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The human neostriatum consists of two functional subdivisions referred to as the
striosome (patch) and matrix compartments. The striosome-matrix dopamine systems
play a central role in cortico-thalamo-basal ganglia circuits, and their involvement
is thought to underlie the genesis of multiple movement and behavioral disorders,
and of drug addiction. Human neuropathology also has shown that striosomes
and matrix have differential vulnerability patterns in several striatal neurodegenerative
diseases. Postsynaptic density protein 95 (PSD-95), also known as disks large
homolog 4, is a major scaffolding protein in the postsynaptic densities of dendritic
spines. PSD-95 is now known to negatively regulate not only N-methyl-D-aspartate
glutamate signaling, but also dopamine D1 signals at sites of postsynaptic transmission.
Accordingly, a neuroprotective role for PSD-95 against dopamine D1 receptor (D1R)-
mediated neurotoxicity in striatal neurodegeneration also has been suggested. Here,
we used a highly sensitive immunohistochemistry technique to show that in the
human neostriatum, PSD-95 is differentially concentrated in the striosome and matrix
compartments, with a higher density of PSD-95 labeling in the matrix compartment
than in the striosomes. This compartment-specific distribution of PSD-95 was strikingly
complementary to that of D1R. In addition to the possible involvement of PSD-95-
mediated synaptic function in compartment-specific dopamine signals, we suggest
that the striosomes might be more susceptible to D1R-mediated neurotoxicity than the
matrix compartment. This notion may provide new insight into the compartment-specific
vulnerability of MSNs in striatal neurodegeneration.

Keywords: PSD-95, dopamine D1 receptor, neostriatum, neurodegeneration, striosome, matrix

INTRODUCTION

The human striatum consists of the neostriatum (i.e., the caudate nucleus and putamen) and
the nucleus accumbens. The neostriatum is divided into two functional subdivisions referred to
as the striosome (patch) and matrix compartments, which are developmentally, anatomically,
and biochemically distinct (Graybiel, 1990; Gerfen, 1992). Medium spiny neurons (MSNs) are
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the major constituent of both the striosome and matrix
compartments, and their dendrites and local axon collaterals
are largely confined within the same compartment (Walker
et al., 1993; Yung et al., 1996; Hanley and Bolam, 1997;
Fujiyama et al., 2011). Since the matrix compartment makes
up approximately 80% of the volume of the striatum, matrix
MSNs forms a major striatal efferent system that projects the
direct and indirect pathways (Crittenden and Graybiel, 2011).
In addition to their enrichment in the dopamine D1 receptors
(D1Rs), striosomal MSNs are unique among striatal cells in
sending their GABAergic projections directly or indirectly to the
substantia nigra pars compacta (SNc), which contains dopamine-
producing cells that project back to both the striosome and
matrix compartments (Gerfen, 1984; Jimenez-Castellanos and
Graybiel, 1989; Tokuno et al., 2002; Fujiyama et al., 2011;
Watabe-Uchida et al., 2012). Accordingly, striosomal MSNs
could be in a position to exert global control over dopamine
signals in the neostriatum by inhibiting the activity of dopamine-
producing cells in the SNc. The striosome-matrix dopamine
systems play a central role in cortico-thalamo-basal ganglia
circuits (Graybiel, 2008; Amemori et al., 2011), and their
involvement is thought to underlie the genesis of multiple
movement and behavioral disorders, and of drug addiction
(for review see, Graybiel, 2008; Goto et al., 2010; Crittenden
and Graybiel, 2011). Moreover, human neuropathology has
shown that striosomes and matrix have differential vulnerability
patterns in several striatal neurodegenerative diseases, such as
Huntington’s disease (HD; OMIM 143100) (Crittenden and
Graybiel, 2011).

