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As Mycoplasma pneumoniae macrolide resistance grows and spreads worldwide, it is
becoming more important to develop new drugs to prevent infection or limit disease.
Because other mycoplasma species have acquired resistance to other classes of
antibiotics, it is reasonable to presume that M. pneumoniae can do the same, so
switching to commonly used antibiotics like fluoroquinolones will not result in forms
of therapy with long-term utility. Moreover, broad-spectrum antibiotics can have serious
consequences for the patient, as these drugs may have severe impacts on the natural
microbiota of the individual, compromising the health of the patient either short-term
or long-term. Therefore, developing narrow-spectrum antibiotics that effectively target
only M. pneumoniae and no more than a small portion of the microbiota is likely
to yield impactful, positive results that can be used perhaps indefinitely to combat
M. pneumoniae. Development of these agents requires a deep understanding of the
basic biology of M. pneumoniae, in many areas deeper than what is currently known. In
this review, we discuss potential targets for new, narrow-spectrum agents and both the
positive and negative aspects of selecting these targets, which include toxic molecules,
metabolic pathways, and attachment and motility. By gathering this information together,
we anticipate that it will be easier for researchers to evaluate topics of priority for study
of M. pneumoniae.
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INTRODUCTION

The use of antibiotics to treat bacterial infections is predicated on the antibiotics’ ability to inhibit
significant cellular processes of the bacteria, but not of the host, while avoiding inactivation by
the bacteria. For cell wall-lacking mycoplasmas like Mycoplasma pneumoniae, a wide range of
antibiotics, excluding those that target synthesis of peptidoglycan and certain metabolic pathways,
is potentially useful in fighting infection. In practice, treatment of patients is largely restricted to
macrolides, with tetracycline and fluoroquinolones used in some geographical regions or under
some conditions (Bébéar et al., 2011; Biondi et al., 2014). Indeed, macrolides like azithromycin
have historically been very effective againstM. pneumoniae.

However, like so many other bacterial pathogens, M. pneumoniae has recently experienced a
rapid increase in the incidence of resistance to the antibiotics commonly used to treat infections
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(Principi and Esposito, 2013). At present, there are few reports of
resistance ofM. pneumoniae to antibiotics other than macrolides,
and they are restricted to in vitro studies (Dégrange et al.,
2008), but the rise of resistance of related mycoplasma species
to fluoroquinolones and tetracycline (Gerchman et al., 2008;
Redelinghuys et al., 2014) strongly suggests that M. pneumoniae
is capable of developing resistance to other drugs if they
become standard, widespread means of treatment. Moreover,
for prevention of infection, no successful vaccine against
M. pneumoniae has been developed. Consequently, the time is
coming when alternative agents will have to be employed to
prevent M. pneumoniae infection and to treat patients who are
suffering from disease caused by this organism.

Switching to alternative, currently available antibiotics as a
normal course of treatment for M. pneumoniae infection could
be expected to provide some relief, but it is likely inevitable that
the organism will develop resistance. Broad-spectrum antibiotics
can bring undesirable side effects, often stemming from large-
scale disruption of the host microbiome, that can cause problems
whose difficulty exceeds those associated with the original
infection (Modi et al., 2014). Furthermore, the selective pressure
that broad-spectrum antibiotics apply to so many organisms
causes resistance to develop fast and spread rapidly among
different bacteria. Therefore, it is beneficial to use knowledge of
the biochemistry and physiology of M. pneumoniae to design
and develop narrow-spectrum therapeutic agents that target
M. pneumoniae as specifically as possible. Whereas some such
agents might be used to eradicate the organism, others might
target M. pneumoniae processes that, although not essential for
the life of the bacterium, exacerbate disease, and by so doing both
reduce the symptoms and give the patient’s immune system an
advantage in clearing the infection.

The depth of understanding of the biology of M. pneumoniae
has increased dramatically in recent years, thanks in large part
to genomics, systems biology, and cell biology studies of this
organism. It has become possible to consider, in a more informed
way than ever, which activities of M. pneumoniae might provide
the best targets for development of new, narrow-spectrum drugs.
In this review, we will discuss the biology of M. pneumoniae
in terms of which metabolic pathways, cellular components,
and activities are likely to be suitable for future work in this
area.

TARGETS

Considerable variation exists in the degrees to which potentially
important therapeutic targets are understood. Toxins and toxic
metabolites are in some ways the most welcoming for study
because they involve a small number of proteins and often
effectuate biochemical changes that are readily measurable. More
complex metabolic pathways are less well-studied and warrant a
greater effort. Cell-level processes like adherence, motility, and
division are fairly well-characterized but the molecular basis
for each of these activities is generally poorly established. In
addition to the question of how well any putative inhibitor
of a given activity would interfere with the life processes

of an M. pneumoniae cell, another important consideration
is how narrowly a drug would target M. pneumoniae. If
the target is something that is found, for example, only in
mycoplasmas, one would anticipate the ideal outcome of a
very narrow-spectrum drug that does not interfere with other
components of the host microbiota. Alternatively, if the target
is broadly present in bacteria, the narrowness of the drug’s
action would depend on whether it can exploit structural
differences in the M. pneumoniae version of the target. If
the structure of such a target is highly conserved, then it
may be difficult to develop a therapeutic agent that does not
cause disruption to the host by damaging the host microbiota.
However, a widely distributed target that exhibits considerable
difference in sequence may be more suitable. In Table 1, we
address these issues for each of the targets discussed in this
review.

Toxins and Toxic Metabolites
Host cell damage by M. pneumoniae is established to occur by
several routes. One, which is beyond the scope of this review,
is immunopathology, wherein the organism attracts the cells of
the host’s immune system, causing inflammation and host cell
damage. Another is the ADP-ribosylating community-acquired
respiratory distress syndrome (CARDS) toxin, which, though
only relatively recently identified, has come to be considered
a major source of cell and tissue damage responsible for a
substantial portion of the symptoms ofM. pneumoniae infection.
Damage to host cells from hydrogen peroxide and hydrogen
sulfide is also potentially significant.

