
ORIGINAL RESEARCH ARTICLE
published: 07 June 2013

doi: 10.3389/fpsyg.2013.00313

PowerPlay: training an increasingly general problem
solver by continually searching for the simplest still
unsolvable problem
Jürgen Schmidhuber*

The Swiss AI Lab IDSIA, University of Lugano, SUPSI, Lugano, Switzerland

Edited by:
Gianluca Baldassarre, Italian National
Research Council, Italy

Reviewed by:
Georg Martius, Max Planck Institute
for Mathematics in the Sciences,
Germany
Vieri G. Santucci, Istituto di Scienze e
Tecnologie della
Cognizione – Consiglio Nazionale
delle Ricerche, Italy

*Correspondence:
Jürgen Schmidhuber , The Swiss AI
Lab IDSIA, University of Lugano and
SUPSI, Galleria 2, 6928 Manno,
Switzerland
e-mail: juergen@idsia.ch

Most of computer science focuses on automatically solving given computational prob-
lems. I focus on automatically inventing or discovering problems in a way inspired by
the playful behavior of animals and humans, to train a more and more general problem
solver from scratch in an unsupervised fashion. Consider the infinite set of all computable
descriptions of tasks with possibly computable solutions. Given a general problem-solving
architecture, at any given time, the novel algorithmic framework PowerPlay (Schmidhu-
ber, 2011) searches the space of possible pairs of new tasks and modifications of the
current problem solver, until it finds a more powerful problem solver that provably solves
all previously learned tasks plus the new one, while the unmodified predecessor does not.
Newly invented tasks may require to achieve a wow-effect by making previously learned
skills more efficient such that they require less time and space. New skills may (partially)
re-use previously learned skills.The greedy search of typical PowerPlay variants uses time-
optimal program search to order candidate pairs of tasks and solver modifications by their
conditional computational (time and space) complexity, given the stored experience so far.
The new task and its corresponding task-solving skill are those first found and validated.
This biases the search toward pairs that can be described compactly and validated quickly.
The computational costs of validating new tasks need not grow with task repertoire size.
Standard problem solver architectures of personal computers or neural networks tend to
generalize by solving numerous tasks outside the self-invented training set; PowerPlay’s
ongoing search for novelty keeps breaking the generalization abilities of its present solver.
This is related to Gödel’s sequence of increasingly powerful formal theories based on adding
formerly unprovable statements to the axioms without affecting previously provable theo-
rems.The continually increasing repertoire of problem-solving procedures can be exploited
by a parallel search for solutions to additional externally posed tasks. PowerPlay may be
viewed as a greedy but practical implementation of basic principles of creativity (Schmidhu-
ber, 2006a, 2010). A first experimental analysis can be found in separate papers (Srivastava
et al., 2012a,b, 2013).

Keywords: problem discovery, task invention, skill learning, general problem solver, intrinsic motivation, curiosity,
creativity

1. INTRODUCTION
Given a realistic piece of computational hardware with specific
resource limitations, how can one devise software for it that will
solve all, or at least many, of the a priori unknown tasks that
are in principle easily solvable on this architecture? In other
words, how to build a practical general problem solver, given
the computational restrictions? It does not need to be universal
and asymptotically optimal (Levin, 1973; Hutter, 2002; Schmid-
huber, 2004b, 2009) like the recent (not necessarily practically
feasible) general problem solvers discussed in Section 7.2; instead
it should take into account all constant architecture-specific slow-
downs ignored in the asymptotic optimality notation of theo-
retical computer science, and be generally useful for real-world
applications.

Let us draw inspiration from biology. How do initially help-
less human babies become rather general problem solvers over
time? Apparently by playing. For example, even in the absence of
external reward or hunger they are curious about what happens
if they move their eyes or fingers in particular ways, creating lit-
tle experiments which lead to initially novel and surprising but
eventually predictable sensory inputs, while also learning motor
skills to reproduce these outcomes. (See Schmidhuber, 1991a,b,
1999, 2006a, 2010; Yi et al., 2011 and Section 7.4 for previous
artificial systems of this type.) Infants continually seem to invent
new tasks that become boring as soon as their solutions become
known. Easy-to-learn new tasks are preferred over unsolvable or
hard-to-learn tasks. Eventually the numerous skills acquired in this
creative, self-supervised way may get re-used to facilitate the search

www.frontiersin.org June 2013 | Volume 4 | Article 313 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82884676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.2013.00313/abstract
http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.2013.00313/abstract
http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.2013.00313/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=J�rgenSchmidhuber&UID=23048
mailto:juergen@idsia.ch
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

for solutions to external problems, such as finding food when hun-
gry. While kids keep inventing new problems for themselves, they
move through remarkable developmental stages (Harlow et al.,
1950; Berlyne, 1954; Piaget, 1955).

Here I introduce a novel unsupervised algorithmic framework
for training a computational problem solver from scratch, con-
tinually searching for the simplest (fastest to find) combination
of task and corresponding task-solving skill to add to its grow-
ing repertoire, without forgetting any previous skills (Section 2),
or at least without decreasing average performance on previously
solved tasks (Section 6.1). New skills may (partially) re-use pre-
viously learned skills. Every new task added to the repertoire is
essentially defined by the time required to invent it, to solve it,
and to demonstrate that no previously learned skills got lost. The
search takes into account that typical problem solvers may learn
to solve tasks outside the growing self-made training set due to
generalization properties of their architectures. The framework
is called PowerPlay because it continually (Ring, 1994) aims
at boosting computational ability and problem-solving capac-
ity, reminiscent of humans or human societies trying to boost
their general power/capabilities/knowledge/skills in playful ways,
even in the absence of externally defined goals, although the skills
learned by this type of pure curiosity may later help to solve
externally posed tasks.