Postsynaptic density protein 95 (PSD-95), also known as disks
large homolog 4 (DLG4), is the best characterized of the synaptic
PDZ proteins (Kim and Sheng, 2004; van Zundert et al., 2004).
PSD-95 is identified as a member of the membrane-associated
family of guanylate kinases and as a major scaffolding protein in
the PSD of dendritic synapses (Kim and Sheng, 2004; van Zundert
et al., 2004). PSD-95 interacts not only with the N-methyl-D-
aspartate (NMDA) glutamate receptors but also the D1Rs at sites
of synaptic transmission (Fiorentini et al., 2003; Zhang et al.,
2007; Sun et al., 2009; Ha et al., 2012). Evidence also has suggested
that in striatal neurons, PSD-95 could act as a negative regulator
for the synaptic activity mediated by D1Rs and NMDARs (Zhang
et al., 2007, 2009; Yao et al., 2008). Maladaptive functioning of
PSD-95 has been associated with a variety of pathological brain
conditions (Migaud et al., 1998; Sattler et al., 1999; Gardoni
et al., 2002; Yao et al., 2004; Porras et al., 2012; Parsons et al.,
2014).

In this study, we used a highly sensitive immunohisto
chemistry technique (Goto et al., 2015) to identify PSD-
95 and D1R in formalin-fixed paraffin-embedded tissue
from autopsied human brains. Our results from the human
neostriatum showed that the striosomes are enriched with
D1R but show a paucity of PSD-95 compared with the
matrix. Given the possible involvement of PSD-95-mediated
synaptic function in compartment-specific dopamine signals,
we suggest that the complementary distribution of PSD-
95 and D1R in the striosome and matrix compartments
might underlie the compartment-specific vulnerability

of MSNs in striatal neurodegenerative disorders such as
HD.

MATERIALS AND METHODS

Western Blot Analysis
Male C57BL/6 mice (Nihon SLC Co., Shizuoka, Japan),
8–10 weeks of age, were used. All procedures involving
experimental mice were approved by the Ethical Review
Committee of the University of Tokushima. The mice were
sacrificed by cervical dislocation and transcardially perfused
with ice cold PBS. The heads of the mice were immediately
immersed in liquid nitrogen for 5 s. The dissected striatal
tissue samples were homogenized in a homogenizing buffer
containing 50 mM Tris-HCl, pH 7.5, 0.5 M NaCl, 1% CHAPSO,
1 mM MgCl2, 1 mM dithiothreitol, and a protease-inhibitor
cocktail (Pierce Biotechnology, Inc., Rockford, IL, USA). After
removal of insoluble materials by centrifugation at 12,000 rpm
for 10 min, the homogenates were solubilized in Laemmli
sample buffer. Ten micrograms of protein from each sample
were separated on 10% SDS-PAGE gels. Separated proteins
were electrophoretically transferred to polyvinylidene difluoride
(PVDF) membranes (ATTO, Tokyo, Japan) at 70 V for 1.5 h
using a wet blotting system. The PVDF membranes were
incubated for 1 h at room temperature with Tris-buffered
saline containing 0.1% Tween 20 (TBST) and 0.5% skim
milk, followed by overnight incubation at 4◦C with a rabbit
polyclonal antibody against PSD-95 (1:5,000; Cell Signaling
Technology, Danvers, MA, USA) in TBST containing 0.5%
skim milk. After several rinses in TBST, the membranes
were incubated with a horseradish peroxidase-conjugated
secondary antibody in TBST for 1 h. Immunoreactive
bands were visualized by enhanced chemiluminescent
autoradiography (ECL plus kit; GE Healthcare, Buckingham,
UK).

