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Gap junctions are intercellular proteins responsible for mediating both electrical and

biochemical coupling through the exchange of ions, second messengers and small

metabolites. They consist of two connexons, with (one) connexon supplied by each cell. A

connexon is a hexamer of connexins and currently more than 20 connexin isoforms have

been described in the literature thus far. Connexins have a short half-life, and therefore

gap junction remodeling constantly occurs with a high turnover rate. Post-translational

modification, such as phosphorylation, can modify their channel activities. In this article,

the roles of connexins in wound healing and repair are reviewed. Novel strategies for

modulating the function or expression of connexins, such as the use of antisense

technology, synthetic mimetic peptides and bioactive materials for the treatment of skin

wounds, diabetic and pressure ulcers as well as cornea wounds, are considered.

Keywords: gap junctions, connexins, antisense oligodeoxynucleotides, connexin mimetic peptides, gap junction

modulators, wound healing, wound repair

INTRODUCTION

Gap junctions are intercellular channels that mediate both electrical and biochemical coupling
through the exchange of ions, second messengers, and small metabolites (Kanno and Loewenstein,
1964; Lawrence et al., 1978). Gap junction intercellular communication (GJIC) is essential
for the regulation of cellular differentiation and apoptosis, movement of cells within tissues,
and intracellular signaling (Zhou and Jiang, 2014). In excitable tissues, GJIC also governs the
conduction of electrical signals between successive cells (Koval et al., 2014; Veeraraghavan et al.,
2014, 2015; Tse, 2016; Tse et al., 2016a). A gap junction is formed by two connexons, where one is
provided by each cell (Harris, 2001). Each connexon is a hexamer of connexins (Cx). Currently 21
members of the human connexin gene family have been identified (Söhl and Willecke, 2004).

Some connexin isoforms are cell-type specific, and their expression is induced by different
metabolic states, such as pluripotent stem cell induction (Ke et al., 2013), epidermal wound healing
(Becker et al., 2012), epithelial-to-mesenchymal transition (EMT) (Zhou and Jiang, 2014), and
pathological states such as hepatitis (Crespo Yanguas et al., 2016). Connexins can be found in
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both excitable and non-excitable tissues with different spatio-
temporal patterns. For example, the cardiac myocardium has
abundant expression of the isoforms Cx30.2, Cx40, Cx43, and
Cx45 (Davis et al., 1995; Jongsma, 2000; Tse and Yeo, 2015).
Their expression levels vary between different cardiac regions:
Cx40 is only expressed in the atria; whereas in the ventricles
Cx43 is extensively expressed with minimal levels of Cx40.
During cardiac development, Cx45 levels are progressively
downregulated (Alcoléa et al., 1999). In non-excitable tissue,
Cx43 can be found in breasts, kidneys, skin and lungs; Cx26 is
expressed in liver, kidneys and oesophageal epithelium, and Cx32
is found in liver and kidneys (Wilgenbus et al., 1992; Goldberg
et al., 2004).

Gap junctions operate through two distinct gating
mechanisms: membrane voltage-dependent and transjunctional
voltage-dependent gating (also known as fast and slow gating;
Bukauskas and Verselis, 2004). Besides voltage sensitivity, both
mechanosensitivity and chemosensitivity have been reported
(Bao et al., 2004; Bukauskas and Verselis, 2004). Connexin
activity is influenced by intracellular Ca2+, pH, chemical
uncouplers (Tse et al., 2016b,c,d,e,f), phosphorylation events
(Musil and Goodenough, 1991; Bennett and Verselis, 1992),
and lipid availability in the immediate environment, including
low-density lipoprotein, apolipoprotein-B (Meyer et al., 1991)
and cholesterol (Meyer et al., 1990). Gap junctions allow the
passive diffusion of ions, intracellular molecules that include
metabolites and messengers such as cyclic AMP, cyclic GMP and
IP3. Undocked connexons are not inactive, but can participate in
intracellular signaling (Evans et al., 2006). Transient opening of
connexons can permit entry of extracellularly released molecules
during cellular stress (Froger et al., 2010), whereas prolonged
opening may initiate cell death pathways.

