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Various cellular replacement therapies using in vitro generated cells to replace damaged
tissue have been proposed as strategies to alleviate hearing loss. All such therapies
must involve a complete understanding of the earliest steps in inner ear development; its
induction as a thickened plate of cells in the non-neural, surface ectoderm of the embryo,
to its internalization as an otocyst embedded in the head mesenchyme of the embryo.
Such knowledge informs researchers addressing the feasibility of the proposed strategy
and present alternatives if needed. In this review we describe the mechanisms of inner
ear induction, concentrating on the factors that steer the fate of ectoderm into precursors
of the inner ear. Induction then leads to inner ear morphogenesis and we describe the
cellular changes that occur as the inner ear is converted from a superficial placode to an
internalized otocyst, and how they are coordinated with a particular emphasis on how the
signaling environment surrounding the inner ear influences these processes.
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INTRODUCTION
The inner ear is a complex structure. It is composed of numer-
ous cell types that include ciliated mechanoreceptors to detect
mechanical stimuli associated with balance or sound detection, the
neurons of the eight cranial nerve, the cochleovestibular nerve, that
transmits the stimuli to the central nervous system, as well as other
cell types to maintain the unique ionic composition of the inner
ear (Slepecky, 1996; Highstein et al., 2004). All of these cell types
are derived from the otic placode, a seemingly simple epithelial
structure that is part of the surface non-neural ectoderm adja-
cent to the caudal part of the hindbrain (Barald and Kelley, 2004;
Groves and Fekete, 2012). As is typical for most tissue induction
during early development, secreted factors from surrounding tis-
sue act on competent ectoderm to convert its fate (Ladher et al.,
2010). This dynamic epigenetic control ensures that the otic pla-
code forms at the right time and the right place, starting the train of
events that will convert the placode into a fully functioning inner
ear. The otic placode is induced superficial, yet the inner ear itself
is embedded within the cephalic mesenchyme (Meier, 1978a,b).
Thus, morphogenetic processes must take place that internalize
this tissue. The process, called invagination occurs concomitantly
with induction. Thus, changes in the shape of the cells are inti-
mately linked to the inductive process. Indeed, changes in the
cytoskeletal architecture of the otic placode are directly controlled
by secreted factors, and it is clear that for complete and accurate
morphogenesis the topographical relationship of the otic placode
to the tissue emitting the inducing signal is critically important
(Sai and Ladher, 2008).

Culture studies of isolated otic placodes at different stages have
shown that once induction and invagination is complete, sen-
sory cell and neuronal differentiation is autonomous in this tissue
(Freter et al., 2008). This suggests that these early events by them-
selves are sufficient for at least some later differentiation. Thus, a

deep understanding of the earliest events in inner ear development
is necessary to inform cell differentiation protocols and attempts
in vitro organ engineering that will form the next-generation of
therapies for hearing loss.

INDUCTION
The otic placode is part of a series of cranial placodes located in
the head of all vertebrate animals. Placodes are thickened regions
of ectoderm adjacent to the neural plate boundary that will give
rise to sensory structures in the head as well as many of the cranial
nerves (Baker and Bronner-Fraser, 2001; Schlosser, 2006, 2014;
Graham and Shimeld, 2013). Anterior is the olfactory placode,
which will generate the nasal epithelium as well as the first cra-
nial nerve. Caudal to the olfactory placode is the lens placode.
Uniquely, amongst the cranial placode, it produces neither neu-
rons nor sensory cells. The two lobes of the trigeminal placode,
the ophthalmic and the maxilla-mandibular are found around the
eye. These placode are wholly neurogenic and form the sensory
neurons of the fifth cranial nerve. As already stated, the otic pla-
code will give rise to the inner ear as well as the eight cranial nerve.
Lateral to the otic placode are the epibranchial series of placodes,
the most anterior, the geniculate, forms the sensory components of
the seventh cranial nerve, innervating the taste buds and convey-
ing touch information from the ear lobes. The second epibranchial
placode (EPD), the petrosal, will give rise to the ninth cranial nerve,
innervating the tongue, as well as the carotid body. The most cau-
dal is the nodose EPD, and will contribute to the tenth cranial
nerve, the vagus (Baker and Bronner-Fraser, 2001; Ladher et al.,
2010).