Unlike our first implementations of curious/creative/playful
agents from the 1990s (Schmidhuber, 1991a, 1999; Storck et al.,
1995) (Section 7.4; compare (Barto, 2013; Dayan, 2013; Nehm-
zow et al., 2013; Oudeyer et al., 2013)), PowerPlay provably
(by design) does not have any problems with online learning – it
cannot forget previously learned skills, automatically segmenting
its life into a sequence of clearly identified tasks with explicitly
recorded solutions. Unlike the task search of theoretically opti-
mal creative agents (Schmidhuber, 2006a, 2010) (Section 7.4),
PowerPlay’s task search is greedy, but at least practically feasible.

Some claim that scientists often invent appropriate problems
for their methods, rather than inventing methods to solve given
problems. The present paper formalizes this in a way that may be
more convenient to implement than those of our previous work
(Schmidhuber, 1991a, 1999, 2006a, 2010), and describes a sim-
ple practical framework for building creative artificial scientists or
explorers that by design continually come up with the fastest to
find, initially novel, but eventually solvable problems.

1.1. BASIC IDEAS
In traditional computer science, given some formally defined task,
a search algorithm is used to search a space of solution candidates
until a solution to the task is found and verified. If the task is hard
the search may take long.

To automatically construct an increasingly general problem
solver, let us expand the traditional search space in an unusual
way, such that it includes all possible pairs of computable tasks
with possibly computable solutions, and problem solvers. Given
an old problem solver that can already solve a finite known set of
previously learned tasks, a search algorithm is used to find a new
pair that provably has the following properties: (1) the new task
cannot be solved by the old problem solver. (2) The new task can
be solved by the new problem solver (some modification of the old

one). (3) The new solver can still solve the known set of previously
learned tasks.

Once such a pair is found, the cycle repeats itself. This will result
in a continually growing set of known tasks solvable by an increas-
ingly more powerful problem solver. Solutions to new tasks may
(partially) re-use solutions to previously learned tasks.

Smart search (e.g., Section 4.1 and Algorithm 4.1) orders can-
didate pairs of the type (task, solver) by computational complexity,
using concepts of optimal universal search (Levin, 1973; Schmid-
huber, 2004b), with a bias toward pairs that can be described by
few additional bits of information (given the experience so far)
and that can be validated quickly.

At first glance it might seem harder to search for pairs of tasks
and solvers instead of solvers only, due to the apparently larger
search space. However, the additional freedom of inventing the
tasks to be solved may actually greatly reduce the time inter-
vals between problem solver advances, because the system may
often have the option of inventing a rather simple task with an
easy-to-find solution.

A new task may be about simplifying the old solver such that it
can still solve all tasks learned so far, but with less computational
resources such as time and storage space (e.g., Section 3.1 and
Algorithm 6.1).

Since the new pair (task, solver) is the first one found and vali-
dated, the search automatically trades off the time-varying efforts
required to either invent completely new, previously unsolvable
problems, or compressing/speeding up previous solutions. Some-
times it is easier to refine or simplify known skills, sometimes to
invent new skills.

On typical problem solver architectures of personal computers
(PCs) or neural networks (NNs), while a limited known number
of previously learned tasks has become solvable, so too has a large
number of unknown, never-tested tasks (in the field of Machine
Learning, this is known as generalization). PowerPlay’s ongoing
search is continually testing (and always trying to go beyond) the
generalization abilities of the most recent solver instance; some of
its search time has to be spent on demonstrating that self-invented
new tasks are not already solvable.

Often, however, much more time will have to be spent on mak-
ing sure that a newly modified solver did not forget any of the
possibly many previously learned skills. Problem solver modular-
ization (Section 3.3, especially 3.3.2) may greatly reduce this time
though, making PowerPlay prefer pairs whose validation does
not require the re-testing of too many previously learned skills,
thus decomposing at least part of the search space into some-
what independent regions, realizing divide and conquer strategies
as by-products of its built-in drive to invent and validate novel
tasks/skills as quickly as possible.

A biologically inspired hope is that as the problem solver is
becoming more and more general, it will find it easier and eas-
ier to solve externally posed tasks (Section 5), just like growing
infants often seem to re-use their playfully acquired skills to solve
teacher-given problems.

1.2. OUTLINE OF REMAINDER
Section 2 will introduce basic notation and Variant 1 of
the algorithmic framework PowerPlay, which invokes the

Frontiers in Psychology | Cognitive Science June 2013 | Volume 4 | Article 313 | 2

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

essential procedures Task Invention, Solver Modification,
and Correctness Demonstration. Section 3 will discuss details
of these procedures.

More detailed instantiations of PowerPlay will be described in
Section 4.3 (an evolutionary method, Algorithm 4.3) and Section
4.1 (an asymptotically optimal program search method,Algorithm
4.1).

As mentioned above, the skills acquired to solve self-generated
tasks may later greatly facilitate solutions to externally posed tasks,
just like the numerous motor skills learned by babies during curi-
ous exploration of its world often can be re-used later to maximize
external reward. Sections 5 and 6.1 will discuss variants of the
framework (e.g., Algorithm 6.1) in which some of the tasks can be
defined externally.

Section 6.1 will also describe a natural variant of the frame-
work that explicitly penalizes solution costs (including time and
space complexity), and allows for forgetting aspects of previous
solutions, provided the average performance on previously solved
tasks does not decrease.

Section 7 will point to illustrative experiments (Section 7.8)
described in separate papers (Srivastava et al., 2012b, 2013), and
discuss relations to previous work.