In recent years, there has been growing interest in the role
of connexins and therapeutic usage of gap junction modulators
in various clinical conditions (O’Carroll et al., 2013). As well as
modifying gap junction function, other different interventions
can alter the synthesis, transport, assembly, phosphorylation, and
degradation of gap junction proteins (Beyer and Berthoud, 2002).
Gene therapy can restore or increase GJIC in transfected cells
and “knock-in” animals (Plum et al., 2000; Beyer and Berthoud,

TABLE 1 | Vehicles used include Pluronic Gel and microcapsules.

Class Mechanism Examples Disease References

Antisense

oligodeoxynucleotides

Binding to messenger RNA

encoding for connexins

Cx43-specific antisense oligodeoxynucleotides

(Cx43 AsODN)

Skin wound healing Qiu et al., 2003; Mori et al.,

2006; O’Carroll et al., 2013

Connexin mimetic

peptides

Direct binding to connexins αCT1 Skin wound healing; Diabetic foot

ulcers; venous leg ulcers; corneal

wound healing

Moore et al., 2013; Grek

et al., 2014, 2015;

Ghatnekar et al., 2015

Gap27 Skin wound healing; pressure

ulcers; Diabetic foot ulcers

Evans and Boitano, 2001;

Pollok et al., 2011

Biomaterials Alteration of gap junction

behavior, and upregulation

of growth factors

Bioactive glass Skin wound healing Li et al., 2016

2002). The different treatment options in the experimental
stages are presented in Table 1. This article will focus on the
roles of gap junctions in wound healing while also discussing
potential directions for further investigation and treatment
development.

SKIN WOUND HEALING

The integumentary system is the largest system of the body
and maintenance of its integrity is critical to survival of the
organism. A number of connexins can be found in the skin,
including Cx26, 30, 30.3, 31, 31.1, 32, 37, 40, 43, and 45. An
overview of the Cx expression patterns in the different skin
layers is presented in Figure 1. Cx43, the predominant isoform
found in skin, is mainly expressed in the strata spinosum and
basale, whereas Cx26 is detected in the basal layers and upper
stratum spinosum (Wiszniewski et al., 2000; Wang et al., 2010).
Of these, Cx43 localizes to the skin vasulature, fibroblasts, dermal
appendages and the basal and lower spinous layers (Mendoza-
Naranjo et al., 2012), It can interact with different components in
tight and adherens junctions (Scott et al., 2012). Tight junctions
are made of proteins such as zona occludens-1 and -2 (ZO-
1, ZO-2), and have a barrier function to prevent passage of
molecules and ions between plasma membranes of adjacent cells
(Kirschner and Brandner, 2012). Cx43 interacts with ZO-1 and
-2 in a cell cycle phase-specific manner, thereby regulating cell
growth, differentiation, migration, and proliferation (Singh et al.,
2005).

Skin wound healing, which occurs in response to injury,
involves a complex interplay of physiological processes (Bajpai
et al., 2009). Optimal wound healing can be divided into the
following four stages of hemostasis, inflammation, proliferation
and maturation. Angiogenesis, re-epithelialization and collagen
repair are essential, taking place mainly during the latter part
of wound healing, proliferation and maturation stages (Guo
and Dipietro, 2010). Connexins are present in both the dermis
and epidermis (Ghatnekar et al., 2009), with the exception of
the uppermost layer of the epidermis, the stratum corneum
(Caputo and Peluchetti, 1977; Scott et al., 2012). The distribution
of connexin isoforms varies throughout the epidermis, and
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FIGURE 1 | Distribution of different connexin isoforms in different layers of the skin.

potentially plays a role in regulating keratinocyte differentiation
(Brissette et al., 1994; Lucke et al., 1999). Inflammatory and
growth factors can pass through gap junctions to exert their
effects on target sites.