Immunohistochemical Detection of
PSD-95 in Mouse Brains
Mice (Nihon SLC Co.; n = 5) were injected intraperitoneally
with a lethal dose of pentobarbital (Sigma-Aldrich, St. Louis,
MO, USA), and were then transcardially perfused with 0.01 M
phosphate-buffered saline (PBS) at pH 7.2, followed by cold
4% paraformaldehyde in 0.1 M phosphate buffer (PB) at pH
7.2. The brains were removed, post-fixed overnight in the same
fixative at 4◦C, and stored in a 10–30% sucrose gradient in
0.1 M PB at 4◦C for cryoprotection. Sections were cut on
a cryostat at 16-µm thickness, and stored in PBS containing
0.05% NaN3 until use. Immunostaining was performed on free-
floating sections using the tyramide signal amplification (TSA)
method, according to our previous report (Okita et al., 2012).
After blocking endogenous peroxidase activity, the sections were
incubated in PBS containing 3% BSA for 60 min. They were
then incubated in PBS-BSAwith anti-PSD-95 antibody (1:10,000;
Cell Signaling) for 18 h. The bound antibody was detected
using the Histofine Simple Stain Kit (Nichirei, Tokyo, Japan)
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and the TSA-system with Cyanine3 (Perkin Elmer, Shelton, CT,
USA).

Autopsied Human Brain and Tissue
Preparation for Immunohistochemistry
All procedures involving postmortem human brain tissue were
approved by the Ethical Review Committee of the Tokushima
University.

Human brains were obtained at autopsy from neurologically
normal individuals (n = 5; mean age ± SEM, 59 ± 8 years).
Brain tissue was routinely fixed in 10% neutral buffered formalin
for about 3 weeks, and then embedded in paraffin. Later, 4-
mm-thick sections were prepared on a microtome and mounted
onto MAS-coated glass slides (Matsunami Glass, Osaka, Japan).
After routine deparaffinization, rehydration, and blocking of
endogenous peroxidase activity with 1%H2O2 in water for 5 min,
all sections were immersed in 0.01 M sodium citrate buffer (pH
6.0) and placed in a 700-W microwave oven at maximum power
for 15 min. After several rinses in PBS, endogenous avidin and
biotin activity was blocked using the Avidin/Biotin Blocking Kit
(Vector, Burlingame, CA, USA). Following several rinses in PBS,
sections were further blocked in PBS containing 3% BSA for
60 min. All procedures were carried out at room temperature.
Summary of the antibodies used in this study is shown in Table 1.

Immunohistochemical Detection of a
Single Antigen in Human Brain Tissue
The sections were incubated with a rabbit polyclonal antibody
against PSD-95 (1:5,000; Cell Signaling) or a goat polyclonal
antibody against Calbindin-D28K (1:10,000; Santa Cruz
Biotechnology, Santa Cruz, CA, USA) for 18 h in PBS containing
3% BSA. After several rinses in PBS, the sections were incubated
with the polymer-staining reagent (Histofine Simple Stain
Kit; Nichirei) for 30 min. After several rinses in PBS, they
were processed for TSA using the TSA Biotin System (Perkin
Elmer). Sections were then incubated in the biotinyl tyramide
amplification reagent. A working solution was prepared by
diluting the Biotinyl Tyramide Stock Solution (Perkin Elmer)

1:50 using 1× Plus Amplification Diluent (Perkin Elmer) for
30 min. After several rinses in PBS, the sections were incubated
for 30 min with the avidin-biotin-peroxidase complex (ABC)
reagent from a Vectastain Elite ABC kit (Vector). The bound
peroxidase was visualized by incubating the sections with a
solution containing 0.05% 3,3′-diaminobenzidine (DAB; Merck,
Darmstadt, Germany) and 0.01% H2O2 in 0.05 M Tris-HCl (pH
7.4) for 10 min. The immunostained sections were dehydrated
and cover-slipped with Malinol (Muto Pure Chemicals, Tokyo,
Japan).