CARDS Toxin
One very promising candidate and target for therapeutic design
for the treatment of M. pneumoniae infections is CARDS toxin,
encoded byMPN372. This 68-kDa protein was initially identified,
because of its ability to bind with high affinity to surfactant
protein A, a prominent component of pulmonary surfactant
(Kannan et al., 2005), but was subsequently characterized
as an ADP-ribosylating toxin (Kannan and Baseman, 2006).
Incubation of recombinantly produced CARDS toxin with tissue
culture cells results in a major increase in ADP-ribosylation of
host proteins (Kannan and Baseman, 2006). Upon entry into
host cells the toxin activates the NLRP3 inflammasome via
ADP-ribosylation, a mechanism likely responsible for the robust
inflammation and pathology associated with M. pneumoniae
infections (Bose et al., 2014). CARDS toxin induces extensive
vacuolation in tissue culture cells, tracheal organ cultures,
and model host animals in a dose-dependent manner and
causes cytopathic effects and inflammatory responses similar
to the histopathology and immunopathology seen during
M. pneumoniae infections both ex vivo and in vitro (Kannan
and Baseman, 2006; Hardy et al., 2009). CARDS toxin-induced
vacuoles are derived from late endosomes enriched in Rab9,
a host cell GTPase involved in membrane trafficking (Johnson
et al., 2011). The cellular damage that results from recombinant
CARDS toxin suggests that it is a major virulence factor and
likely plays a large role in the pathogenesis of M. pneumoniae.
Patients with confirmed M. pneumoniae infections experience
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high antibody titers to CARDS toxin, likely due to the localization
of a subset of the toxin to theM. pneumoniaemembrane (Kannan
and Baseman, 2006; Kannan et al., 2010; Johnson et al., 2011),
suggesting the potential utility of CARDS toxin not only as a
target for development of agents that inhibit its activity, but also
as a vaccine component.

Community-acquired respiratory distress syndrome toxin has
a modular structure, with different regions providing distinct
functionality. The X-ray crystal structure of CARDS toxin reveals
that the protein is composed of three domains folded in the

shape of a triangle (Becker et al., 2015). Domain 1 houses the
N-terminal ADP-ribosyltransferase activity; the sequence of the
N-terminal region of CARDS toxin shares 27% identity with
the pertussis toxin S1 subunit of Bordetella pertussis, which is
an ADP-ribosyltransferase (Kannan et al., 2005). Domains 2
and 3 form a C-terminal tandem β-trefoil (Becker et al., 2015).
The C-terminal domain, whose amino acid sequence does not
resemble those of other proteins, is solely responsible for binding
and internalization as well as vacuolating activity (Kannan et al.,
2014). Deletion of 41 amino acids from the C-terminus of CARDS

TABLE 1 | Evaluation of potential Mycoplasma pneumoniae targets.

Category Gene number Protein name Proposed function Is the role or function
established in M. pneumoniae?

Narrowness of
phylogenetic
distribution

Toxin MPN372 CARDS toxin ADP-ribosylating toxin Yes High

Toxic metabolites MPN051 G3P oxidase Hydrogen peroxide production Yes Medium–high

Toxic metabolites MPN487 Cysteine
desulfurase/desulfhydrase

Hydrogen sulfide production Moderately Medium–high

Transport MPN415-417 Thiamine transport No Medium

Transport MPN043 Glycerol facilitator Glycerol transport Yes Medium–high

Transport MPN133 Glycerol transport (accessory) Moderately High

Transport MPN284 Glycerol transport (accessory) Moderately High

Transport MPN421 Glycerophosphocholine
transporter

Glycerophosphocholine transport Yes High

Transport MPN076 Glycerophosphocholine transport
(accessory)

Moderately High

Transport MPN077 Glycerophosphocholine transport
(accessory)

Moderately High

Anabolism MPN336 Pantothenate
kinase/nicotinate-
nucleotide
adenylyltransferase

CoA synthesis No Low–medium

Anabolism MPN382 Dephospho-CoA kinase CoA synthesis No Low

Anabolism MPN298 Acyl carrier protein
synthase

Lipid synthesis Yes Low

Anabolism MPN406 Acyl carrier protein Lipid synthesis Yes Low

Anabolism MPN420 Glycerophosphocholine
phosphodiesterase

Lipid synthesis and hydrogen
peroxide production

Yes Medium–high

Anabolism MPN350 G3P acyltransferase Lipid synthesis No Low

Anabolism MPN299 1-acyl-G3P acyltransferase Lipid synthesis No Low

Anabolism MPN483 Glycosyltransferase Polysaccharide synthesis Moderately High

Anabolism MPN028 Glycosyltransferase Polysaccharide synthesis No High

Anabolism MPN075 Glycosyltransferase Polysaccharide synthesis No High

Anabolism MPN073 PRPP synthetase Nucleotide synthesis No Low

Anabolism MPN066 Nucleotide synthesis No Medium–high

Anabolism MPN256 CTP synthetase Nucleotide salvage No High

AO MPN141 P1 adhesin Adherence and motility Moderately High

AO MPN142 Protein B/protein C Adherence and motility Moderately High

AO MPN626 Alternative sigma factor Recombination of adherence and
motility genes

No High

AO MPN453 P30 adhesin Adherence and motility Moderately High

AO MPN446 HMW1 AO core Moderately High

AO MPN310 HMW2 AO core Moderately High

AO MPN309 P65 AO core No High

AO MPN311 P41 AO core No High

Cell division MPN317 FtsZ Cytokinesis Moderately Medium
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toxin completely abolished binding and internalization of the
protein, indicating the involvement of this region in host-cell
receptor binding (Kannan et al., 2014). Thus, the data suggest
that domain 3 specifically mediates CARDS toxin binding and
entry to host cells (Becker et al., 2015). In addition to binding
surfactant protein A, CARDS toxin also associates with the host
membrane protein annexin A2, colocalizing with annexin A2
prior to internalization and remaining associated with it after
internalization (Somarajan et al., 2014). The importance of this
interaction was demonstrated by diminution of binding and entry
of CARDS toxin into A549 cells after pretreatment of the cells
with anti-annexin A2 antibodies or annexin A2-specific siRNA
(Somarajan et al., 2014). Uptake occurs via a clathrin-mediated
endocytic pathway in multiple mammalian cell lines (Krishnan
et al., 2013; Somarajan et al., 2014). Thus, CARDS toxin, though
a single molecule, has multiple distinct functionalities that could
be targets for intervention.