Cx43 downregulation is associated with increased
angiogenesis, migration of fibroblasts and multiplication of
keratinocytes as well as reduced infiltration of immune cells
(Grek et al., 2014) (Figure 2). These effects are mediated by
the upregulation of transforming growth factor-beta (TGF-β)
and collagen α1, and the downregulation of the inflammatory
mediators, chemokine (C-C motif) ligand 2 (CCL2) and tumor
necrosis factor-alpha (TNF-α) (Grek et al., 2015). TGF-β3 is
of interest as it has been shown to accelerate wound healing
time and scarring, which was associated with decreased Cx43
(Jin et al., 2008). TGF-β1 is closely associated with skin wound
healing; its expression is upregulated in a fibroblast wound-
healing model involving Cx43 knockdown (Mori et al., 2006).
For example, in an autosomal dominant disorder termed
oculodentodigital dysplasia (ODDD), skin manifestations are
associated with over 70 mutations in the Cx43 gene (GJA1)
(Esseltine et al., 2015). In a mouse model with a G60S mutation
in GJA1, a delay in wound closure compared to wild-type
littermates is observed, which is likely to be due to defects in the
dermal fibroblasts. Indeed, in dermal fibroblasts obtained from
patients with ODDD, GJIC is reduced (Churko et al., 2011).

Cx43 proteins can exist in multiple phosphorylated
forms (Budunova et al., 1994; Kuroki et al., 1998). Serine
phosphorylation of the C-terminal can alter channel gating,
thereby regulating GJIC (Márquez-Rosado et al., 2012). For
example, S373 phosphorylation disrupts Cx43 interaction with
ZO-1, which promoted Cx43 accumulation and assembly into

larger gap junctions, in turn enhancing GJIC (Solan and Lampe,
2014). TPA enhances Cx43 phosphorylation on the S368 residue
via PKC (Márquez-Rosado et al., 2012). Consequently, reduced
channel conductance and GJIC were observed (Lampe et al.,
2000; Solan et al., 2003). Other post-translational modification
events can be exemplified by S279/282 phosphorylation leading
to gap junction closure (Lin et al., 2001). S368 phosphorylation
of Cx43 in the basal cell compartment, which peaks at 24 h
(Márquez-Rosado et al., 2012), led to reduced GJIC and
enhanced migration of keratinocytes (Richards et al., 2004). The
phosphorylation levels return to baseline at 72 h after initial skin
injury. Cx43 phosphorylation and TGF-β1 also contribute to
the transformation of fibroblasts into myofibroblasts, which are
responsible for wound contraction and thus improved healing
results (Churko and Laird, 2013). These findings demonstrate
therapeutic potential in regulation of Cx43 through modulating
upstream pathways responsible for Cx43 phosphorylation
at different amino acid residues. However, to fulfill its full
therapeutic potential for adequate design of kinase-targeting
drugs, a deeper knowledge of the kinase system is required (Solan
and Lampe, 2014).

Different spatio-temporal patterns of connexins expression
have been observed in various stages of wound healing
(Figure 3; Coutinho et al., 2003; Brandner et al., 2004). Initially,
all connexins are downregulated in response to wounding
(Coutinho et al., 2003). In mouse models, Cx26 and Cx30 are
upregulated in epidermal cells proximal to the wound, but are
downregulated in cells around the edge (Coutinho et al., 2003;
Becker et al., 2012). A similar pattern was found in human
cutaneous wound healing, with initial absence of staining of
Cx26, Cx30, and Cx43 around the wound site (Brandner et al.,
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2004). This altered distribution pattern is most pronounced at
24 h. At the later resolution stage, Cx26 remains abundantly
expressed, whereas Cx31.1 and Cx43 returns to normal pre-
wounded levels (Goliger and Paul, 1995; Brandner et al., 2004;
Becker et al., 2012).

A number of approaches can be used to alter gap
junctions. The first is antisense technology. Cx43-specific
antisense oligodeoxynucleotides (Cx43 AsODN) incorporated
into Pluronic Gel have been tested on cutaneous wounds. The
Pluronic Gel consists of both aqueous and organic phases
within a micellar network and can efficiently partition with the
skin, facilitating transport of pharmacological active substances
across the skin. This approach led to suppression of Cx43
expression and improvements in both the rate and quality
of healing (Qiu et al., 2003; Mori et al., 2006). The most
commonly used AsODN is an ssDNA that consists of 30
deoxynucleotides with an unmodified backbone (O’Carroll et al.,
2013). This allows direct inhibition of Cx43 translation by
complementary binding to the messenger RNA, hence depleting
the cells of Cx43. As a result, the level drops since it is
being continuously degraded by proteasomes. Multiple events
findings were noted as a consequence: (1) inflammatory response
attenuation; (2) enhanced myofibroblast differentiation and
wound contraction; (3) increased keratinocyte proliferation;
(4) fibroblast migration; (5) increased rate of angiogenesis (6)
improved re-epithelialization and granulation tissue formation
(Figure 2). On a macroscopic level, the wounds demonstrated
a reduction in inflammation and exudation (Qiu et al., 2003).
Neutrophil infiltration is part of the immune response against