Immunohistochemical Detection of Dual
Antigens in Human Brain Tissue
For dual antigen detection, sections were first incubated
in PBS containing 3% BSA and a goat polyclonal antibody
against Calbindin-D28K (1:5,000; Santa Cruz), a rabbit
polyclonal antibody against dopamine-and cAMP-regulated
phosphoprotein, Mr 32 kDa (DARPP-32) (1:2,000, Cell
Signaling) or a rat monoclonal antibody against D1R (1:100,000;
Sigma–Aldrich) for 18 h. The bound antibody was detected using
the Histofine Simple Stain Kit (Nichirei) and the TSA-system
with Cyanine3 (Perkin Elmer). To remove bound antibody, the
immunostained sections were incubated in 0.1 M glycine-HCl
(pH 2.2) for 30 min. After several rinses in PBS, the sections
were then incubated for 18 h in PBS containing 3% BSA and
anti-PSD-95 antibody (1:2,000; Cell Signaling). The bound
antibodies were detected using the Histofine Simple Stain Kit
(Nichirei) and the TSA-system with Fluorescein (Perkin Elmer).
After several rinses in PBS, the sections were cover-slipped with
PBS containing 10% glycerol.

Digital Images and Densitometry
Macroscopic images were captured using an Epson ES-2200
color image scanner (SEIKO EPSON Co., Nagano, Japan) using
the 24-bit color mode. Microscopic images stained with DAB
were captured using an Olympus BX51 microscope (Olympus,
Tokyo, Japan) equipped with a digital camera DP40 (Olympus).
The digital images were imported into Adobe Photoshop CS4

TABLE 1 | Antibodies used for immunohistochemistry in the human brain tissues.

Antibody to: Immunogen: Source Dilution

IHC with
DAB

IHC with
fluorescence

Postsynaptic density protein 95
(PSD-95)

Synthetic peptide corresponding to
residues of human PSD-95

Cell Signaling Technology (Danvers, MA, USA);
Catalog No. #2507 Rabbit polyclonal antibody

1:4,000 1:2,000

Calbindin-D28K Synthetic peptide for the C-terminus of
calbindin D28K of human origin

Santa Cruz Biotechnology (Santa Cruz, CA,
USA); Catalog No. MAB9627 Goat polyclonal
antibody

1:10,000 1:5,000

Dopamine-and cAMP-regulated
phosphoprotein, Mr 32 kDa
(DARPP-32)

Synthetic peptide for the residues around
Thr34 of human DARPP-32

Cell Signaling Technology (Danvers, MA, USA);
Catalog No. #2302 Rabbit polyclonal antibody

1:2,000

Dopamine D1 receptor (D1R) Recombinant fusion protein containing the
C-terminal 97 amino acid of human D1R

Sigma-Aldrich (St. Louis, MO, USA); Catalog
No. D2944 Rat monoclonal antibody

1:100,000

IHC, Immunohistochemistry; DAB, 3,3′-diaminobenzidine.
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FIGURE 1 | Identification of postsynaptic density protein 95 (PSD-95) in the mouse striatum. (A) Western blot assay. Crude homogenates of protein (10 µg)
from the mouse striatum were separated on a 10% gel by SDS-PAGE and then immunoblotted using anti-PSD-95 antibody. Note that an immunostained protein
band (arrow) was selectively detected, with an approximate molecular mass corresponding to the predicted size of native PSD-95 protein. PS, protein staining; IB,
immunoblot. (B) Photomicrograph of a striatal section stained for PSD-95. (C–E) Photomicrographs of the dorsal striatum stained for PSD-95 in the absence (C,E)
and presence (D) of DAPI (4′ ,6-diamidino-2-phenylindole)-staining. Tiny dots immunoreactive for PSD-95 (inset in D,E) are numerously found in the dorsal striatum.
(F) Photomicrograph of the dorsal striatum processed using the immunostaining protocol without anti-PSD-95 antibody. Scale bars: (B) 1 mm, (C,D,F) 50 µm, (inset
in D) 5 µm, (E) 2.5 µm.