2. NOTATION AND ALGORITHMIC FRAMEWORK
POWERPLAY (VARIANT I)

B∗ denotes the set of finite sequences or bitstrings over the binary
alphabet B= {0, 1}, λ the empty string, x, y, z, p, q, r, u strings in
B∗, N the natural numbers, R the real numbers, ε ∈ R a positive
constant, m, n, n0, k, i, j, k, l non-negative integers, L(x) the num-
ber of bits in x (where L(λ)= 0), f, g functions mapping integers
to integers. We write f (n)=O(g (n)) if there exist positive c, n0

such that f(n)≤ cg (n) for all n> n0.
The computational architecture of the problem solver may be

a deterministic universal computer, or a more limited device such
as a finite state automaton or a feedforward neural network (NN)
(Bishop, 2006). All such problem solvers can be uniquely encoded
(Gödel, 1931) or implemented on universal computers (Church,
1936; Post, 1936; Turing, 1936) such as universal Turing Machines
(TM). Therefore, without loss of generality, the remainder of this
paper assumes a fixed universal reference computer whose input
programs and outputs are elements of B∗. A user-defined subset
S ⊂B∗ defines the set of possible problem solvers. For example,
if the problem solver’s architecture is itself a binary universal TM
or a standard computer, then S represents its set of possible pro-
grams, or a limited subset thereof – compare Sections 3.2 and 4.1.
If it is a feedforward NN, thenS could be a highly restricted subset
of programs encoding the NN’s possible topologies and weights
(floating point numbers) – compare Section 7.8 and the original
SLIM NN paper (Schmidhuber, 2012).

In what follows, for convenience I will often identify bitstrings
in B∗ with things they encode, such as integers, real-valued vectors,
weight matrices, or programs – the context will always make clear
what is meant.

The problem solver’s initial program is called s0. There is a set
of possible task descriptions T ⊂B∗. T may be the infinite set of
all possible computable descriptions of tasks with possibly com-
putable solutions, or just a small subset thereof. For example, a

simple task may require the solver to answer a particular input
pattern with a particular output pattern (more formal details on
pattern recognition tasks are given in Section 3.1.1). Or it may
require the solver to steer a robot toward a goal through a sequence
of actions (more formal details on sequential decision-making
tasks in unknown environments are given in Section 3.1.2). There
is a particular sequence of task descriptions T 1, T 2, . . ., where each
unique Ti ∈T (i= 1, 2, . . .) is chosen or “invented” by a search
method described below such that the solutions of T 1, T 2, . . ., Ti

can be computed by si, the i-th instance of the program, but not
by s i−1 (i= 1, 2, . . .). Each Ti consists of a unique problem identi-
fier that can be read by si through some built-in input processing
mechanism (e.g., input neurons of an NN (Schmidhuber, 2012)),
and a unique description of a deterministic procedure for deter-
mining whether the problem has been solved. Denote T≤i = {T 1,
. . ., Ti}; T<i = {T 1, . . ., Ti−1}.

A valid task Ti(i> 1) may require solving at least one previously
solved task Tk(k< i) more efficiently, by using less resources such
as storage space, computation time, energy, etc., thus achieving a
wow-effect. See Section 3.1.

Tasks and problem solver modifications are computed and vali-
dated by elements of another appropriate set of programs P ⊂B*.
Programs p ∈P may contain instructions for reading and execut-
ing (parts of) the code of the present problem solver and reading
(parts of) a recorded history Trace ∈B∗ of previous events that
led to the present solver. The algorithmic framework (Algorithm
2) incrementally trains the problem solver by finding p ∈P that
increase the set of solvable tasks.

3. TASK INVENTION, SOLVER MODIFICATION,
CORRECTNESS DEMO

A program tested by Algorithm 2 has to allocate its runtime to solve
three main jobs, namely, Task Invention, Solver Modification,
Correctness Demonstration. Now examples of each will be
listed.

3.1. IMPLEMENTING TASK INVENTION
Part of the job of pi ∈P is to compute Ti ∈T . This will consume
some of the total computation time allocated to pi. Two examples
will be given: pattern recognition tasks are treated in Section 3.1.1;
sequential decision-making tasks in Section 3.1.2.

3.1.1. Example: pattern recognition tasks
In the context of learning to recognize or analyze patterns, Ti could
be a 4-tuple (Ii, Oi, ti, ni)∈I ×O×N×N, where I, O⊂B∗,
and Ti is solved if si satisfies L(si)< ni and needs at most ti dis-
crete time steps to read Ii and compute Oi and halt. Here Ii itself
may be a pair (I 1

i , I 2
i) ∈ B∗ × B∗, where I1

i is constrained to be
the address of an image in a given database of patterns, and I2

i
is a pi-generated “query” that uniquely specifies how the image
should be classified through target pattern Oi, such that the same
image can be analyzed in different ways during different tasks. For
example, depending on the nature of the invented task sequence,
the problem solver could eventually learn that O= 1 if I 2

= 1001
(suppressing task indices) and the image addressed by I 1 contains
at least one black pixel, or if I 2

= 0111 and the image shows a cow.
Since the definition of task Ti includes bounds ni, ti on compu-

tational resources, Ti may be about solving at least one Tk(k< i)

www.frontiersin.org June 2013 | Volume 4 | Article 313 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

Algorithm 2: Algorithmic Framework PowerPlay (Variant I)

Initialize s0 in some way.
for i: = 1, 2, …do

repeat
Let a search algorithm (examples in Section 4) create a new candidate program p ∈ P .
Give p limited time to do (not necessarily in this order):
∗ Task Invention: Let p compute a task T ∈ T . See Section 3.1.
∗ Solver Modification: Let p compute a value of the variable q ∈ S ⊂ B∗ (a candidate for si)
by computing a modification of s i−1. See Section 3.2.
∗ Correctness Demonstration: Let p try to show that T cannot be solved by s i−1, but that
T and all Tk(k < i) can be solved by q. See Section 3.3.

until Correctness Demonstration was successful
Set pi: = p;Ti: = T ;si: = q; update Trace.

end for

more efficiently, corresponding to a wow-effect. This in turn may
also yield more efficient solutions to other tasks Tl(l< i, l 6= k).
In practical applications one may insist that such efficiency gains
must exceed a certain threshold ε > 0, to avoid task series causing
sequences of very minor improvements.