potential pathogen invasion of the wound site, but may also
delay wound closure (Dovi et al., 2003). Cx43 AsODN treatment
led to reductions in the number of neutrophils and levels of
cytokines such as TNF-α and CCL2 at the injury site, and may
accelerate epidermal healing (Rossi and Zlotnik, 2000). Loss of
Cx43 increases the speed of wound closure (Kretz et al., 2003;
Qiu et al., 2003). This may favor keratinocyte mobilization,
proliferation and transformation into a migratory phenotype.
However, re-expression of Cx43 is important in post-wound
stages. Therefore, the importance of time-dependent regulation
of gap junction expression during wound healing should be
recognized.

Another approach to alter gap junction function is the
application of mimetic peptides. These are synthetic compounds
with sequence homologies to a short conserved extracellular
loop domain of connexins (Desplantez et al., 2012), and can
reversibly inhibit GJIC (O’Carroll et al., 2013). An example is
the alpha-carboxy terminus 1 (αCT1), which can inhibit Cx43
by competitive binding to ZO-1 (Grek et al., 2014). This agent is
known to promote cellular uptake, reduce fibrosis and modulate
wound-healing response to implants (Ghatnekar et al., 2009;
Soder et al., 2009), in turn enhancing GJIC. Under physiological
conditions, the binding of the partner proteins is associated with
gap junction remodeling and cellular communication during
wound healing (Soder et al., 2009).

Acute application of αCT1 at the implant site produced
therapeutic effects similar to those of Cx43 AsODN, including
reduced neutrophil recruitment, increased tissue capsule
vascularity and decreased fibrosis (Soder et al., 2009; Grek et al.,

FIGURE 2 | The role of connexin 43 in skin wound healing in response to injury.
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FIGURE 3 | Temporal and spatial patterns of connexins in cutaneous wound healing. Information derived from Brandner et al. (2004).

2014). Currently, clinical trials are being conducted to examine
the effects of a topical formulation of αCT1 in laparoscopic
surgical wounds, diabetic foot and venous leg ulcers. There
are some mild reversible side effects above the maximum
tolerated dose, such as piloerection, weakness, abnormal gait
and breathing patterns (Grek et al., 2014). Cx43 knockout in
mice led to altered expression of multiple testicular genes (Giese
et al., 2012) and Cx43 in bone marrow plays an important role
in hematopoietic regeneration (Presley et al., 2005). Therefore,
tissue-specific targeting of connexins is needed to prevent side
effects affecting other systems for successful clinical applications
in the future. Non-pharmacological approaches such as the
use of biomaterials have also been shown to improve wound
healing. For example, bioactive glass enhances wound healing
via different mechanisms. It contains ion extracts that can reduce
the open probability of hemi-channels in endothelial cells during
the injury phase. In the migration and proliferation stages, it can
stimulate endothelial cell migration thereby upregulating growth
factors, e.g., vascular growth factor, that promote angiogenesis
(Li et al., 2016).

NON-HEALING DIABETIC WOUNDS

Diabetic wounds are known to heal with great difficulty, often
resulting in ulcer formation. Furthermore, the injury size by

a given insult is increased by diabetes (Palatinus and Gourdie,
2016). In non-healing wounds, Cx43 has been detected in wound
margins in the vast majority of subjects, and at the periphery of
wound site in all of the cases (Figure 4; Brandner et al., 2004).
Some investigators have hypothesized that the cytoplasmic tail of
Cx43 may bind to and interact with certain integral membrane
and cytoskeletal proteins to modulate cell adhesion, cytoskeletal
dynamics and ultimately, cell migration (Duffy et al., 2002;
Gourdie et al., 2006; Becker et al., 2012).