FIGURE 2 | Non-homogeneous distribution of PSD-95 in the human neostriatum. (A,B) Dark-field images of the striatum (A) and lenticular nucleus (B)
stained for PSD-95 with DAB. (C,D) Photomicrographs of the caudate nucleus (C) and putamen (D) processed for immunofluorescence staining with anti-PSD-95
antibody. (E,F) Displayed are the caudate nucleus subfield stained for PSD-95 (E), and its graded color-converted image (F), in which labeling intensity is indicated in
a standard pseudocolor scale from blue (lowest level) through green, yellow, red, and white (highest level). (G,H) Displayed are the putamen subfield stained for
PSD-95 (G), and its graded color-converted image (H), in which labeling intensity is indicated in a standard pseudocolor scale from blue (lowest level) through green,
yellow, red, and white (highest level). Asterisks indicate examples of the striatal subfields with sparse PSD-95 immunoreactivity. CN, caudate nucleus; Put, putamen;
GPe, globus pallidus externa; GPi; globus pallidus interna. Scale bars: (A,B) 5 mm, (C,D) 2.5 mm, (E–H) 1.5 mm.
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FIGURE 3 | Postsynaptic density protein 95 immunostaining identifies striatal compartments in the human neostriatum. (A,B) Serial-section analysis of
dark-field images of the striatum stained for PSD-95 (A) and Calbindin-D28K (B), a marker for the matrix compartment. Note that the compartmentalization of
PSD-95 is almost identical to that of Calbindin-D28K. Examples of striosomes are indicated by asterisks. (C–E) Photomicrographs of the striatal area double-stained
for PSD-95 (C) and Calbindin-D28K (D), with a merged image (E). Corresponding striosomes are indicated by arrows. (F,G) Photomicrographs of the matrix (F) and
striosome (G) subfields stained for PSD-95. Scale bars: (A,B) 5 mm, (C–E) 2 mm, (F,G) 100 µm.

and digitally processed for the minimal adjustment of contrast,
brightness, and color balance.

The somatic density of PSD-95 labeling in the striatal
neurons was estimated, as in our previous report (Okita et al.,
2012). High-power photomicrographs of labeled neurons were
obtained using a 100× oil-immersion objective, and they were
digitally changed to the non-colored images in a gray scale.
We measured the optical density of PSD-95 labeling in the
soma of striatal neurons (n = 20) in each human striatal
section (n = 5). The mean somatic density of PSD-95 labeling
was then calculated in each. The optical densities of PSD-
95- or D1R-immunoreactive products in the striosome and
matrix subfields were also measured as gray levels on non-
colored digital images at a low-power magnification, as in our
previous report (Sato et al., 2008). For each human striatum
(n = 5), measurements were made in 5 striatal subfields from five
sections.

Statistical Analysis
All quantitative data were expressed as means ± SEM values.
The Student’s t-test (two-tailed, paired) was used for two group
comparisons. P-values less than 0.05 were considered statistically
significant.

RESULTS

Immunochemical Detection of PSD-95 in
Mouse Brains
To confirm the specificity of the anti-PSD-95 antibody used
here, we first carried out a western-blot analysis of the
mouse brains. A protein band with an approximate molecular
mass corresponding to the predicted size of native PSD-
95 protein was selectively detected on the immunoblots of
mouse striatal extracts (Figure 1A). The specificity of staining
was also determined on frozen sections from mouse brains
with or without anti-PSD-95 antibody (Figures 1B–F). Strong
immunoreactivity for PSD-95 was found in the striatum
(Figure 1B), where numerous tiny immunoreactive dots were
densely distributed (Figures 1C–E). According to the previous
reports (Kim and Sheng, 2004; van Zundert et al., 2004),
we suppose that the vast majority of them were localized
in the PSDs of dendritic spines of striatal neurons. No
immunoreactivity for PSD-95 was found in striatal sections
processed using the immunostaining protocol without the
anti-PSD-95 antibody (Figure 1F). Notably, no apparent
compartmental localization of PSD-95 labeling in the mouse
striatum could be detected (Figure 1B). A knockout control for