The otic placode, like all the cranial placodes, arises from the
pre-placodal region (PPR); this can be thought of as ectoderm
that is competent to develop into any placode given the correct
signals, but has not yet committed to one (Bailey and Streit, 2006;
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Groves and LaBonne, 2014; Saint-Jeannet and Moody, 2014). Otic
placode induction occurs by signals from adjacent tissues acting
on the PPR. Otic induction itself can be though of as a progressive
process, with a gradual restriction of possible fates as a function of
time, under the control of signaling interactions (Figure 1). This
section describes these processes, and the signals and transcription
factors that control them, in more detail.

ESTABLISHING THE PRE-PLACODAL REGION
One of the first events in the patterning of the embryonic ecto-
derm is its separation into neural and non-neural domains in the
head region of the embryo. This occurs at around the time of gas-
trulation and is directed by signals coming from the mesoderm
and endoderm as well as signals acting within the ectoderm itself
(Ahrens and Schlosser, 2005; Litsiou et al., 2005; Bailey and Streit,
2006). Subsequent interactions cause the border region between
these two territories to become a region of competence for two
different types of tissue; the region of the border within the neural
plate is, given the right set of signals, able to generate neural crest.
In contrast, border cells that are found in the non-neural ectoderm
are competent to generate sensory placodes, and this is called the
pre-PPR (Pieper et al., 2012).

Molecularly the PPR is defined by the expression of Six and
Eya family transcription factors (Schlosser, 2007; Sato et al., 2012;
Groves and LaBonne, 2014; Saint-Jeannet and Moody, 2014;
Yajima et al., 2014). These describe a strip of expression wrapped
around the neural plate, from roughly the first somite to the ros-
tral tip of the neural plate. Mutations in these genes do lead to
deficits in some placodal derivatives, but do not result in a com-
plete absence of the placodes (Oliver et al., 1995; Ozaki et al., 2002,
2004; Laclef et al., 2003; Zheng et al., 2003; Konishi et al., 2006;
Zou et al., 2006; Ikeda et al., 2007, 2010; Li et al., 2010; Suzuki
et al., 2010a,b; Yajima et al., 2010). This could be due to redun-
dancy amongst the Eya and Six family transcription factors, or it
could suggest that the exact nature of the PPR is a more compli-
cated than simply a region of competence for all placodes. The
importance of the PPR in otic induction was demonstrated in the
experiments of Martin and Groves (2006). In these experiments,
competence of ectoderm to express the otic induction marker Pax2
in response to FGF2 was tested. The finding that ventral ecto-
derm could only respond if transplanted to the PPR/neural border
region for 6 h strongly supports the idea that the PPR should be

considered a region of competence to respond to placode inducing
signals. Furthermore this competence is actively conferred.