Previous studies have demonstrated hyperglycaemia-induced,

PKC-mediated Cx43 phosphorylation, leading to proteosomal

degradation (Sato et al., 2002; Fernandes et al., 2004; Lin

et al., 2006). It also depressed Cx43 gene expression and

inhibited GJIC activity in cultured vascular smooth muscles.
These changes were associated with alterations in connexin

synthesis, phosphorylation, function and degradation. Prolonged
hyperglycaemia resulted in damage to peritoneal mesothelial cells
and impaired intercellular adhesion. The water soluble inducer
of cellular differentiation, hexamethylene bisacetamide, reversed
these pathological changes and upregulated gap junctions,
thereby protecting peritoneal structural integrity (Ogawa et al.,
2001). Previous studies on the relationship between Cx43 and
diabetic vasculature have demonstrated a general trend of
reduced Cx43 and depressed gap junction communication (Li
et al., 2003; Makino et al., 2008). This was proposed to be
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FIGURE 4 | Temporal and spatial patterns of connexins in chronic non-healing wounds Information derived from Brandner et al. (2004).

the pathological mechanism underlying the development of
macroangiopathy in diabetic patients (Kuroki et al., 1998). Many
studies have demonstrated a prolonged inflammatory phase
in diabetic wounds, leading to a delay in granulation tissue
formation and hence significantly delaying resolution (Mustoe,
2004; Wang et al., 2007; Dinh et al., 2012). Other studies
have shown that in diabetic wounds, healing is arrested in the
proliferative phase with an excess of matrix proteins, potentially
resulting in non-healing wounds (Falanga, 2005).

Wound healing in diabetes has been studied further in
streptozotocin-induced diabetic rats (Wang et al., 2007). In the
diabetic state, Cx26 and Cx43 expression and communication
in the intact epidermis were all reduced, whereas Cx43 was
upregulated in the intact dermis. Connexin expression in wound
healing also differed between diabetes and controls. Thus, Cx43
was upregulated in a thickened bulb of keratinocytes at the
wound site within 24 h, whereas it was downregulated in
controls. The effects of Cx43-specific antisense gel have been
tested on diabetic wounds by direct application, resulting in Cx43
upregulation and increased the rate of re-epithelialization.

The Cx43 mimetic peptide, αCT1, was shown to significantly
accelerate closure of diabetic foot ulcers and increase the
incidence of complete closures (Grek et al., 2015). In this study,
no adverse events or cases of immunogenicity were reported,
suggesting that this agent could be safely applied in humans.
However, the improvement in endpoints may partly be due to
better compliance, since treatment was given in a study center
on a weekly basis, compared to self-administration in previous
studies (Margolis et al., 2002; Balingit et al., 2012; Grek et al.,

2015). A larger sample size will be needed in future studies along
with increased diversity in terms of ethnicity and gender (Grek
et al., 2015).

Another connexin 43 mimetic peptide, Gap27, was shown to
enhance migration of keratinocytes and fibroblasts, accelerating
wound healing in different mouse models (Pollok et al., 2011).
Interestingly, there was a discrepancy in the responsiveness to
Gap27 treatment between diabetic and non-diabetic cells (Pollok
et al., 2011). Diabetic cells were immune to the migration-
enhancing effects of Gap27. This may be related to a different
microenvironment of the diabetic wound, such as hypoxia,
the presence of pro-inflammatory mediators, high glucose
levels together with an excess of matrix metalloproteinases
(MMPs) relative to tissue inhibitors of MMPs (TIMPs) (Muller
et al., 2008). These factors must therefore be considered when
developing connexin modulator-based treatments to ensure their
efficacy is not reduced (Pollok et al., 2011).