Note that ni and ti may be unnecessary in special cases such
as the problem solver being a fixed topology feedforward NN
(Bishop, 2006) whose input and target patterns have constant size
and whose computational efforts per pattern need constant time
and space resources.

Assuming sufficiently powerful S , P , in the beginning, trivial
tasks such as simply copying I 2

i onto Oi may be interesting in the
sense that PowerPlay can still validate and accept them, but they
will become boring (inadmissible) as soon as they are solvable by
solutions to previous tasks that generalize to new tasks.

3.1.2. Example: general decision-making tasks in dynamic
environments

In the more general context of general problem solving/sequential
decision making/reinforcement learning/reward optimization
(Newell and Simon, 1963; Kaelbling et al., 1996; Sutton and Barto,
1998) in unknown environments, there may be a set I ⊂B∗ of
possible task identification patterns and a set J ⊂B∗ of programs
that test properties of bitstrings. Ti could then encode a 4-tuple (Ii,
Ji, ti, ni)∈I ×J ×N×N of finite bitstrings with the following
interpretation: si must satisfy L(si)< ni and may spend at most ti

discrete time steps on first reading Ii and then interacting with an
environment through a sequence of perceptions and actions, to
achieve some computable goal defined by Ji.

More precisely, while Ti is being solved within ti time steps, at
any given time 1≤ t≤ ti, the internal state of the problem solver
at time t is denoted ui(t)∈B∗; its initial default value is ui(0).
For example, ui(t) may encode the current contents of the inter-
nal tape of a TM, or of certain addresses in the dynamic storage
area of a PC, or the present activations of an LSTM recurrent
NN (Hochreiter and Schmidhuber, 1997). At time t, si can spend
a constant number of elementary computational instructions to
copy the task description Ti or the present environmental input
xi(t)∈B∗ and a reward signal ri(t)∈B∗ (interpreted as a real num-
ber) into parts of ui(t), then update other parts of ui(t) (a function

of ui(t− 1)) and compute action yi(t)∈B∗ encoded as a part of
ui(t). yi(t) may affect the environment, and thus future inputs.

If P allows for programs that can dynamically acquire addi-
tional physical computational resources such as additional CPUs
and storage, then the above constant number of elementary com-
putational instructions should be replaced by a constant amount
of real time, to be measured by a reliable physical clock.

The sequence of 4-tuples (xi(t), ri(t), ui(t), yi(t)) (t= 1, . . ., ti)
gets recorded by the so-called trace Tracei ∈B∗. If at the end of the
interaction a desirable computable property Ji(Tracei) (computed
by applying program Ji to Tracei) is satisfied, then by definition the
task is solved. The set J of possible Ji may represent an infinite
set of all computable tasks with solutions computable by the given
hardware. For practical reasons, however, the set J of possible Ji

may also be restricted to bit sequences encoding just a few possible
goals. For example, Ji may only encode goals of the form: a robot
arm steered by program or “policy” si has reached a certain tar-
get (a desired final observation xi(ti) recorded in Tracei) without
measurably bumping into an obstacle along the way, that is, there
were no negative rewards, that is, ri(τ)≥ 0 for τ = 1 . . . ti.

If the environment is deterministic, e.g., a digital physics
simulation of a robot, then its current state can be encoded
as part of u(t), and it is straight-forward for Correctness
Demonstration to test whether some si still can solve a previously
solved task Tj(j< i). However, what if the environment is only par-
tially observable, like the real world, and non-stationary, changing in
unknown ways? Then Correctness Demonstration must check
whether si still produces the same action sequence in response to
the input sequence recorded in Tracej (often this replay-based test
will actually be computationally cheaper than a test involving the
environment). Achieving the same goal in a changed environment
must be considered a different task, even if the changes are just due to
noise on the environmental inputs. (Sure, in the real world sj(j> i)
might actually achieve Ji faster than si, given the description of
Ti, but Correctness Demonstration in general cannot know
whether this acceleration was due to plain luck – it must stick to
reproducing Tracej to make sure it did not forget anything.)

See Section 6.2, however, for a less strict PowerPlay variant
whose Correctness Demonstration directly interacts with the
real world to collect sufficient problem-solving statistics through

Frontiers in Psychology | Cognitive Science June 2013 | Volume 4 | Article 313 | 4

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

repeated trials, making certain assumptions about the probabilistic
nature of the environment, and the repeatability of experiments.

3.2. IMPLEMENTING SOLVER MODIFICATION
Part of the job of pi ∈P is also to compute si, possibly profiting
from having access to si−1, because only few changes of si−1 may
be necessary to come up with an si that goes beyond si−1. For
example, if the problem solver is a standard PC, then just a few
bits of the previous software si−1 may need to be changed.

For practical reasons, the set S of possible si may be greatly
restricted to bit sequences encoding programs that obey the syntax
of a standard programing language such as LISP or Java. In turn,
the programing language describingP should be greatly restricted
such that any pi ∈P can only produce syntactically correct si.

If the problem solver is a feedforward NN with pre-wired,
unmodifiable topology, then S will be restricted to those bit
sequences encoding valid weight matrices, si will encode its i-
th weight matrix, and P will be restricted to those p ∈P that
can produce some si ∈S . Depending on the user-defined pro-
graming language, pi may invoke complex pre-wired subprograms
(e.g., well-known learning algorithms) as primitive instructions –
compare separate experimental analysis (Srivastava et al., 2012b,
2013).