Embryological experiments have suggested that the PPR is
induced from signals that come from surrounding tissues (Ahrens
and Schlosser, 2005; Litsiou et al., 2005; Bailey and Streit, 2006).
In chick, the ablation of the head mesoderm abolishes the expres-
sion of PPR markers (Litsiou et al., 2005). Conversely, head,
but not trunk mesoderm induces their expression in non-neural
ectoderm. Fgf4 and Fgf8 are both expressed in the mesoderm
that underlies the PPR, making them likely candidates to act as
PPR inducing signals (Ahrens and Schlosser, 2005; Litsiou et al.,
2005). Indeed, inhibition of FGF signaling can down-regulate
some markers of the PPR in chick (Litsiou et al., 2005) and in
embryos of the amphibian Xenopus (Ahrens and Schlosser, 2005).
Furthermore, FGF8 protein is able to induce some PPR markers
in competent non-neural ectoderm (Litsiou et al., 2005), how-
ever, it remains to be seen if this tissue is then competent to
respond to FGF2 to induce otic markers. The cranial mesoderm
also expresses inhibitors of Wnt and BMP (bone morphogenetic
protein) signaling, suggesting that the activity of these proteins is
inhibitory to PPR formation. Indeed, activation of Wnt or BMP
signaling does inhibit the expression of PPR markers, whereas the
inhibition of these signals can expand PPR marker gene expres-
sion. Thus it is likely that FGF signaling in combination with
Wnt and BMP inhibition is necessary for complete PPR induc-
tion (Litsiou et al., 2005). What is not clear is the hierarchical
organization of these signals; it is possible that some of these sig-
nals act upstream to promote the differentiation of non-neural
ectoderm and that other signals confer PPR fate secondarily. One
possible way of resolving this is to use in vitro cell systems, such
as ES cells, to monitor the exact tissue induced by each kind of
treatment over fine time points. If combined with a PPR specific
reporter line (Sato et al., 2010, 2012), this experiment would also
serve to greatly optimize the induction of inner ear tissues in ES
cells.

As we will describe in the next section, FGF signaling is reused
in the formation of the inner ear precursor domain. It is clear that
FGF signaling has different consequences over a very narrow time
window, and this raises the conundrum of how these responses
are coordinated and spirited in time. One possible mechanism is
by invoking the idea of feed-forward loops. Here, one can suggest
that the action of FGF signaling in PPR induction also induces

FIGURE 1 | Model of inner ear induction. Shown is a scheme summarizing
the induction of the inner ear, synthesizing data from zebrafish, chick, and
mouse. At early neurulation stages, mesodermal source of FGF signals
overlying pre-placodal ectoderm to adopt an otic-epibranchial placode (OEPD)

fate. Mesodermal FGF also signals neural ectoderm to express FGF and Wnt
signals. At later neurulation stages, soon after the neural tube has closed,
Wnt then acts on OEPD to specify the inner ear from within the OEPD.
(Modified from Ladher et al., 2010).
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a transcription factor that is able to alter the response to FGF
signaling. One example may be the Foxi3 transcription factor.
Foxi3 is necessary for the response of PPR ectoderm to FGF signals
to express Pax2 (Khatri et al., 2014). Interestingly, the expression of
Foxi3 is controlled by the same tissues that control the expression of
other PPR markers, suggesting not only a mechanism that ensures
the correct temporal response to FGF signaling but also adds a
molecular correlate to the idea that the PPR is a region of ectoderm
competent to respond to placode inducing cues.

INDUCTION OF THE OTIC-EPIBRANCHIAL PROGENITOR DOMAIN
The mechanisms underlying the formation of the inner ear
have been actively investigated for over 100 years. In this time
researchers have used a variety of model systems, namely amphib-
ians, fish, birds and mammals, and a variety of approaches, from
experimental embryology to genetic studies, to ask how otic induc-
tion is controlled (reviewed in Ladher et al., 2010; Groves and
Fekete, 2012). This work has provided a consensus view on how
the posterior part of the PPR is specified to the inner ear fate.

One of the earliest markers that are induced during otic induc-
tion is the transcription factor Pax2 or, depending on the species,
its close homolog Pax8 (Christophorou et al., 2010; Freter et al.,
2012). Pax2/8 expression commences at mid-neurula stages (when
the neural tube is closing) next to the caudal part of the future
hindbrain in all vertebrate species that have been investigated
(Plachov et al., 1990; Stoykova and Gruss, 1994; Lun and Brand,
1998; Pfeffer et al., 1998; Funahashi et al., 1999; Kozmik et al.,
1999; Bouchard et al., 2002; Krelova et al., 2002; Hans et al.,
2004; Mackereth et al., 2005). This location is at the junction
of the head and the trunk of the animal, and extends ante-
rior to the first somite. Lineage labeling of the Pax2 domain
revealed that expression encompasses progenitors of not only
the inner ear but also the EDPs (Bouchard et al., 2004; Ohyama
and Groves, 2004; Streit, 2004; McCarroll et al., 2012). Thus,
it is clear that the initial step of PPR restriction is the induc-
tion of a common progenitor domain for the otic and EDPs.
This domain has been termed the otic-epibranchial progeni-
tor domain (OEPD), the pre-otic field (POF), or the posterior
placodal area (PPA). In this review, we will use the OEPD
terminology.