Frontiers in Neuroanatomy | www.frontiersin.org 5 November 2015 | Volume 9 | Article 154

http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Morigaki and Goto PSD-95 in the Striosome-matrix Systems of the Human Striatum

FIGURE 4 | Somatic labeling for PSD-95 in the medium spiny neurons (MSNs) in the human neostriatum. (A,B) Photomicrographs of the matrix (A) and
striosome (B) subfields in the striatal section stained for PSD-95. Neurons with somatic labeling for PSD-95 are indicated by dashed open circles. Note that somatic
density of PSD-95 labeling in matrix cells is higher than that in striosomal cells. (C–E) Photomicrographs of the matrix area double-stained for DARPP-32, a marker
protein for striatal MSNs (C) and PSD-95 (D), with a merged image (E). (F–H) Photomicrographs of the striosome area double-stained for DARPP-32 (F) and
PSD-95 (G), with a merged image (H). (I–K) Photomicrographs of an MSN in the matrix area double-stained for DARPP-32 (I) and PSD-95 (J), with a merged image
(K). The proximal dendrite and soma of the labeled cell are indicated by small and large arrows, respectively. (L) Measurements of the optical densities of somatic
PSD-95 labeling of striosomal (S) MSNs and matrix (M) MSNs in the caudate nucleus (CN) and putamen (Put). Data are mean ± SEM (bars) values (n = 100).
∗∗p = 0.01, ∗p = 0.05, Matrix (M) MSNs vs. Striosomal (S) MSNs. Scale bars: (A,B) 20 µm, (C–H) 50 µm, (I–K) 10 µm.

specificity of reactivity in immunohistological experiments was
not done.

Immunohistochemical Detection of
PSD-95 in the Human Neostriatum
Our highly sensitive immunohistochemical technique allowed us
to detect PSD-95 immunoreactivity in formalin-fixed paraffin-
embedded human autopsy tissue. Strong PSD-95 labeling was
found in the striatum, consisting of the caudate nucleus,
putamen, and nucleus accumbens. Notably, in macroscopic
images of the rostral (Figure 2A) and caudal (Figure 2B) parts
of the striatum, there was a non-homogeneous distribution of
PSD-95 labeling in both the caudate nucleus and putamen.
Microscopic images with low-powered magnification also
showed the compartmental distribution of PSD-95 labeling in the
caudate nucleus (Figure 2C) and putamen (Figure 2D), and this
was more evident in the caudate nucleus (Figures 2E,F) than in
the putamen (Figures 2G,H). No PSD-95 labeling was identified

in striatal sections processed using the immunostaining protocol
without the anti-PSD-95 antibody.

Compared with the striosomes, the matrix compartment
was more strongly stained for PSD-95, as determined using
serial sections stained for PSD-95 (Figure 3A) and Calbindin-
D28K (Figure 3B), a protein enriched in the matrix of the
human striatum (Ito et al., 1992). Double immunofluorescence
staining also showed that PSD-95 immunoreactivity was sparse in
striosomes that exhibited low calbindin labeling (Figures 3C–E).
At higher-powered magnification, PSD-95-immunoreactive dots
were found abundantly in the matrix (Figure 3F), but less so
in the striosomes (Figure 3G). Thus, PSD-95 was differentially
concentrated in the striosome-matrix systems of the human
neostriatum, with higher density of PSD-95 in the matrix relative
to the striosomes. In addition, PSD-95 appeared as not only a
dendritic but also a somatic protein in striosomal and matrix
MSNs (Figure 4), as determined using sections double-stained
for PSD-95 and DARPP-32, a marker of MSNs (Langley et al.,
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FIGURE 5 | Complementary distribution of dopamine D1 receptor (D1R) and PSD-95 in striatal compartments of the human neostriatum. (A,B)
Photomicrographs of the caudate nucleus double-stained for D1R (A) and PSD-95 (B). Examples of striosomes are indicated by asterisks. (C–E) Photomicrographs
of the putamen double-stained for D1R (C) and PSD-95 (D), with a merged image (E). Examples of the corresponding striosomes are indicated by asterisks. (F–H)
Photomicrographs showing a border area between the striosome and matrix compartment in the striatal section double-stained for D1R (F) and PSD-95 (G), with a
merged image (H). (I,J) Photomicrographs of the striosome (I) and matrix (J) areas stained for D1R. (K–M) Photomicrographs of the striosomal area double-stained
for D1R (K) and PSD-95 (L), with a merged image (M). Dashed open circles indicate examples of medium-sized cells possessing both D1R and PSD-95 labeling in
their soma. Scale bars: (A–E) 2 mm, (F–H) 200 µm, (I–M) 50 µm.