Although CARDS toxin is not necessary for colonization or
infection its production and quantity show a clear and direct
relation to disease severity as indicated by the difference in
pathology of different clinical strains expressing varying levels
of this toxin (Techasaensiri et al., 2010). Therefore, inhibition of
production, cell entry, or activity of CARDS toxin could provide
a reprieve to infected patients to allow for immune clearance and
significantly less cellular damage.

Toxic Metabolites
Glycerol-3-phosphate (G3P) can be used either for synthesis
of lipids (see section “Metabolism of G3P”) or conversion
to dihydroxyacetone phosphate (DHAP), which enters the
glycolytic pathway. The conversion of G3P to DHAP is
significant because the enzyme that catalyzes that reaction, G3P
oxidase (GlpO, encoded by MPN051), simultaneously reduces
molecular oxygen to hydrogen peroxide (Hames et al., 2009;
Maenpuen et al., 2015), which is cytotoxic and suggested to
be important for virulence of M. pneumoniae. M. pneumoniae
GlpO also uses the glycolytic intermediate glyceraldehyde-3-
phosphate as a substrate with a low turnover rate (Maenpuen
et al., 2015), explaining the evolution of hydrogen peroxide by
M. pneumoniae in the absence of glycerol (Hames et al., 2009).
Study of recombinantly producedM. pneumoniae GlpO revealed
significant differences in the active site from the nominally
similar mitochondrial G3P dehydrogenase (Elkhal et al., 2015),
paving the way toward the use of GlpO as a therapeutic target.

Although hydrogen peroxide is cytotoxic and cell lysis in vitro
has been attributed to this molecule, hydrogen sulfide has also
been implicated in hemolysis by M. pneumoniae, raising the
possibility that it too is a virulence factor. Hydrogen sulfide is
produced from cysteine by HapE, a novel cysteine desulfurase
and cysteine desulfhydrase encoded by MPN487 (Grosshennig
et al., 2016). Because an enzyme with both these activities has
not been described in other organisms, HapE might be a good
target for development of narrow-spectrum agents. Although
it is not essential in vitro, it might nonetheless play important
roles in virulence. Further work should be done to establish the
importance of HapE and hydrogen sulfide in M. pneumoniae
pathogenesis.

Metabolism and Metabolites
Using metabolic pathway inhibitors againstM. pneumoniae relies
on identifying metabolic pathways that are both active and
important, if not essential, to the organism, and distinct enough
from host metabolic pathways to limit toxicity to the host.
However, approaches that work in other bacteria often fail with
regard to mycoplasmas. For example, M. pneumoniae does not
synthesize folate and is therefore insensitive to sulfonamides,
which target enzymes involved in its synthesis (McCormack,
1993). The reduced biosynthetic capabilities of M. pneumoniae
and other mycoplasmas (Himmelreich et al., 1996), coincident
with their evolutionarily reduced genomes, make identification of
suitable pathways challenging. In short,M. pneumoniae is already
an expert at acquiring, rather than synthesizing, metabolites,
making anabolic targets few.

Transport of essential compounds, including cofactors and
building blocks, could provide a reasonable set of targets for the
development of therapeutic agents that inhibit M. pneumoniae.
Many putative transporter genes have been identified, but they
are largely orphan transporters whose substrates are unknown.
For example, the M. genitalium homolog of MPN415 encodes
a thiamine-binding lipoprotein, and the remaining genes in its
operon, MPN416 and MPN417, encode an ABC transporter,
suggesting that this transporter serves to import thiamine (Sippel
et al., 2011). If so, then given that M. pneumoniae cannot
synthesize cofactors like thiamine, this transporter could be an
excellent target for interfering with M. pneumoniae growth, but
it must first be experimentally established that thiamine import
is the role of this transporter. Because of their hydrophobicity,
complexity, and often their essential nature, transporters like that
encoded by MPN416 and MPN417 are difficult to study, but
understanding the molecular basis for the transport of essential
molecules, including cofactors, amino acids, sugars, and nucleic
acid precursors, should be a high priority.

The metabolic pathways of M. pneumoniae that seem most
likely to yield productive narrow-spectrum agents are the
synthesis of phospholipids and glycolipids, with G3P at a
significant crossroads between membrane biochemistry and
hydrogen peroxide synthesis. The poorly understood role of
biofilms and extracellular polysaccharide is of considerable
potential in this regard as well. Nucleotide salvage pathways,
carotenoid synthesis, and catabolic pathways are also worth
consideration.