Embryological experiments, defined the region of the embryo
that was able to induce the OEPD. In particular, embryos from
chick and the amphibian Xenopus showed that paraxial mesoderm
plays a key role (reviewed in Ladher et al., 2010; Groves and Fekete,
2012). Chick experiments were able to resolve this domain to the
mesoderm between the first somite and the level of the third rhom-
bomere (Groves and Bronner-Fraser, 2000; Ladher et al., 2000; Kil
et al., 2005). This underlies with the ectodermal domain of Pax2/8.
However, it is also clear that the mesoderm is not the only source
for signals. Pax2 can only be induced in non-neural ectodermal
tissue by mesoderm when some neural ectoderm is also included;
without this neural contribution, the OEPD is not induced (Lad-
her et al., 2000). Thus, it is likely that both mesodermal and neural
ectodermal signals contribute to the induction of the OEPD.

Several lines of evidence suggest that members of the fibrob-
last growth factor (FGF) family mediate the induction of the
OEPD (reviewed in Schimmang, 2007). In chick, knockdown

studies (using antisense oligonucleotide or neutralizing antibod-
ies) pointed to a role for FGF3 in OEPD induction (Represa
et al., 1991; Vendrell et al., 2000). Indeed the expression of Fgf3
in the mesoderm and hindbrain of the chick embryo is consis-
tent with it playing a major role in OEPD induction (Mahmood
et al., 1995; Freter et al., 2008). However, knockouts in the mouse
and further experiments in the chick seem to rule out an exclusive
role for FGF3. In mouse Fgf3 mutants the inner ear is induced
although later development is impaired (Mansour et al., 1993).
In the mouse, Fgf3 is not expressed in the mesoderm and this
has led to the idea that perhaps one or more FGF ligands are
also required to mediate OEPD induction. In the chick, Fgf19
is expressed in a similar pattern to Fgf3, appearing first in the
mesoderm and then in the hindbrain (Ladher et al., 2000). Knock-
down of just Fgf19 has no real effect, however, when both Fgf19
and Fgf3 are knocked-down, OEPD induction does not take
place (Freter et al., 2008). In the mouse, Fgf10 is expressed in
the mesoderm, apparently taking the placode of chick Fgf19,
and mutants of both Fgf3 and Fgf10 fail to induce the OEPD
(Wright and Mansour, 2003).

Control of mesodermal Fgf10 (in the mouse) or Fgf19 (in the
chick) seems to be, itself, under the control of signaling from the
underlying endoderm, in this case by yet another member of the
FGF family, Fgf8. The OEPD fails to be induced in mutants for Fgf3
and Fgf8. The situation is slightly different in the chick, where Fgf8
knockdown alone appears necessary for OEPD induction (Ladher
et al., 2005).

One open question is what does the OEPD represent? Are
OEPD cells equipotent, with individual cells able to give rise to
both otic and epibranchial progenitors? Is it a mixed popula-
tion of interspersed epibranchial and otic progenitors? Or are
otic and epibranchial progenitors confined to distinct domains
within the OEPD? Individual cell labeling and tracing will resolve
this question, however, some clues exist when expression patterns
are inspected. In particular the expression of Foxi1 is notewor-
thy. In chick Foxi1 is expressed around the OEPD at the time
of OEPD induction, however, it’s expression begins to encroach
into the OEPD such that it overlaps with the periphery of the
OEPD at around the time the inner ear begins to segregate. Foxi1
remains absent from the putative otic placode, but is expressed
in the EDP (Freter et al., 2008). One interpretation is that Foxi1
prevents commitment to the inner ear fate and that at early stages,
both epibranchial and otic precursors do not express Foxi1 and
have the potential to form either cell type.