In general, p itself determines how much time to spend on
Solver Modification – enough time must be left for Task
Invention and Correctness Demonstration.

3.3. IMPLEMENTING CORRECTNESS DEMONSTRATION
Correctness demonstration may be the most time-consuming
obligation of pi. At first glance it may seem that as the sequence T 1,
T 2, . . . is growing, more and more time will be needed to show
that si but not s i−1 can solve T 1, T 2, . . ., Ti, because one naive
way of ensuring correctness is to re-test si on all previously solved
tasks. Theoretically more efficient ways are considered next.

3.3.1. Most general: proof search
The most general way of demonstrating correctness is to encode
(in read-only storage) an axiomatic system A that formally
describes computational properties of the problem solver and pos-
sible si, and to allow pi to search the space of possible proofs
derivable from A, using a proof searcher subroutine that sys-
tematically generates proofs until it finds a theorem stating that
si but not s i−1 solves T 1, T 2, . . ., Ti (proof search may achieve
this efficiently without explicitly re-testing si on T 1, T 2, . . ., Ti).
This could be done like in the Gödel Machine (Schmidhuber,
2009) (Section 7.2), which uses an online extension of Univer-
sal Search (Levin, 1973) to systematically test proof techniques:
proof-generating programs that may invoke special instructions
for generating axioms and applying inference rules to prolong an
initially empty proof∈B∗ by theorems, which are either axioms
or inferred from previous theorems through rules such as modus
ponens combined with unification, e.g., (Fitting, 1996). P can be
easily limited to programs generating only syntactically correct
proofs (Schmidhuber, 2009). A has to subsume axioms describing
how any instruction invoked by some s ∈S will change the state u
of the problem solver from one step to the next (such that proof
techniques can reason about the effects of any si). Other axioms

encode knowledge about arithmetics etc (such that proof tech-
niques can reason about spatial and temporal resources consumed
by si).

In what follows, Correctness Demonstrations will be dis-
cussed that are less general but sometimes more convenient to
implement.

3.3.2. Keeping track which components of the solver affect which
tasks

Often it is possible to partition s ∈S into components, such as
individual bits of the software of a PC, or weights of a NN. Here
the k-th component of s is denoted sk. For each k (k= 1, 2, . . .)
a variable list Lk

= (T k
1 , T k

2 , . . .) is introduced. Its initial value
before the start of PowerPlay is Lk

0 , an empty list. Whenever pi

found si and Ti at the end of Correctness Demonstration, each
Lk is updated as follows: its new value Lk

i is obtained by append-

ing to Lk
i−1 those Tj /∈ Lk

i−1(j = 1, . . . , i) whose current (possibly

revised) solutions now need sk at least once during the solution-
computing process, and deleting those Tj whose current solutions

do not use sk any more.
PowerPlay’s Correctness Demonstration thus has to test

only tasks in the union of all Lk
i . That is, if the most recent task

does not require changes of many components of s, and if the
changed bits do not affect many previous tasks, then Correctness
Demonstration may be very efficient.

Since every new task added to the repertoire is essentially
defined by the time required to invent it, to solve it, and to show that
no previous tasks became unsolvable in the process, PowerPlay is
generally“motivated”to invent tasks whose validity check does not
require too much computational effort. That is, PowerPlay will
often find pi that generate si−1-modifications that don’t affect too
many previous tasks, thus decomposing at least part of the spaces
of tasks and their solutions into more or less independent regions,
realizing divide and conquer strategies as by-products. Compare a
recent experimental analysis of this effect (Srivastava et al., 2012b,
2013).

3.3.3. Advantages of prefix code-based problem solvers
Let us restrict P such that tested p ∈P cannot change any com-
ponents of si−1 during Solver Modification, but can create a
new si only by adding new components to si−1. (This means
freezing all used components of any sk once Tk is found.) By
restricting S to self-delimiting prefix codes like those generated
by the Optimal Ordered Problem Solver (OOPS) (Schmidhuber,
2004b), one can now profit from a sometimes particularly efficient
type of Correctness Demonstration, ensuring that differences
between si and si−1 cannot affect solutions to T<i under certain
conditions. More precisely, to obtain si, half the search time is
spent on trying to process Ti first by si−1, extending or prolong-
ing si−1 only when the ongoing computation requests to add new
components through special instructions (Schmidhuber, 2004b) –
then Correctness Demonstration has less to do as the set
T<i is guaranteed to remain solvable, by induction. The other
half of the time is spent on processing Ti by a new sub-program
with new components s ′i , a part of si but not of si−1, where s ′i
may read s i−1 or invoke parts of si−1 as sub-programs to solve
T≤i – only then Correctness Demonstration has to test si

www.frontiersin.org June 2013 | Volume 4 | Article 313 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

not only on Ti but also on T<i (see (Schmidhuber, 2004b) for
details).

A simple but not very general way of doing something sim-
ilar is to interleave Task Invention, Solver Modification,
Correctness Demonstration as follows: restrict all p ∈P such
that they must define Ii:= i as the unique task identifier Ii for Ti

(see Section 3.1.2); restrict all s ∈S such that the input of Ii= i
automatically invokes sub-program s ′i , a part of si but not of si−1

(although s ′i may read si−1 or invoke parts of si−1 as sub-programs
to solve Ti). Restrict Ji to a subset of acceptable computational
outcomes (Section 3.1.2). Run si until it halts and has computed a
novel output acceptable by Ji that is different from all outputs com-
puted by the (halting) solutions to T<i ; this novel output becomes
Ti ’s goal. By induction over i, since all previously used components
of si−1 remain unmodified, the set T<i is guaranteed to remain
solvable, no matter s ′i . That is, Correctness Demonstration
on previous tasks becomes trivial. However, in this simple setup
there is no immediate generalization across tasks like in OOPS
(Schmidhuber, 2004b) and the previous paragraph: the trivial
task identifier i will always first invoke some s ′i different from
all s ′k(k 6= i), instead of allowing for solving a new task solely by
previously found code.