Coenzyme A (CoA) Synthesis and Lipid Catabolism
Coenzyme A synthesis is an interesting potential target for
inhibition because membrane biogenesis and modification,
important processes in which CoA participates, are fundamental
for the viability of cells in general. The value of targeting CoA
biosynthesis for antibacterial effects is illustrated by the study of
pantothenamides as inhibitors of pantothenate kinase (Strauss
and Begley, 2002), which catalyzes the rate-limiting step in CoA
synthesis in many bacteria, and the use of pyrazinamide, an
anti-tuberculosis agent, which might target CoA metabolism
(Zhang et al., 2014). Synthesis of CoA by M. pneumoniae
from externally provided pantetheine, which would have to be
imported through an unknown mechanism, could occur in three
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steps, beginning with pantothenate kinase (Yus et al., 2009);
however, pantothenate kinase activity has not been demonstrated
at the biochemical level in M. pneumoniae and no gene is
confidently annotated as such. Although MPN336, annotated as
a nicotinate-nucleotide adenylyltransferase, was proposed as a
potential pantetheine phosphate adenylyltransferase, catalyzing
synthesis of dephospho-CoA (Yus et al., 2009), global transposon
mutagenesis ofM. pneumoniae clearly revealed the dispensability
of this enzyme in vitro (Hutchison et al., 1999). On the other
hand, there is no evidence that MPN382, which is annotated
as dephospho-CoA kinase (CoaE), catalyzing the putative
final step in CoA synthesis (Yus et al., 2009), is dispensable
(Hutchison et al., 1999). Although this information highlights
the potential for development of a CoaE inhibitor, human tissue
also uses CoaE, making it important to screen any potential
M. pneumoniae CoaE inhibitor for low inhibitory activity of its
human counterpart. Furthermore, CoaE is used bymany bacteria,
so a therapeutic agent targeting this molecule might have a
broad spectrum of activity, which might not be desirable. In any
event, CoA metabolism in M. pneumoniae is an insufficiently
investigated area that might be of considerable practical value.

Mycoplasmas can acquire fatty acids from host cells,
and it is possible that they use them for synthesis of
phospholipids and glycolipids (Yus et al., 2009). M. pneumoniae
has homologs of two proteins that are likely involved in
the earliest and most generalized stages of this process, acyl
carrier protein synthase, AcpS, encoded by MPN298, and acyl
carrier protein, AcpP, encoded by MPN406. These enzymes
have both been biochemically characterized with regard to
activity and substrate specificity (McAllister et al., 2006). AcpP
becomes activated when AcpS catalyzes the transfer of a 4′-
phosphopantetheinyl group from CoA to a serine residue
on AcpP, and AcpP provides the phosphopantetheine as a
cofactor for delivery of acyl groups to a nascent phospholipid
or glycolipid. Both their coding genes are suggested to be
essential in vitro (Hutchison et al., 1999). Recombinantly
produced M. pneumoniae AcpS catalyzes the pantetheinylation
of recombinantly produced AcpP, but with a markedly low
affinity for CoA derivatives and, concomitantly, a slow rate of
catalysis as compared with AcpS from other bacteria (McAllister
et al., 2006). Indeed, it can also transfer a variety of CoA-
linked substrate molecules other than phosphopantetheine,
although the significance of this broad specificity and slow
turnover for M. pneumoniae physiology is unclear. These
enzymes might be interesting targets for development of novel
anti-M. pneumoniae agents, but selecting against inhibitors of
homologous human lipid synthesis proteins and, for that matter,
similar proteins in commensal bacteria, would be an important
consideration.

Metabolism of G3P
Although some phospholipids are acquired intact from the host
or the media, the glycerol backbones of other phospholipids and
glycolipids inM. pneumoniae are predicted to derive either from
glycerol or glycerophospholipids of the host cell membrane (Yus
et al., 2009). Exogenous G3P was suggested by gene annotation
to be another potential source of glycerol (Himmelreich et al.,

1996), in addition to free glycerol, for metabolism, but this
was experimentally ruled out (Schmidl et al., 2011). However,
both glycerol and glycerophospholipids are converted to G3P
in the M. pneumoniae cell (Hames et al., 2009; Grosshennig
et al., 2013). In addition, metabolism of G3P by another pathway
results in production of hydrogen peroxide (see section “Toxic
Metabolites”), a virulence factor ofM. pneumoniae (Hames et al.,
2009), so if the bacteria could survive therapeutic agents targeting
early stages of glycerol and glycerophospholipid metabolism, they
would nonetheless be impaired in their virulence, giving the host
a better chance of success against the pathogen.

It is unknown whether during an infection M. pneumoniae
relies on free glycerol, which is not abundant in the
normal environment of the organism, in contrast to
glycerophospholipids, which are; consequently, whether
metabolism of free glycerol is physiologically significant enough
to constitute a reasonable target for new drugs is unclear, making
this question a priority for study. M. pneumoniae can take up
free glycerol, as well as water, through the glycerol facilitator,
GlpF, encoded by MPN043, which is essential (Hutchison et al.,
1999). Growth on glycerol is negatively affected in mutants of
lipoproteins encoded by MPN133 and MPN284, suggesting
ancillary roles in glycerol transport for these molecules
(Grosshennig et al., 2013), but these proteins are non-essential
(Hutchison et al., 1999). Subsequent conversion of imported
glycerol to G3P is carried out in M. pneumoniae by glycerol
kinase, encoded by the essential gene MPN050, at the expense of
a mole of ATP per mole of glycerol, making it another potential
target (Hames et al., 2009), but one with a human homolog.
However, even among mycoplasmas, GlpF has low sequence
homology (Pritchard et al., 2014), suggesting that inhibitors
specific to mycoplasmas or specifically to M. pneumoniae could
be developed. Therefore, of the proteins involved in metabolism
of free glycerol, the transporter GlpF is likely the most suitable as
a novel target for interfering with glycerol uptake. Interestingly,
we are unaware of homologs of GlpF having been described as
targets for antibiotics.