INDUCTION OF THE INNER EAR
As stated above the development of the inner ear is progressive,
involving the gradual restriction of cell fate, from non-neural ecto-
derm, to PPR, to OEPD and then to inner ear fate. This has been
clearly demonstrated in the chick, using cultures of the putative
inner ear ectoderm isolated and cultured ex vivo: ectoderm taken
at mid-neurula stages (when the embryo has between 1 and 3
somites) can only express Pax2, an OEPD marker. In contrast ecto-
derm taken at late neurula stages (when the embryo has between
4 and 6 somites) can express Soho1, a transcription factor that is
associated with commitment to the otic fate. Furthermore, ecto-
derm taken at this stage can form hair cells (Freter et al., 2008).
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This suggests that signals from surrounding tissue are still required
to enable the transition from the OEPD to committed inner ear
precursors.

Wnt8a (which is known as Wnt8c in the chick) is expressed in
the caudal hindbrain is necessary for the partitioning of the otic
placode from the OEPD (Freter et al., 2008). The application of
FGF19 (the mesodermal signal in chick) and WNT8a to competent
ectoderm was sufficient to complete inner ear development in
non-neural ectoderm (Ladher et al., 2000). Inhibition of the Wnt
signal using the antagonist Dkk1 blocked the expression of the
inner ear marker Soho1 but did not inhibit the expression of Pax2
(Freter et al., 2008). This experiment provides further support of
the progressive nature of inner ear induction. In mice, an inner
ear specific mutation of β-catenin, a down-stream transducer of
the wnt pathway, results a block in the formation of the inner
ear. Wnt8a is induced in both chick and mouse as a result of FGF
signaling. In chick, FGF19 can induce Wnt8a and in mice mutant
for Fgf3 fail to express Wnt8a (Urness et al., 2010). While these
data suggest that Wnt8a in response to Fgf signaling is responsible
for partitioning the inner ear from the OEPD, mouse mutants
data presents a more confusing scenario. Mutant for Wnt8a do
affect the otic placode (Vendrell et al., 2013). It is possible that
other Wnts proteins expressed in the hindbrain, such as Wnt1,
Wnt3a, and/or Wnt6 are all able to compensate for the loss of
Wnt8. Thus although Wnt signaling, as determined by the over-
expression of the Wnt antagonist Dkk1 and the loss of the Wnt
signaling transducer β-catenin, does result in a failure of the inner
ear to partition from the OEPD, the significance of the most likely
ligand, Wnt8a, is less clear. It is likely that it acts to ensure the inner
ear forms in the correct axial position, however, other Wnt genes
can compensate for its absence.

MORPHOGENESIS
The inner ear is a closed structure located inside the head, embed-
ded within the mesenchyme of the head. However, as described
above, the placode is a superficial structure. From its position
on the surface of the embryo, the otic placode must undergo a
series of morphogenetic changes so that it ends up as an isolated
closed vesicle in the cephalic mesoderm (Meier, 1978a,b). In this
section, we describe the morphogenetic changes that take place as
the otic placode changes shape to become the inner ear precursor
(Figure 2). As the later morphogenetic events that shape the oto-
cyst to the final inner ear are not well known, these will not be
described.