4. IMPLEMENTATIONS OF POWERPLAY
PowerPlay is a general framework that allows for plugging
in many differents search and learning algorithms. The present
section will discuss some of them.

4.1. IMPLEMENTATION BASED ON OPTIMAL ORDERED PROBLEM
SOLVER OOPS

The i-th problem is to find a program pi ∈P that creates si and
Ti and demonstrates that si but not si−1 can solve T 1, T 2, . . ., Ti.
This yields a perfectly ordered problem sequence for a variant of
the Optimal Ordered Problem Solver OOPS (Schmidhuber, 2004b)
(Algorithm 4.1).

While a candidate program p ∈P is executed, at any given dis-
crete time step t= 1, 2, . . ., its internal state or dynamical storage U
at time t is denoted U (t)∈B∗ (not to be confused with the solver’s
internal state u(t) of Section 3.1.2). Its initial default value is U (0).
E.g., U (t) could encode the current contents of the internal tape
of a TM (to be modified by p), or of certain cells in the dynamic
storage area of a PC.

Once pi is found, pi, si, Ti, Tracei (if applicable; see Section 3.1.2)
will be saved in unmodifiable read-only storage, possibly together
with other data observed during the search so far. This may greatly
facilitate the search for pk, k> i, since pk may contain instructions
for addressing and reading pj, sj, Tj, Tracej(j= 1, . . ., k− 1) and
for copying the read code into modifiable storage U, where pk may
further edit the code, and execute the result, which may be a useful
subprogram (Schmidhuber, 2004b).

Define a probability distribution P(p) on P to represent the
searcher’s initial bias (more likely programs p will be tested ear-
lier (Levin, 1973)). P could be based on program length, e.g.,
P(p)= 2−L(p), or on a probabilistic syntax diagram (Schmidhuber,
2004a,b). See Algorithm 4.1.

OOPS keeps doubling the time limit until there is sufficient
runtime for a sufficiently likely program to compute a novel,

previously unsolvable task, plus its solver, which provably does
not forget previous solutions. OOPS allocates time to programs
according to an asymptotically optimal universal search method
(Levin, 1973) for problems with easily verifiable solutions, that is,
solutions whose validity can be quickly tested. Given some prob-
lem class, if some unknown optimal program p requires f (k) steps
to solve a problem instance of size k and demonstrate the cor-
rectness of the result, then this search method will need at most
O(f (k)/P(p))=O(f (k)) steps – the constant factor 1/P(p) may be
large but does not depend on k. Since OOPS may re-use previously
generated solutions and solution-computing programs, however,
it may be possible to greatly reduce the constant factor associated
with plain universal search (Schmidhuber, 2004b).

The big difference to previous implementations of OOPS is that
PowerPlay has the additional freedom to define its own tasks. As
always, every new task added to the repertoire is essentially defined
by the time required to invent it, to solve it, and to demonstrate
that no previously learned skills got lost.

4.1.1. Building on existing OOPS source code
Existing OOPS source code (Schmidhuber, 2004a) uses a FORTH-
like universal programing language to defineP . It already contains
a framework for testing new code on previously solved tasks, and
for efficiently undoing all U -modifications of each tested program.
The source code requires few changes to implement the additional
task search described above.

4.1.2. Alternative problem solvers based on recurrent neural
networks

Recurrent NNs (RNNs, e.g., (Robinson and Fallside, 1987; Werbos,
1988; Schmidhuber, 1992a; Williams and Zipser, 1994; Hochre-
iter and Schmidhuber, 1997)) are general computers that allow
for both sequential and parallel computations, unlike the strictly
sequential FORTH-like language of Section 4.1.1. They can com-
pute any function computable by a standard PC (Schmidhuber,
1990). The original PowerPlay report (Schmidhuber, 2011) used
a fully connected RNN called RNN1 to define S , where wlk is
the real-valued weight on the directed connection between the l-
th and k-th neuron. To program RNN1 means to set the weight
matrix s=〈wlk

〉. Given enough neurons with appropriate activa-
tion functions and an appropriate 〈wlk

〉, Algorithm 4.1 can be
used to train s. P may itself be the set of weight matrices of
a separate RNN called RNN2, computing tasks for RNN1, and
modifications of RNN1, using techniques for network-modifying
networks as described in previous work (Schmidhuber, 1992b,
1993a,b).

In first experiments (Srivastava et al., 2012b, 2013), a par-
ticularly suited NN called a self-delimiting NN or SLIM NN
(Schmidhuber, 2012) is used. During program execution or acti-
vation spreading in the SLIM NN, lists are used to trace only those
neurons and connections used at least once. This also allows for
efficient resets of large NNs which may use only a small fraction of
their weights per task. Unlike standard RNNs, SLIM NNs are eas-
ily combined with techniques of asymptotically optimal program
search (Levin, 1973; Schmidhuber et al., 1997; Schmidhuber, 2003,
2004b) (Section 4.1). To address overfitting, instead of depending
on pre-wired regularizers and hyper-parameters (Bishop, 2006),

Frontiers in Psychology | Cognitive Science June 2013 | Volume 4 | Article 313 | 6

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

Algorithm 4.1: Implementing PowerPlay with Procedure OOPS (Schmidhuber, 2004b)

(see text for details) - initialize s0 and u (internal dynamic storage for s ∈ S) and U (internal dynamic storage for p ∈ P),
where each possible p is a sequence of subprograms p’, p”, p”’.
for i:= 1, 2, …do

set variable time limit tlim:= 1;
let the variable set H be empty;
set Boolean variable DONE: = FALSE
repeat

if H is empty then
set tlim := 2tlim; H := {p ∈ P : P(p)tlim≥ 1}

else
choose and remove some p from H
while not DONE and less than P(p)tlim time was spent on p do

execute the next time step of the following computation:
1. Let p’ compute some task T ∈ T and halt.
2. Let p” compute q ∈ S by modifying a copy of s i−1, and halt.
3. Let p”’ try to show that q but not si-1 can solve T 1, T 2, …, Ti-1, T.