Glycerol-3-phosphate can also be derived from breakdown
of host cell membrane lipids. Although no lipases have been
unambiguously identified inM. pneumoniae, lipase activity from
other bacteria or endogenous activity of the host could provide
glycerophosphocholine (GPC). GlpU, encoded by MPN421, is
essential for uptake of GPC, presumably acting as a transporter
(Grosshennig et al., 2013), and GlpQ, encoded by MPN420,
catalyzes removal of the choline from GPC, yielding G3P
(Schmidl et al., 2011). Mutants in either of these two genes
exhibit greatly reduced cytotoxicity ex vivo, and in vivo one might
anticipate that interference with the function of either of the two
proteins by some therapeutic agent would cause M. pneumoniae
to rely principally on free glycerol for phospholipid, glycolipid,
and the vast majority of hydrogen peroxide synthesis, causing
considerable impairment in both growth and virulence. The
MPN076 and MPN077 genes are also involved in use of GPC,
likely in terms of transport (Grosshennig et al., 2013), but their
roles are unclear. A homolog of GlpQ encoded by MPN566 does
not function in GPC hydrolysis, and its activity is unknown
(Schmidl et al., 2011).
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Membrane Lipids and Glycomoieties
The most reasonable suggested pathway for the synthesis of
any phospholipids and glycolipids that are not derived directly
from the host begins with G3P (Yus et al., 2009). If G3P
is to be used for membrane lipid synthesis, it must receive
two acyl groups via the activities of two successively acting
acyltransferases. It is proposed that the first is PlsY (MPN350)
and the second is PlsC (MPN299; Yus et al., 2009), but the
M. pneumoniae enzymes have never been characterized, which is
an important step toward establishing the physiological relevance
of this metabolic pathway and therefore whether these enzymes,
as well as any downstream of them, should be considered targets
for new antibiotics. Substrate mimics that inhibit Streptococcus
pneumoniae PlsY have been studied (Grimes et al., 2008), but
because these enzymes are so widely distributed, suggesting that
it may be difficult to develop narrow-spectrum agents. Uptake
of cholesterol is also essential for M. pneumoniae (Johnson and
Somerson, 1980), and is unlikely to be related to processes that
occur in commensal bacteria, making it an excellent target, but
there are no data describing the molecular mechanism by which
this is accomplished.

Glycomoieties for use in glycolipids, protein glycosylation, or
as extracellular polysaccharide are almost certainly the result of
poorly defined anabolic pathways inM. pneumoniae. Knowledge
of the diversity and function of M. pneumoniae polysaccharides,
both free and covalently linked to other biomolecules, is limited,
but the available information suggests important roles for
these moieties in several M. pneumoniae biological processes,
including glycolipid synthesis, modification of proteins, and
biofilm properties (Yus et al., 2009; Simmons et al., 2013).
Glycolipid biosynthesis by M. pneumoniae using exogenously
supplied palmitic acid, ceramide, glucose, UDP-glucose, and
phosphate has been demonstrated experimentally (Klement
et al., 2007). Undoubtedly essential for the synthesis of these
polysaccharides are three glycosyltransferases, encoded by
MPN028, MPN075, and MPN483, although the activities
of the first two are uncharacterized. Strains in which these
genes were definitively knocked out were not isolated in
a global transposon mutagenesis screen, suggesting that
they are essential for M. pneumoniae (Hutchison et al.,
1999). MPN483 encodes a promiscuous glycosyltransferase
that can catalyze the processive synthesis of a variety of
polysaccharides from several substrates for use as glycomoieties.
When produced recombinantly in E. coli it can use UDP-
galactose and UDP-glucose as substrates for addition to
diacylglycerol, ceramide, and mono-, di-, and trisaccharide
derivatives thereof (Klement et al., 2007). The specific
identities and significances of its physiological product are
unknown.

Significantly, M. pneumoniae biofilms grown in vitro contain
considerable amounts of a polymer of unknown structure
enriched in galactose and N-acetylglucosamine (Simmons et al.,
2013). Although the roles of biofilms in M. pneumoniae
infection have not been established yet, biofilms of other
organisms contribute to virulence, resistance to antibiotics, and
susceptibility to clearance by immune system processes, making

M. pneumoniae biofilms an extremely valuable target for study,
especially given the recent increase in antibiotic resistance by
M. pneumoniae and the chronicity of M. pneumoniae infection.
Extracellular polysaccharides, such as the one described for
M. pneumoniae, are often essential features for the formation
and integrity of these multicellular structures, and destruction
or disruption of their synthesis could be significant means
by which M. pneumoniae is rendered less virulent or at least
more susceptible to other drugs. The polysaccharide that was
identified inM. pneumoniae is particularly interesting because in
a strain that makes a biofilm of reduced density, this molecule
is detached from the cells that produce it, whereas a strain that
makes a heavier biofilm has this polysaccharide attached to the
bacteria, implicating this molecule in important aspects of biofilm
integrity (Simmons et al., 2013). Beyond its composition, neither
the structure of this polysaccharide nor the enzymes responsible
for its synthesis and attachment to the M. pneumoniae cell are
known. It is unlikely that the glycosyltransferase encoded by
MPN483 is involved, given the presence of N-acetylglucosamine
in it, leaving MPN028 and MPN075 as the most likely candidates
for synthesis of the extracellular polysaccharide (Klement et al.,
2007). Further work on the characterization and biochemical
origin of this molecule is highly warranted.

The Question of Carotenoids
Synthesis of carotenoids might be another membrane-associated
target, but an insufficient amount of work has been done
to establish how important these molecules are and even
whether M. pneumoniae synthesizes them or acquires them by
other means. Carotenoids are membrane-associated pigment
molecules with a variety of physiological roles. It is unclear
exactly how they might contribute to fitness of M. pneumoniae,
but a role in protection from photodamage is conceivable.
Molecules with Raman spectra consistent with carotenoids
were described in multiple M. pneumoniae isolates, and a set
of genes encoding enzymes involved in their synthesis from
the glycolytic intermediates pyruvate and glyceraldehyde-3-
phosphate was proposed (Maquelin et al., 2009). However, the
specific chemical identities of the final carotenoid products were
not described. Maquelin et al. (2009) used analogy with E. coli
and other organisms that synthesize carotenoids to propose a
seven-enzyme pathway for M. pneumoniae carotenoid synthesis
pathway, but only identified six genes they considered to
encode likely participants in this pathway in the M. pneumoniae
genome. The validity of this pathway has not been addressed
experimentally, and some of these genes have annotations that
are more consistent with other functions than the ones proposed
(Maquelin et al., 2009). If, however, the biological relevance of
this pathway could be confirmed and the importance of these
molecules for M. pneumoniae in vivo could be established, the
carotenoid biosynthesis pathway could be a reasonable target for
development of drugs. Humans do not synthesize carotenoids,
instead acquiring them principally from diet, making at least
some enzymes of this pathway stand out as potential targets. For
the present time, the biology of carotenoids and their synthesis
and/or acquisition by M. pneumoniae constitute an interesting
topic for further study.
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Nucleoside/Nucleotide Metabolism
Mycoplasma pneumoniae cannot synthesize purines or
pyrimidines (Pollack, 2002), which are required for nucleic
acid synthesis as well as for anabolic processes involving
UDP-and CDP-conjugated carbohydrates. Presumably, like
related mycoplasma species, it acquires these molecules from the
environment through the use of nucleases and transporters (Li
et al., 2010; Masukagami et al., 2013). However, there is potential
for interconversion of some of these molecules via nucleotide
or nucleoside salvage pathways to ensure that needs are met
(Pollack, 2002). It is not clear whether metabolism of these
molecules is a suitable target for development of drugs specific
to M. pneumoniae, because of both a lack of information about
in vivo flux through various redundant routes and the broad
distribution of most of the components of the salvage pathways.
Nucleoside analogs that inhibit either bacterial RNA or DNA
synthesis or some of the enzymes associated with metabolism
of these compounds are widely discussed potential therapeutic
agents in the process of development (Niu and Tan, 2015), and
their use against mycoplasmas has been proposed as well (Wang
et al., 2010, 2014). What remains to be seen is whether effective,
narrow-spectrum agents in this category can be developed.