EPITHELIAL THICKENING
The otic placode itself already has a morphology that sets it apart
from the rest of the ectoderm; it consists of a thickened colum-
nar pseudo-stratified epithelium as opposed to the squamous-like
epithelium surrounding it. In amphibians, chick and mouse,
where this has been investigated, this thickening occurs around
the time of otic induction, when the embryo has 4–6 somites. The
mechanisms controlling the thickening of the placodal epithelium
are not well known, although Pax2 has been proposed as a regula-
tor of placodal thickening (Christophorou et al., 2010). The actual
mechanics of placodal thickening are also unclear, however, studies
investigating the function of members of the small GTPase family

FIGURE 2 | Morphogenesis of the inner ear. Scanning electron
micrographs through the chick otic placode at different stages of
development, show the stages of morphogenesis. By 7ss, the otic placode
has segregated from the OEPD. At around 10ss of development, the
placode begins to invaginates such that at 13ss and 16ss the placode forms
a configuration known as the otic pit. Basal expansion predominates at this
stage. After 16ss and until closure, apical constriction is the main processs
driving invagination and the otic placode at these stages progressively
deepens form the otic cup. With closure, the final form of the otocyst is
apparent. (Modified from Sai and Ladher, 2008).

members, RhoA and Rac1 in the development of the lens placode
suggest that Rac1 is a major effector of thickening (Chauhan et al.,
2011) and is likely to be necessary for placodal thickening in the
otic placode. Placodal thickening is likely to be necessary for the
mode of proliferation in the inner ear. Cells within the otic pla-
code divide by interkinetic nuclear migration (INM); Sauer, 1936).
INM is thought to permit tighter packing of epithelial progenitors,
which allows a higher concentration of cells (Fish et al., 2008).
Furthermore, the packing density of pseudostratified epithelia is
necessary for division. During INM, nuclei actively migrate api-
cally to divide. Daughter nuclei are then passively pushed back to
the basal side by the action of surrounding nuclei and by virtue
of their packing density, and it is likely that if this packing density
were not maintained division would be aberrant (Kosodo et al.,
2011). It is also likely that thickened epithelia allow precise and
separable control of both apical and basal domains of the placodal
cells. As we discuss, this is particularly important in the control of
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invagination, in which signals act on the basal side and eventually
result in apical changes.

INVAGINATION
Soon after the partition of the otic placode from the OEPD, invagi-
nation begins to take place. By the time the embryo has between
8 and 10 somites, a slight depression in the epithelial plain is
apparent. This depression continues to deform, deepening before
pinching off and forming an enclosed vesicle within the cephalic
mesoderm (Figure 2). The mechanisms behind otic invagination
are only now starting to become clear. However, insights have been
obtained using quite a simple analysis. Here, measurements of the
apical and basal faces of the otic placode during its morphogenesis
suggest two types of cell shape change (Alvarez and Navascués,
1990; Sai et al., 2014). Between 10 and 16 somites (in the chick),
the apical face of the otic placode does not change, however, the
basal side expands, the placode at this stage is also known as the
otic pit. From 16 to 22 somites stages the apical length decreased
dramatically, and the otic placode is driven deeper into the mes-
enchyme. The placode at this point adopts a configuration that
has been termed the otic cup. Otic invagination itself can be con-
sidered as a biphasic process; phase one being basal expansion and
phase two being apical constriction.

One of the driving forces behind changes in cell shape are
alterations in the cytoskeleton, that is the network of actin fibers,
microtubules, and intermediate filaments that provide structure
and support to a cell (Lecuit and Lenne, 2007). Therefore, it
is no surprise that during basal expansion clear difference in
the distribution of actin are observed. At 10 somite stages (ss),
actin fibers (or F-actin) can be detected in apically and basally
in the otic placode cell. At 13ss, F-actin is depleted basally and
enriched apically (Sai and Ladher, 2008). This is also when basal
expansion occurs. Thus, the key to understanding basal expan-
sion is to understand how basal F-actin is cleared. Furthermore,
as basal expansion needs to occur in the whole of the otic pla-
code, the changes in cell behavior must be coordinated across the
tissue.