PRESSURE ULCERS

The National Pressure Ulcer Advisory Panel (NPUAP) defines a
pressure ulcer as an area of unrelieved pressure over a defined
area, usually over a bony prominence, resulting in ischemia, cell
death, and tissue necrosis. More recent studies have shown that
they can also be caused by ischaemia-reperfusion damage due
to repeated pressure applied to the skin (Peirce et al., 2000).
An in vitro model of ischemia-reperfusion injury in fibroblasts
demonstrated increases in Cx43 levels, hemi-channel activity and
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cell death (Pringle et al., 1997). Gap27 exerted concentration-
dependent effects: at high levels it significantly reduced Cx43
levels and GJIC, in turn reducing fibroblast cell death (Glass
et al., 2015). In other studies, Gap27 was found to increase
phosphorylation of S368 without altering the level of Cx43
(Evans and Boitano, 2001). It was suggested that Gap27 prevents
the death of a number of cell types, including cardiomyocytes,
cortical astrocytes and neurons, by blocking Cx43 opening
during reperfusion (Thompson et al., 2006; Clarke et al., 2009;
Orellana et al., 2010), as well as preventing “bystander effect” of
cell death induction of healthy cells in close proximity (Mao et al.,
2009; Danesh-Meyer et al., 2012; Zhang et al., 2013). Further
investigations into the potential of Gap27 and other connexin
modulators for clinical use will be the next step in improving
treatment options for pressure ulcers.

VENOUS LEG ULCERS

Patients with chronic venous insufficiency are prone to the
formation of venous leg ulcers. Impaired wound healing
is attributed to continuous inflammation in extracellular
matrix accompanied by fibroblast and keratinocyte dysfunction
(Brandner et al., 2004; Charles et al., 2008; Ongstad et al., 2013;
Kim et al., 2014). Current treatment protocol includes antiseptic
use, wound dressing and limb compression (O’Meara et al.,
2009). A randomized trial was conducted to investigate the
beneficial effects of adding αCT1 to the conventional treatment
protocol (Ghatnekar et al., 2015). This approach significantly
enhanced wound closure of the ulcers, resulting in a reduction
of median healing time from 12 to 6 weeks compared to the
standard treatment (Ghatnekar et al., 2015). However, there
is limited information regarding prior treatments received,
recurrence rate, and patient compliance (Ghatnekar et al., 2015).
Therefore, further studies with a run-in period and an extended
follow-up along with comparisons of different delivery vehicles
are required to further establish the efficacy of αCT1 in wound
healing of venous leg ulcers (Ghatnekar et al., 2015).

CORNEAL WOUND HEALING

The corneal epithelium consists of four to six layers of non-
keratinized stratified squamous epithelial cells on a uniform
basement membrane (Kenyon, 1979; DelMonte and Kim, 2011).
Superficial cell layers have microvilli and microplicae for
metabolite transportation and tear film adhesion, whereas the
basal columnar layers are more metabolically active (Lu et al.,
2001). At least eight Cx isoforms (Cx26, Cx30.3, Cx31, Cx31.1,
Cx32, Cx43, Cx45, and Cx50) have been identified in the human
corneal epithelium (Yuan et al., 2009; Zhai et al., 2014).

Corneal wound healing shares some similarities with skin
healing (Moore et al., 2013). Epithelial healing starts with a
non-mitotic wound coverage phase by cellular migration and
spreading over the defect, followed by mitosis of epithelial
cells (DelMonte and Kim, 2011). Stromal injuries induce
migration and activation of keratocytes and subsequently stromal
remodeling and fibrosis (Fini and Stramer, 2005). Endothelial

trauma is resolved firstly by migration and coverage of adjacent
endothelial cells, then return of normal tight junction function
and lastly endothelial cell remodeling (Watsky et al., 1989;
DelMonte and Kim, 2011). Pre-clinical experiments suggest
that connexins play a role in corneal wound healing. In rabbit
cornea after excimer laser photorefractive keratectomy, Cx43
and Cx26 were found to be upregulated (Ratkay-Traub et al.,
2001). This is in corroboration with human findings where
increased expressions of Cx26, Cx31.1, and Cx43 were detected
in chemically burned and infected corneas (Zhai et al., 2014).