If p”’ was successful set DONE:=TRUE.
end while
Undo all modifications of u and U due to p. This does not cost more time than executing p in the
while loop above (Schmidhuber, 2004b).

end if
until DONE
set pi:=p; Ti:=T; si:=q;
add a unique encoding of the 5-tuple (i, pi, si, Ti, Tracei) to read-only storage
readable by programs to be tested in the future.

end for

SLIM NNs can in principle learn to select by themselves their own
runtime and their own numbers of free parameters, becoming
fast and slim when necessary. Efficient SLIM NN learning algo-
rithms (LAs) track which weights are used for which tasks (Section
3.3.2), to greatly speed up performance evaluations in response to
limited weight changes. LAs may penalize the task-specific total
length of connections used by SLIM NNs implemented on the 3-
dimensional brain-like multi-processor hardware to be expected
in the future. This encourages SLIM NNs to solve many sub-
tasks by subsets of neurons that are physically close (Schmidhuber,
2012).

4.2. ADAPTING THE PROBABILITY DISTRIBUTION ON PROGRAMS
A straight-forward extension of the above works as follows: when-
ever a new pi is found, P is updated to make either only pi or all p1,
p2, . . ., pi more likely. Simple ways of doing this are described in
previous work (Schmidhuber et al., 1997). This may be justified to
the extent that future successful programs turn out to be similar
to previous ones.

4.3. IMPLEMENTATION BASED ON STOCHASTIC OR EVOLUTIONARY
SEARCH

A possibly simpler but less general approach is to use an evolu-
tionary algorithm to produce an s-modifying and task-generating
program p as requested by PowerPlay, according to Algorithm
4.3, which refers to the recurrent net problem solver of Section
4.1.2.

5. ADDING EXTERNAL TASKS
The growing repertoire of the problem solver may facilitate learn-
ing of solutions to externally posed tasks. For example, one may
modify PowerPlay such that for certain i, Ti is defined exter-
nally, instead of being invented by the system itself. In general,
the resulting si will contain an externally inserted bias in form
of code that will make some future self-generated tasks easier to
find than others. It should be possible to push the system in a
human-understandable or otherwise useful direction by regularly
inserting appropriate external goals. See Algorithm 6.1.

Another way of exploiting the growing repertoire is to sim-
ply copy si for some I and use it as a starting point for a search
for a solution to an externally posed task T, without insisting
that the modified si also can solve T 1, T 2, . . ., Ti. This may be
much faster than trying to solve T from scratch, to the extent the
solutions to self-generated tasks reflect general knowledge (code)
re-usable for T.

In general, however, it will be possible to design external
tasks whose solutions do not profit from those of self-generated
tasks – the latter even may turn out to slow down the search.

On the other hand, in the real world the benefits of curi-
ous exploration seem obvious. One should analyze theoretically
and experimentally under which conditions the creation of self-
generated tasks can accelerate the solution to externally generated
tasks – see (Schmidhuber, 1991a, 1999, 2002; Storck et al., 1995;
Cuccu et al., 2011; Luciw et al., 2011; Schaul et al., 2011; Yi et al.,
2011) for previous simple experimental studies in this vein.

www.frontiersin.org June 2013 | Volume 4 | Article 313 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

Algorithm 4.3: PowerPlay for RNNs Using Stochastic or Evolutionary Search

Randomly initialize RNN1’s variable weight matrix 〈wlk
〉 and use the result as s0 (see Section 4.1.2)

for i:= 1, 2, …do
set Boolean variable DONE = FALSE
repeat

use a black box optimization algorithm BBOA (many are possible (Rechenberg, 1971; Gomez et al., 2008; Wierstra et al., 2008;
Sehnke et al., 2010)) with adaptive parameter vector θ to create some T ∈ T (to define the task input to RNN1; see Section 3.1)
and a modification of s i−1, the current 〈wlk

〉 of RNN1, thus obtaining a new candidate q ∈S
if q but not s i−1 can solve T and all Tk(k < i) (see Sections 3.3, 3.3.2) then

set DONE = TRUE
end if

until DONE
set si:= q; 〈wlk

〉:= q; Ti:= T; (also store Tracei if applicable, see Section 3.1.2). Use the information stored so far to adapt the
parameters θ of the BBOA, e.g., by gradient-based search (Wierstra et al., 2008; Sehnke et al., 2010), or according to the principles of
evolutionary computation (Rechenberg, 1971; Gomez et al., 2008; Wierstra et al., 2008).

end for

5.1. SELF-REFERENCE THROUGH NOVEL TASK SEARCH AS AN
EXTERNAL TASK

PowerPlay’s i-th goal is to find a pi ∈P that creates Ti and si

(a modification of si−1) and shows that si but not si−1 can solve
T≤i . As s itself is becoming a more and more general problem
solver, s may help in many ways to achieve such goals in self-
referential fashion. For example, the old solver si−1 may be able to
read a unique formal description (provided by pi) of PowerPlay’s
i-th goal, viewing it as an external task, and produce an output
unambiguously describing a candidate for (Ti, si). If s has a the-
orem prover component (Section 3.3.1), si−1 might even output
a full proof of (Ti, si)’s validity; alternatively pi could just use the
possibly suboptimal suggestions of si−1 to narrow down and speed
up the search. This is one of the reasons why Section 2 already
mentioned that programs p ∈P should contain instructions for
reading (and running) the code of the present problem solver.