Clues about the mechanism came from experiments in which
the otic placode was isolated and placed into culture. Explants of
the otic placode, freed of underlying mesoderm and endoderm
as well as adjacent neural tissue, are able to clear actin from the
basal side and to round up and form otic vesicles if taken at 16
somites stage of development. However, otic explants taken at 10
somite stages of development neither clear actin from the basal
side of the otic placode nor show any signs of epithelial deforma-
tion (Sai and Ladher, 2008). This suggests that extrinsic signals are
required for invagination. One obvious candidate for the extrin-
sic signal that controls and coordinates invagination was the same
signal controlling its induction, FGF. Indeed when 10ss explants
were cultured with beads that locally delivered FGF the ability to
clear basal actin was restored. Further experiments involving phar-
macological inhibitors confirmed that the FGF pathway, through
the activation of phospholipase C (PLC) gamma activated the
motor protein myosin-II, by phosphorylating its regulatory sub-
unit, myosin light chain. Active myosin-II exerted a non-canonical
activity on the basal side that resulted in the depolymerization of
F-actin. Thus, during basal expansion, active myosin light chain

and F-actin are reciprocally localized; F-actin apically and phos-
phorylated myosin light chain basally. As we discuss later this is
in contrast to apical constriction where both F-actin and active
myosin-II co-localize to the apical face of the otic placode (Sai and
Ladher, 2008).

While this mechanism for basal expansion has only been
described during inner ear invagination, it is likely that it does
occur in other epithelial tissues undergoing deformation. Prior
to the elevation of the neural plate, the reciprocal localisation of
phosphorylated myosin light chain and F-actin is also observed,
suggestive of basal expansion (Sai and Ladher, 2008). Similarly,
a transient reciprocal localisation is observed in the mesodermal
progenitors about to invagination during Drosophila gastrulation
(Dawes-Hoang et al., 2005; Fox and Peifer, 2007). In all cases it
is likely that a signal acting on the basal side of the cell triggers
this activity, ensuring not only a coordination amongst all of the
cells within the tissue, but also direction to the deformation. With
respect to in vitro tissue engineering approaches, this does suggest
that signals need to be spatially confined and care must be given
to which side of the cell is stimulated by ectopic signals.

From 16 somites stage of chick development, the apices of the
otic placode cell begin to constriction, deepening the invagination
and driving the internalization of the otocyst. The mechanisms of
apical constriction are similar to those that have been determined
for other epithelial remodeling events such as wound healing, neu-
ral tube formation, or dorsal closure in Drosophila (Sawyer et al.,
2010; Martin and Goldstein, 2014). During otic morphogenesis,
this phase is characterized by the co-expression of active myosin II
and F-actin (Sai et al., 2014). Thus the key to understanding apical
constriction in the otic placode is to understand how myosin II is
activated apically.

Recent findings suggest that the mechanisms of apical con-
striction during otic invagination are analogous to those driving
neural tube closure (Nishimura et al., 2012). Apical constriction
is powered by the canonical activity of the myosin-II motor
generating contractile tension in actin filaments. This activity
is localized circumferentially in the apex of the cell, and is
coincident with the apical junctional complex (AJC). The AJC
includes both tight junctions and adherens junctions, which act
to maintain the integrity of the epithelia. These junctions act
as anchor points from actomyosin fibers, and it is from here
that force can be more effectively transmitted across cells. Thus
the activation of the myosin-II motor occurs here (Nishimura
et al., 2012; Sai et al., 2014). The RhoGTPase family has been
frequently implicated in the regulation of junctional actin by acti-
vating Myosin-II, and has been shown to be important in the
regulation of apical constriction in many other systems (Mar-
tin and Goldstein, 2014). RhoGTPases act as switches, cycling
between a GTP-bound “ON” state and a GDP-bound “OFF” state.
This switch is control by the action of effectors of RhoGTPases;
Rho Guanine exchange factor (RhoGEF) switches on Rho, and a
Rho Guanine Activating Protein (RhoGAP) switches it off (Hall,
2012) and thus it is likely that upstream control of Rho activ-
ity is exerted by specific GEFs and GAPs. For example, studies
in Drosophila gastrulation have shown that RhoGEF1 stimu-
lates Rho1, which in turn activates the Drosophila homolog of
the Rho-associated, coiled-coil protein kinase (ROCK). Drok is
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responsible for the activation of myosin-II (Mason et al., 2013).
Similarly, in vertebrate neurulation RhoA activation by the GEF
ArhGEF11 is necessary for neural tube closure through the acti-
vation of myosin light chain (Nishimura et al., 2012). In the
otic placode, RhoA is localized apically and is similar to neu-
ral tube closure, is also activated by ArhGEF11 (Sai et al., 2014).
Once active, RhoA is able to activate ROCK, which directly
phosphorylates myosin light chain, thus activating myosin-II.
This network, is likely to be conserved across a range of
epithelial morphogenetic systems, and ensures apically restricted
myosin-II.