1997). In both the caudate nucleus and putamen, the mean
somatic density of PSD-95 labeling in striosomal MSNs was

significantly lower than that in matrix MSNs (Figure 4L). This
finding suggests that PSD-95 might be abundantly expressed in
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FIGURE 6 | Densitometric analysis on the compartmental distribution of PSD-95 and dopamine D1R in the human neostriatum. (A,B) Line scanning
densities of two examples of neostriatal areas double-stained for PSD-95 (green) and D1R (red). The striosome in each image is indicated by a yellow bar. Note that
striosomal areas with sparse PSD-95 labeling correspond to those enriched in D1R labeling. Scale bars: 1 mm. (C,D) Measurements of the optical densities of
PSD-95- and D1R-immunoreactive products in the striosome (S) and matrix (M) compartments in the caudate nucleus (C) and putamen (D). Data are mean ± SEM
(bars) values (n = 25). ∗∗∗P = 0.005, M vs. S; ∗∗P = 0.01, M vs. S.

the matrix MSNs, whereas low levels of PSD-95 expression were
observed in the striosomal MSNs.

Complementary Localization of D1R and
PSD-95 in the Human Neostriatum
In agreement with the previous reports (Besson et al., 1988;
Levey et al., 1993), we found a compartmental distribution
for D1R immunoreactivity in the human neostriatum, with
higher labeling density in the striosomes than in the matrix.
As determined by double immunofluorescence staining, D1R
labeling was strikingly complementary to that of PSD-95
in both the caudate nucleus (Figures 5A,B) and putamen
(Figures 5C–E). At higher-power magnification, the margins of
the PSD-95-poor zones appeared to closely correspond with
the outer margins of the D1R-rich zones (Figures 5F–H). At
higher-powered magnification, D1R-immunoreactive products
were found abundantly in the striosomes (Figure 5I), but less so
in the matrix (Figure 5J). Striosomal MSNs possessing both D1R
and PSD-95 labeling in their soma are shown in Figures 5K–M.

To confirm complementary distribution of PSD-95 and D1R,
we next carried out a line scanning analysis of the staining density
of the neostriatal areas double-stained for PSD-95 and D1R
(Figures 6A,B). The results showed that striosomal areas poor
in PSD-95 labeling were perfectly matched with those enriched
in D1R labeling (Figures 6A,B). Optical density measurements
in the caudate nucleus (Figure 6C) and putamen (Figure 6D)
revealed that PSD-95 labeling in the striosomes was significantly
lower than that in the matrix, while D1R labeling in the
striosomes was significantly higher than that in the matrix.
Thus, in contrast with that in the matrix compartment, the
striosomes were enriched in D1R but showed a paucity of
PSD-95.