5-phophoribosyl-1-pyrophosphate (PRPP) is a potential
source of some nucleotides, providing the sugar for addition to
the free bases adenine, guanine, and uracil (Yus et al., 2009).
PRPP is a product of the pentose phosphate pathway, which is
abbreviated in M. pneumoniae, but all the activities that lead
to its synthesis from five- and six-carbon sugars are accounted
for, although it is unclear what enzyme contributes aldolase
activity. Ribulose-5-phosphate (R5P) is the precursor of PRPP,
its conversion to PRPP catalyzed by PRPP synthetase, encoded
by MPN073 (Yus et al., 2009). R5P itself can derive either
from the pentose phosphate pathway or, likely, from ribose-1-
phosphate (R1P) yielded by the breakdown of environmental
or cytoplasmic RNA. It is likely that MPN066 encodes the
enzyme that interconverts R1P and R5P (Yus et al., 2009),
but the identity of this protein, which is also annotated
as a phosphomannomutase or phosphoglucomutase, has not
been experimentally demonstrated. If PRPP can be derived
through alternative routes, then a drug targeting either of the
pathways might not be useful. Although it is clear that free
nucleosides can support the nucleic acid needs for growth of
M. pneumoniae (Yus et al., 2009), the relative flux through
the PRPP pathway as compared with acquisition of nucleosides
from nucleic acids has not been established, so even if this
pathway could be inhibited, it is unclear what the impact on
M. pneumoniae would be. The question of how these nucleosides
are generated in vivo is therefore open, and the uncertainty
concerning the activity of MPN066 is an area worth exploring
experimentally in connection with this question. Conversion of
adenine, guanine, and uracil to their various phosphorylated
forms for incorporation into RNA and their interconversion,
including into deoxynucleotides for incorporation into DNA,
is catalyzed by a series of enzymes that are widely distributed
throughout nature and might therefore not be ideal candidates
for targets of drugs for narrow-spectrum activity against
M. pneumoniae.

Pyrimidine metabolism is more likely to provide a good
narrow-spectrum target. M. pneumoniae appears to lack a CTP
synthase enzyme, which would convert UTP to CTP, connecting
the PRPP pathway to metabolism of cytosine and thymine
nucleotides. MPN256 has been proposed to encode CTP synthase
(Yus et al., 2009) and others have proposed the possibility of
such an activity (Pachkov et al., 2007), but the evidence is based
entirely on bioinformatics approaches and not on biochemical
ones. If there is indeed no such activity in M. pneumoniae,
then the organism must use sources other than PRPP for the
generation of cytosine and thymine nucleotides. CDP can be
converted to deoxycytidine and thymine nucleotides (Yus et al.,
2009), but the ultimate source of CDP must be DNA and RNA
or free nucleosides, and not PRPP. Indeed, among pyrimidines,
cytosine is sufficient to support growth of M. pneumoniae in
minimal media (Yus et al., 2009). Drugs based on pyrimidine
nucleoside analogs have been suggested as good targets for
interfering with growth of M. pneumoniae (Wang et al., 2010,
2014), but whether these can be sufficiently specific to avoid
killing off commensal microbiota is unknown. Identification and
inhibition of the transporters involved in uptake of pyrimidines
might also provide useful targets.

Catabolic Targets
Mycoplasma pneumoniae has genes for generation of ATP
through both the arginine dihydrolase pathway and catabolism
of sugars. It cannot actually metabolize arginine because of
disruption to some of the genes of this pathway in all known
strains (Rechnitzer et al., 2013; Xiao et al., 2015). Therefore,
arginine catabolism is not a pathway that can be successfully
targeted inM. pneumoniae.M. pneumoniae can utilize a number
of sugars as carbon sources for growth in vitro, including
glucose, mannose, fructose, ribose, ascorbate, glycerol, and
possibly mannitol, although there is conflicting information
about mannitol (Halbedel et al., 2004; Yus et al., 2009). The
relative amount of growth from metabolizing each of these
has been established under a defined set of conditions, with
glucose and mannose outperforming the others by a considerable
margin (Yus et al., 2009). Although it is not clear what the most
relevant catabolic pathways in vivo are, they would depend upon
a combination of substrate availability, affinity of each substrate
for its transporter, and the rates of the rate-limiting steps in
metabolism of each substrate. Nonetheless, the evolutionary
conservation of these metabolic options suggests that they are
all useful, and one might anticipate that they come into play at
different stages of infection. For example, utilization of ribose by
M. pneumoniae is likely to increase later in infection after host
cell lysis has occurred, making nucleic acids available.