One further consideration is the separation of basal expansion
and apical constriction. ArhGEF11 is expressed at around 13ss,
coincident with apical constriction. Furthermore it is localized
to the otic placode, and is not found in surrounding epithe-
lia, suggesting that its expression is likely to be regulated by
otic induction cues (Sai et al., 2014). Thus, it is probable that
signaling is not only responsible for phase 1 otic morphogene-
sis but also, indirectly, for phase 2. In phase 1 morphogenesis,
actin is cleared from the basal side of the otic placode, through
the direct action of FGF signaling, ensuring that the contractive
activity of myosin-II and RhoA activity cannot act ectopically
(Sai and Ladher, 2008). In phase 2, the induction and expres-
sion of ArhGEF11 activates RhoA and the thus myosin-II. The
combination of RhoA and Myosin-II activity permits the con-
tractive activity of this motor protein, and mediates apical
constriction.

Once internalized the otic vesicle must then be closed off,
with the two edges fusing, isolating the inner ear vesicle from
the rest of the ectoderm. The mechanism of fusion is still not
clear, but parallels can be drawn with wound healing and with
the closure event that occurs once the neural tube has formed a
tube (Colas and Schoenwolf, 2001; Martin and Parkhurst, 2004).
Preliminary data does suggest that the edges of the otic epithe-
lium send out protrusive processes, and these filopodia knit
the knit the epithelium together such that it is now contigu-
ous. Once closed, the isolated otocyst now is primed to undergo
further shape changes to form the final structure of the mem-
branous labyrinth. These morphogenetic mechanisms are only
now beginning to be understood and are described elsewhere
(Chang et al., 2004; Mansour and Schoenwolf, 2005; Abraira et al.,
2008; Ohta et al., 2010). These processes may employ similar
mechanisms or utilize extrinsic signals, also acting in a localized
and directional fashion, to complete the final maturation of the
inner ear.

CONCLUSION
Both induction and the early morphogenesis of the inner ear
require signaling factors deployed in both a spatially and tempo-
rally restricted pattern. Mimicking these signals in vitro to generate
in vitro inner ears may at first pass seem daunting. However, the
therapeutic value in these studies will come from understanding
the spatial and temporal effect of signaling and then to employ
them when needed. It should be noted that for the differentiation
of hair cells and of otic placode derived neurons, only the initial
signals need to be recapitulated (Freter et al., 2008). Once the otic
placode has been induced hair cell and neurons will differentiate

without the need for further tissue interactions and additional sig-
nals. These kinds of ideas have formed the basis of differentiation
protocols that steer ES cell fate to otic placodal fates, however, their
efficacy as potential therapies remains to be validated rigorously
(Li et al., 2003; Oshima et al., 2010; Chen et al., 2012; Koehler et al.,
2013). In some of these differentiation protocols, in vitro generated
otic progenitors have been used to repair lesions in the auditory
nerve (Chen et al., 2012). These studies although promising, high-
light the necessity to further improve and build on our knowledge
of inner ear induction and early morphogenesis so that these find-
ing can be used to deliver more efficient and effective therapeutic
in vitro generated inner ear tissues, that many next-generation
therapies will utilize.
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