The commonest clinical method for cornea regeneration
involves application of the amniotic membrane, although it
has disadvantages such as donor dependent differences (Tsai
et al., 2015). Other efforts have focused on the use of Cx43
mimetic peptides to promote corneal wound healing. Epithelial-
to-mesenchymal transition (EMT) is a cellular process involving
mobilization of sedentary cells to areas needing repair (Leopold
et al., 2012) and is thought to play a role in the cornea during
healing (Lee et al., 2012; Kowtharapu et al., 2014). An extended-
release preparation of αCT1 using microcapsules was compared
with a single high initial dose of αCT1 or pluronic gel vehicle
(Moore et al., 2013). Wound closure analysis showed that healing
time was significantly reduced in rat cornea treated with αCT1
microcapsule compared with other two regimes, showing a
14.55% improvement compared to pluronic gel treatment, while
a single high αCT1 dose resulted in only a 12.56% improvement.
However, why αCT1 treatment produced higher closure rate
at 24–72 h even though the microencapsulated αCT1 gives a
higher percentage healing overall is unclear (Moore et al., 2013).
Three different genes were analyzed with RT-PCR to study their
short and long-term effects on corneal healing. Cx43 expression
demonstrated a biphasic response, and was downregulated in
αCT1 treatments in day 21, contrary to that in control group.
ZO-1 was downregulated throughout the length of study for all
set-ups. Keratin 19 (Krt19), a corneal epithelial progenitor and
stemnessmarker gene that is thought to be downregulated during
EMT, was significantly elevated after 24 h then downregulated in
αCT1-treated cornea (Moore et al., 2013).

A later study by the same group examined the effects of
the same αCT1 preparations in type I diabetic corneal wound
healing using a streptozotocin type 1 diabetic rat model (Moore
et al., 2014). It was found that αCT1, whether applied directly
as pluronic gel solution or delivered in a sustained manner
using microcapsules, accelerated wound closure significantly
at days 1 and 3, with the latter producing the most rapid
effects. The probability of wound healing rate calculated using a
modified Kaplan-Meier method indicated that αCT1, especially
the microcapsule form, consistently improved corneal wound
healing (Moore et al., 2014). The mechanism involves reduced
inflammation as reflected by downregulation of the markers,
Interferon Inducible T-Cell Alpha Chemoattractant and Tumor
Necrosis Factor alpha markers (Moore et al., 2014). TGF-β was
the only gene upregulated throughout all time points. All three
isoforms of TGF-β are expressed in the cornea, and play a role
in corneal development and wound healing (Jester et al., 1997;
Saika, 2004). The effects of TGF-β in suppressing inflammation,
promoting fibroblast proliferative activity and ECM deposition
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are well-established (Carrington et al., 2006). These findings
provide further evidence for the role of TGF-β in corneal re-
epithelialisation, through induction of keratocyte transformation
into fibroblasts during wound healing (Stramer et al., 2003).
Krt19 level was again measured and initially downregulated
followed by upregulation at later time points (Moore et al., 2014).

Moreover, Krt19 was negatively correlated to EMT (Aomatsu
et al., 2011). It is not known whether the upregulations
at initial and later stages were due to (1) artifacts; (2) an
unknown underlying mechanism that may have caused an
initial transient spike; or (3) hyperglycemia which may be
responsible for inducing elevation of Krt19 level. Another study
found that Snail gene overexpression during corneal wound
healing induced upregulation of gap junction proteins (e.g.,
Cx43) and downregulation of stemness markers (e.g., Krt19)
in mice (Aomatsu et al., 2012). The roles of Krt19 and Cx43
in differentiation and migration may provide further insight
into the interplay between connexins and stemness markers in
EMT. Based on the current evidence, it is suggested that the
changes in phenotypic expression of stemness and differentiation
markers in wounded corneal epithelium may be responsible for
healing through EMT (Aomatsu et al., 2012). This could be
achieved by arresting proliferation (Liu et al., 2010), remodeling
of the cytoskeleton and enhancingmigration (Thiery, 2002; Chen
et al., 2004; Aomatsu et al., 2012). These four physiological
processes may represent targets for modulating connexins to
achieve therapeutic healing effects in the future.

SUMMARY

Connexins are ubiquitously expressed with tissue-specific
subtypes. Their expression patterns in different diseases are now

better characterized. Their ability to regulate immune responses,
cell proliferation, migration and apoptosis makes them attractive
therapeutic targets to promote the skin wound healing, diabetic
and venous ulcers, as well as cornea healing. Novel approaches
involve the use of antisense technology to reduce connexin
expression, or synthetic mimetic peptides to reduce the function
of connexins, which have demonstrated successes in pre-clinical
disease models, with great potential in the future for clinical
applications.
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