies is
chronic in nature; yet, there is little understanding regarding the
mechanisms of pain chronification and no scientifically validated

therapies for such conditions (Dworkin, 2002). DRGs are the first
step in the pain pathway. Small and medium size DRG neurons
generate c- and Aβ and Aδ nociceptor fibers. Animal as well as
human studies have recently shown that all major stations in the
pain pathway are affected in chronic pain conditions. In partic-
ular, pain-associated functional and/or morphological changes
have been described in DRG neurons (Devor and Wall, 1990;
Kajander et al., 1992; Jimenez-Andrade et al., 2006), spinal cord
(Coull et al., 2003; Braz et al., 2012) and several brain areas includ-
ing the amygdala (Neugebauer and Li, 2003; Neugebauer et al.,
2003; Bird et al., 2005), the anterior cingulate cortex (Li et al.,
2010), the hippocampus (Ren et al., 2011; Mutso et al., 2012)
and the prefrontal cortex (Metz et al., 2009; Baliki et al., 2010,
2012). Critical questions that remain unanswered concern the site
of origin for these changes and their temporal evolution. Epige-
netic mechanisms have been previously suggested to contribute
to the development of persistent pain. For instance, epigenetic
suppression of GAD65 expression in the nucleus raphe magnus
has been shown to favor the development of persistent inflam-
matory pain (following injection of complete Freund’s adjuvant;
Zhang et al., 2011b). In addition levels of DNMT’s were altered in
the spinal cord after nerve or inflammatory injury (Tochiki et al.,
2012). Also, intrathecal spinal injection of the DNMT inhibitor
5-azacytidine was shown to alleviate neuropathic pain in the CCI
model (Wang et al., 2011). Thus, we investigated the expression
level of DNMT transcripts in DRGs in the SNI model of neu-
ropathic pain. We found that the expression level of DNMT3b
transcript, which in adult DRGs is expressed in neurons but not
in glia, is dramatically increased at 1, 2, and 4 weeks after the
neuropathic lesion. In addition, DNMT1 and DNMT3a were
upregulated at 2 weeks post injury. This upregulation was at least
in part surprising because neuropathic pain is associated with
increased neuronal firing and neuronal depolarization was previ-
ously reported to reduce DNMT expression (Sharma et al., 2008).
Therefore, the observed changes in DNMT expression may be
considered the result of a complex program rather than a direct
consequence of neuronal electrophysiological activity. Immuno-
histochemistry of SNI DRGs for DNMT3b revealed no detection
of DNMT3b in glia, suggesting that glial activation following SNI
surgery is not linked to DNMT3b expression, suggesting that the
increase occurs in neurons. Independent of the specific mech-
anisms, however, altered DNMT expression in DRGs may be
involved in the transition from acute to chronic pain and may
underlie some of the numerous changes in gene expression in
pain models. Accordingly, microarray studies carried out on DRGs
from peripheral axotomy pain models have reported gene expres-
sion changes for several hundred genes (Costigan et al., 2002; Xiao
et al., 2002).

Epigenetic control of genes includes both histone modifica-
tions and DNA methylation and regulates gene expression by
changing the accessibility of transcriptional machinery to the
DNA. Although there are some exceptions, DNA methylation
of gene promoters is generally associated with gene silencing
(Wolffe and Matzke, 1999). The upregulation of DNMT’s in
the DRG may result in a number of specific and/or broader
functional consequences. Considered broadly, one could expect
upregulation of DNMTs to largely result in suppression of gene
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expression. Also, as DNMT3a and DNMT3b are involved primar-
ily in de novo methylation (Okano et al., 1999), their upregulation
may lead to new patterns of DNA methylation in DRGs. We
show here robust upregulation of DNMT3b up to 4 weeks post
injury, however, as DNA methylation marks can be quite sta-
ble, even the transient upregulation of DNMT1 and DNMT3a
(at 2 weeks post injury) may contribute to long lasting changes in
gene expression. It is worth noting that DNMT’s can also repress
transcription independent of DNA methylation by recruiting the
chromatin remodeling enzymes histone deacetylases (HDAC’s).
DNMT1 can recruit HDAC 1 and HDAC 2 (Rountree et al.,
2000) while the DNMT3 family can interact with HDAC1 via a
different mechanism (Bachman et al., 2001). The upregulation
of DNMTs reported here is thus consistent with recent reports
of reduced histone acetylation at the promoter of several genes
in a mouse model of neuropathic pain (Uchida et al., 2010a,b)
and points to the possibility that inhibiting DNMT activity in
the DRG after nerve injury may serve to prevent some of the
pathological changes in gene expression and improve the pain
phenotype.

The observation that DNMT3b is most heavily regulated in the
pain condition is intriguing considering that, in keeping with our
finding in DRGs, DNMT3b is expressed at low levels in adult
tissue, except in thyroid, testis, and bone marrow (Xie et al.,
1999). Similar to our finding in the pain condition DNMT3a
and DNMT3b were shown to be upregulated in area CA1 of
the hippocampus after fear conditioning in rats, and DNMT
inhibitors were shown to block learning and memory. These obser-
vations support a function for DNMT3s in plastic mechanisms
in adult brain tissue (Miller and Sweatt, 2007). DRG in particu-
lar may undergo plastic changes both in pathological conditions
where nerve injury induces maladaptive responses in gene expres-
sion and neuronal excitability, and in physiological conditions
where nociceptors receive and integrate numerous inputs from
the periphery. Interestingly, DNMTs undergo alternative splicing
in a tissue and developmental stage specific pattern, and DNMT3b
has by far the most with some estimates of almost 40 splice vari-
ants (Okano et al., 1998; Wang et al., 2006a,b; Ostler et al., 2007;
Gopalakrishnan et al., 2009; Gordon et al., 2013). It is possible that
one of these developmental variants may be upregulated in the
DRG following the SNI injury although future studies will be
required to examine this more closely.

Finally, it is important to stress that neither the effect of neuro-
pathic injury on DRG DNMT expression nor the pattern of DNMT
expression in adult DRGs were previously investigated. Thus, as
almost every study, and work addressing new ideas in particular,
this paper has also limitations. One such limitation is that the func-
tional consequences of the dysregulation in DNMT expression are
unclear. Methylation array data from SNI and sham DRGs may
help answer this question, but there are technical problems for
such a study. The major problem consists in the difficulty to sepa-
rate glia and neurons. Our data show that expression of DNMT3b,
which is the lowest in DRGs and is selective for neurons, is mostly
altered following neuropathic injury. The DRG contains far more
glial cells than neurons, thus methylation arrays from DRG tissue
would in reality provide more of a glial methylation signature than
neuronal. Considering that high cost of a global DNA methylation

analysis and this lack of cell specificity the cost to benefit ratio does
not justify such an experiment at this moment although one may
imagine that in the near future cell-sorting capability may render
such analysis worthwhile.
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