Because of the multiplicity of routes by which carbon sources
can be utilized, as well as the common nature of these pathways
among bacteria, including commensal ones whose elimination is
undesirable, it is likely impractical to consider interfering with
the uptake or early stages of metabolism of these compounds. All
these metabolic pathways converge on G3P, the entry point into
the energy-yielding phase of glycolysis, which is highly conserved
and present in the host, and therefore a poor candidate for
targeting of drugs.
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Attachment Organelle
Mycoplasma pneumoniae exhibits the properties of cytadherence
and gliding motility, and both are required for virulence (Balish,
2014), indicating that drugs designed to interfere with these
processes could be of considerable utility in fighting or preventing
M. pneumoniae disease. A diverse array of molecules across
the surface of M. pneumoniae cells is involved in host cell
adherence but the initial contact and attachment are mediated by
a polar structure known as the terminal or attachment organelle
(AO), where proteins necessary for M. pneumoniae adherence
and gliding motility are concentrated (Figure 1). Although
the identities of at least some of the proteins associated with
adherence have been established, the process of gliding motility
is less well characterized at the molecular level. The AO contains
transmembrane proteins involved in attachment, motility, and
perhaps other unknown functions, as well as an interior set of
cytoskeletal core proteins (Balish, 2014). Analyses of the proteins
of the AO have provided some insight into the spatial and
temporal organization of this structure as well as functional
characterization of a few of these proteins. Proteins involved
in AO synthesis and function are highly specific to a subset of
mycoplasma species (Balish, 2014) and therefore provide very
narrow targets.

FIGURE 1 | Scanning electron image of Mycoplasma pneumoniae
cells. Cells were prepared according to Hatchel et al. (2006). Black arrows
indicate AOs; white arrows indicate dividing cells. Scale bar, 1 μm.

Substrate Molecules
The substrates for adherence and gliding motility include sialic
acid-containing molecules as well as sulfated glycolipids (Loomes
et al., 1984; Krivan et al., 1989; Kasai et al., 2013), suggesting that
these molecules could be models for inhibitors of AO function.
Although adhesins have been identified, specific interactions
between these adhesins and these substrates have never been
characterized. This gap in knowledge is due in large part
to the absence of protein biochemistry performed on these
proteins, illustrating the urgency of performing these studies.
The molecular-level means by which the identified adhesins
interact with host target molecules will provide targets with
great therapeutic potential, but obtaining biochemically active
adherence molecules is required for the necessary knowledge.
Likewise, how adherence relates to motility at the molecular level
is also understood only at a phenomenological level, without
deep understanding of the physiological mechanisms. Because
adherence and motility are essential for infection, this area of
research must be a high priority.

Adhesins
One of the most significant proteins of the M. pneumoniae AO
is the adhesin P1, encoded by MPN141. P1 is distributed across
the cell surface but is concentrated at the AO (Baseman et al.,
1982). The importance of P1 in host cell attachment is supported
by the inhibition of cytadherence when P1 is absent in mutants
or blocked by specific antibodies (Krause et al., 1982; Krause and
Baseman, 1983). Although P1 is distributed across the cell, the
clustering at the AO is necessary for attachment as indicated by
mutants that express P1 at wild-type levels but fail to localize the
protein to the AO (Baseman et al., 1982; Hahn et al., 1998; Balish
et al., 2003).

Protein B (also called P90), a product of the MPN142 gene,
colocalizes and copurifies with P1 (Seto and Miyata, 2003;
Nakane et al., 2011). Furthermore, MPN142 is cotranscribed with
the P1-encoding gene and also required for cytadherence (Krause
et al., 1982; Waldo and Krause, 2006). Cleavage of the MPN142
product, which occurs via a process that is unknown, yields
proteins B and C (also known as P40); protein C also colocalizes
with P1 and is required for cytadherence (Krause et al., 1982;
Franzoso et al., 1993;Waldo and Krause, 2006). Although protein
C was not copurified with P1 (Nakane et al., 2011), proteins
B, C, and P1 can be chemically cross-linked, suggesting that
these proteins function together in a complex (Layh-Schmitt and
Herrmann, 1994). Therefore it is likely that proteins B and C are
involved in contributing to the adhesive property of P1 or that
these proteins together function as a single adhesive unit. Both P1
and protein B are immunodominant, suggesting that either one,
or perhaps both considered together as a polypeptide adhesin,
could be a potential candidate for therapeutic development
(Aubert et al., 1992). Additionally, studying the process by which
the precursor of proteins B and C is proteolytically cleaved might
yield another target.

Of potential significance is the fact that the MPN141 and
MPN142 genes are subject to substantial sequence variation
across M. pneumoniae isolates (Su et al., 1990; Kenri et al.,
1999; Spuesens et al., 2011; Xiao et al., 2015). This variation
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appears to occur as a result of recombination of related
variant sequences, located throughout the chromosome, into the
expression site (Kenri et al., 1999; Spuesens et al., 2009, 2011).
Analogy with a presumably parallel and better characterized
system in M. genitalium suggests that this diversity represents
an antigenic variation scheme (Peterson et al., 1995; Iverson-
Cabral et al., 2007; Ma et al., 2007). InM. genitalium, homologous
recombination is stimulated by the ortholog of M. pneumoniae
MPN626 acting as a novel sigma factor (Burgos and Totten,
2014; Torres-Puig et al., 2015), suggesting that this protein could
also constitute a target for a therapeutic agent that would assist
the immune system in clearing infection by blocking antigenic
variation from occurring. Characterization of this recombination
system in M. pneumoniae should therefore be a priority. At
the same time, in light of this variation, any drugs that impact
the functions of proteins P1, B, or C might select for strains
expressing divergent sequences, indicating that any such agents
should be tested against a wide variety of strains prior to
deployment.