DISCUSSION

In this study, we documented immunohistochemical evidence
showing that the concentrations of PSD-95 and D1R were
complementary in the striosome-matrix systems of both the

Frontiers in Neuroanatomy | www.frontiersin.org 8 November 2015 | Volume 9 | Article 154

http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive


Morigaki and Goto PSD-95 in the Striosome-matrix Systems of the Human Striatum

caudate nucleus and putamen in human autopsied brains.
A higher density of PSD-95 labeling was found in the matrix
relative to the striosomes, while D1R labeling was greater in
the striosomes than in the matrix. Since PSD-95 regulates D1R
trafficking and sensitization, and restrains dopamine D1 activity
in dendritic spines, our results indicate that the striosomes might
be more susceptible to increased levels of extracellular dopamine
than the matrix, owing to the relative content of not only D1R but
also PSD-95. This notion may be implicated in physiological and
pathological conditions that are associated with an imbalance in
dopamine D1 signaling between the striosome and matrix (for a
review, see Crittenden and Graybiel, 2011).

Of particular interest is the possible implication of PSD-
95 in the genesis of neuropathology in HD, a major major
representative of striatal neurodegenerative disorders (Albin
and Tagle, 1995). Striatal pathology in HD is characterized by
primary and progressive degeneration of MSNs, with relative
sparing of local-circuit interneurons (Cicchetti et al., 2000). Till
now, it has been postulated that in HD, the loss of striatal
neurons might be caused by excitotoxicity resulting from over
activation of postsynaptic NMDARs (Choi, 1988; Zeron et al.,
2002; Levine et al., 2004; Fan and Raymond, 2007) and D1Rs
(Cyr et al., 2003, 2006; Bozzi and Borrelli, 2006). In accordance
with previous evidence indicating that PSD-95 could limit
dendritic D1R activity and negatively regulate the D1R and
NMDAR interplay that leads to excitotoxicity (Yao et al., 2008;
Zhang et al., 2009), Zhang et al. (2014) showed that PSD-
95 could exert a neuroprotective effect against the excitotoxic
degeneration of striatal MSNs by acting as a molecular brake
that dampens postsynaptic activity mediated by dopamine and
glutamate signals. Our present finding showed that in contrast
with the matrix, the striosomes are enriched in D1R and have a
paucity of PSD-95. Taken together, we hypothesize that in HD,
the striosomal MSNsmight be more susceptible to D1R-mediated
excitotoxicity than the matrix MSNs. Indeed, a predominant loss
of striatal MSNs in the striosome compartment has been shown
in subsets of HD patients (Morton et al., 1993; Hedreen and
Folstein, 1995; Tippett et al., 2007) and in a rodent model of HD
(Lawhorn et al., 2008).

Our hypothesis may also be relevant to the striatal pathology
seen in other disorders such as X-linked dystonia-parkinsonism
(XDP/DYT3, OMIM314250; Goto et al., 2005, 2013), in which
a preferential loss has been documented in the striosome with
relative sparing of the matrix compartment. Similar to the
findings in HD, XDP (Goto et al., 2005, 2013) also show a
preferential loss of MSNs while cholinergic interneurons are
spared; this cell-type-specific loss of neurons is a hallmark
of striatal excitotoxic lesions (Calabresi et al., 1998, 2000).
Dopamine-mediated neurotoxicity may also be involved in the
genesis and progression of striatal pathology in XDP (Goto et al.,
2005, 2013; Herzfeld et al., 2013). In addition, Herzfeld et al.
(2013) transfected human neuroblastoma cells with DSC3, a
disease-specific sequence change within the TAF1/DYT3multiple
transcript system, and reported that this exerted a dramatic effect
on overall gene expression including multiple genes involved
in dopamine metabolism, with a significant decrease in DLG4
(PSD-95) expression. This suggests that a loss of PSD-95 may be
involved in the pathogenesis of XDP. In conclusion, our present
findings suggest the possible involvement of PSD-95-mediated
synaptic function in compartment-specific dopamine signals.
This notion also may provide new insight into the compartment-
specific vulnerability of MSNs in striatal neurodegenerative
diseases.
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