The transmembrane protein P30, encoded by MPN453, is
another M. pneumoniae adherence protein that is also a good
candidate for therapeutic development. Like P1, monoclonal
antibodies against P30 inhibit cytadherence (Morrison-Plummer
et al., 1986). However, unlike P1, P30 localizes exclusively at the
AO (Baseman et al., 1987; Seto et al., 2001). In a mutant that lacks
P30 due to a frameshift in MPN453, cells are non-motile, unable
to cytadhere, and avirulent (Krause et al., 1982; Romero-Arroyo
et al., 1999). Furthermore, a revertant strain, II-3R, in which a
second frameshift mutation restores all but 17 amino acids, shows
a near-wild-type level of hemadsorption but is almost completely
non-motile (Hasselbring et al., 2005), illustrating that P30 has a
specific role in gliding motility that is distinct from its role in
cytadherence.

The primary structure of P30 is divisible into multiple regions.
Its N-terminus, after removal of a long, atypical signal sequence,
appears to be in the cytoplasm, and the C-terminus is accessible
to carboxypeptidases and therefore located on the cell surface
(Dallo et al., 1996; Chang et al., 2011). Mutants with progressive
truncation of the P30 C-terminus exhibit decreasing levels of P30
in these mutants as well as drastically decreased gliding motility
and cytadherence (Chang et al., 2011). The surface-exposed
portion of P30 has an unusually high proline content, with that
amino acid constituting 51 of the 125 amino acid residues in this
region, and the majority of these prolines are organized into at
least 13 sets of 6-amino-acid varying repeats (Dallo et al., 1990).
The resulting decrease in the steady-state levels of P30 that lack
a number of these repeats suggests that these prolines play a
role in stabilizing P30, perhaps by enabling certain interactions
or through structural integrity. Truncations in the cytoplasmic
N-terminus of P30 remained stable but were unable to restore
hemadsorption or gliding motility, suggesting that this region is
necessary for proper function while also providing evidence that
the C-terminal region has a role in P30 stability not shared with
other regions of the protein (Chang et al., 2011). These results
indicate the importance of both the internal and external portions
of this protein for attachment and gliding motility, which may
serve as an important feature in the design of therapeutic agents

targeting this protein. Although an effort to create a P30 mutant
strain of M. pneumoniae as a vaccine strain in an animal model
was unsuccessful and in fact resulted in disease exacerbation
when mice were infected with a virulent strain ofM. pneumoniae
(Szczepanek et al., 2012), the potential for using P30 in a subunit
vaccine or of development of an agent capable of interfering with
P30 function remains an option.

Internal AO Components
The specific mechanisms by which P1 and P30 are concentrated
at the AO is unknown but it appears to depend heavily upon the
cytoskeletal core of the AO. The core is composed of a set of
cytoskeletal proteins necessary for development, structure, and
proper localization of M. pneumoniae adhesins. These proteins,
including HMW1, HMW2, HMW3, P28, P41, P200, P65, and
TopJ, form a complex ordered network of interdependent
interactions (Balish, 2014; Nakane et al., 2015). These proteins
are necessary for proper development and function of the AO
and are organized spatially (Nakane et al., 2015) and assemble in
a temporal sequence (Krause and Balish, 2004). Two structural
proteins that are required early in the AO assembly process,
HMW1 (MPN446) and HMW2 (MPN310), have a special role
in localization of P1 to the AO (Balish et al., 2003). When AO
protein P65 (MPN309) is disrupted, structures containing P30
detach from M. pneumoniae cells, illustrating the importance
of P65 for P30 localization and function (Hasselbring et al.,
2012). Interestingly, loss of protein P41 (MPN311) causes the
entire AO to be susceptible to release from cells during motility
(Hasselbring and Krause, 2007), demonstrating the breadth of
significant structural roles that AO core proteins have. Therefore,
any and all AO core proteins are also potential therapeutic targets.
Although the density, compactness, and cytoskeletal nature of
the core make them potentially difficult for small molecules to
reach, further knowledge about how these proteins assemble and
interact may ultimately make it possible to design agents that
target them before they become incorporated into nascent AO
cores, thereby inhibiting formation of the AO.

Cell Division
Bacterial cell division is best understood in the context of cell
wall biosynthesis; the absence of peptidoglycan inM. pneumoniae
has rendered this process somewhat enigmatic. Inmodel bacteria,
the protein FtsZ forms cytoskeletal polymers at the division site,
and these polymers, as components of a division machine, the
divisome, coordinate rounds of iterative membrane invagination
with local cell wall construction (Lutkenhaus et al., 2012). The
M. pneumoniae genome includes a gene, MPN317, encoding a
highly divergent FtsZ, whose expression levels are extremely low,
at less than one mRNA per cell (Benders et al., 2005). Because
cell wall synthesis is linked to FtsZ function in other bacteria,
it is unclear specifically how FtsZ could contribute to efficient
cell division in mycoplasmas, given the absence of peptidoglycan.
Indeed, a knockout of this gene’s ortholog in M. genitalium did
not inhibit cell division but appeared to cause the cells to rely
entirely on gliding motility to achieve cytokinesis (Lluch-Senar
et al., 2010). Thus, the relationship of FtsZ to cell division in
M. pneumoniae is unclear.
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FtsZ has become a popular target for the development of new
antibacterial agents (den Blaauwen et al., 2014). The sequence
divergence of M. pneumoniae FtsZ, reflected in its inability
to complement an E. coli ftsZ mutant (Osawa and Erickson,
2006), potentially makes this protein suitable as a target in terms
of narrowness, since inhibitors might be specific to divergent
features of the protein. However, the low expression levels of
MPN317, uncertain relationship of the protein to the actual cell
division process, and absence of knowledge about its role in
virulence of M. pneumoniae raise questions about its suitability
that are potentially resolvable with further study.

CONCLUSION

Despite a reduced genome and a small number of biosynthetic
pathways, M. pneumoniae provides ample potential targets for
development of narrow-spectrum agents to combat disease
caused by this unusual bacterium. Some, like CARDS toxin

and adhesins, are reasonably well-studied and could provide
excellent substrates for inhibition by new drugs. For others, the
physiological and biochemical details are lacking, but the gaps in
knowledge provide numerous opportunities for research whose
ultimate goal is to develop targets for fighting disease.
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