6. SOFTENING TASK ACCEPTANCE CRITERIA OF
POWERPLAY

The PowerPlay variants above insist that s may not solve new
tasks at the expense of forgetting to solve any previously solved
task within its previously established time and space bounds. For
example, let us consider the sequential decision-making tasks from
Section 3.1.2. Suppose the problem solver can already solve task
Tk= (Ik, Jk, tk, nk)∈I ×J ×N×N. A very similar but admissible
new task Ti= (Ik, Jk, ti, nk), (i> k), would be to solve Tk substan-
tially faster: ti< tk – ε, as long as Ti is not already solvable by si−1,
and no solution to some Tl(l< i) is forgotten in the process.

Here I discuss variants of PowerPlay that soften the accep-
tance criteria for new tasks in various ways, for example, by
allowing some of the computations of solutions to previous non-
external (Section 5) tasks to slow down by a certain amount of
time, provided the sum of their runtimes does not increase. This
also permits the system to invent new previously unsolved tasks at
the expense of slightly increasing time bounds for certain already
solved non-external tasks, but without decreasing the average per-
formance on the latter. Of course, PowerPlay has to be modified
accordingly, updating average runtime bounds when necessary.

Alternatively, one may allow for trading off space and time
constraints in reasonable ways, e.g., in the style of asymptotically
optimal Universal Search (Levin, 1973), which essentially trades
one bit of additional space complexity for a runtime speedup
factor of 2.

6.1. POWERPLAY VARIANT II: EXPLICITLY PENALIZING TIME AND
SPACE COMPLEXITY

Let us remove time and space bounds from the task definitions of
Section 3.1.2, since the modified cost-based PowerPlay frame-
work below (Algorithm 6.1) will handle computational costs (such
as time and space complexity of solutions) more directly. In the
present section, Ti encodes a tuple (Ii, Ji)∈I ×J with interpre-
tation: si must first read Ii and then interact with an environment
through a sequence of perceptions and actions, to achieve some
computable goal defined by Ji within a certain maximal time
interval tmax (a positive constant). Let t ′s (T) be tmax if s cannot
solve task T, otherwise it is the time needed to solve T by s. Let
l ′s(T) be the positive constant lmax if s cannot solve T, otherwise
it is the number of components of s needed to solve task T by
s. The non-negative real-valued reward r(T) for solving T is a
positive constant rnew for self-defined previously unsolvable T,
or user-defined if T is an external task solved by s (Section 5).
The real-valued cost Cost (s, TSET) of solving all tasks in a task
set TSET through s is a real-valued function of: all l ′s(T), t ′s (T)
(for all T ∈TSET), L(s), and 6T∈TSET r(T). For example, the
cost function Cost (s, TSET) = L(s) + α

∑
T∈TSET [t ′s (T) − r(T)]

encourages compact and fast solvers solving many different tasks
with the same components of s, where the real-valued positive
parameter α weighs space costs against time costs, and rnew should
exceed tmax to encourage solutions of novel self-generated tasks,
whose cost contributions should be below zero (alternative cost
definitions could also take into account energy consumption etc.).

Let us keep an analog of the remaining notation of Section
3.1.2, such as ui(t), xi(t), ri(t), yi(t), Tracei, Ji(Tracei). As always,
if the environment is unknown and possibly changing over time,
to test performance of a new solver s on a previous task Tk, only
Tracek is necessary – see Section 3.1.2. As always, let T≤i denote the

Frontiers in Psychology | Cognitive Science June 2013 | Volume 4 | Article 313 | 8

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

set containing all tasks T 1, . . ., Ti (note that if Ti=Tk for some
k< i then it will appear only once in T≤i), and let ε > 0 again
define what is acceptable progress:

By Algorithm 6.1, si may forget certain abilities of si−1, provided
that the overall performance as measured by Cost (si, T≤i) has
improved, either because a new task became solvable, or previous
tasks became solvable more efficiently.

Following Section 3.3, Correctness Demonstration can
often be facilitated, for example, by tracking which components of
si are used for solving which tasks (Section 3.3.2).

To further refine this approach, consider that in phase i, the
list Lk

i (defined in Section 3.3.2) contains all previously learned

tasks whose solutions depend on sk. This can be used to deter-
mine the current value Val(sk

i) of some component sk of s:

Val(sk
i) = −

∑
T∈Lk

i
Cost (si , T≤i). It is a simple exercise to invent

PowerPlay variants that do not forget valuable components as
easily as less valuable ones.

The implementations of Sections 4.1 and 4.3 are easily adapted
to the cost-based PowerPlay framework. Compare separate
papers (Srivastava et al., 2012b, 2013).

6.2. PROBABILISTIC POWERPLAY VARIANTS
Section 3.1.2 pointed out that in partially observable
and/or non-stationary unknown environments Correctness
Demonstration must use Tracek to check whether a new si still
knows how to solve an earlier task Tk(k< i). A less strict variant of
PowerPlay, however, will simply make certain assumptions about
the probabilistic nature of the environment and the repeatability
of trials, assuming that a limited fixed number of interactions
with the real world are sufficient to estimate the costs c∗i , ci in
Algorithm 6.1.

Another probabilistic way of softening PowerPlay is to add
new tasks without proof that s won’t forget solutions to previous
tasks, provided Correctness Demonstration can at least show
that the probability of forgetting any previous solution is below
some real-valued positive constant threshold.

7. DISCUSSION
Here I briefly mention illustrative experiments described in detail
elsewhere (Srivastava et al., 2012b, 2013) and discuss certain
aspects and limitations of PowerPlay. I also discuss related
research, in particular, why the present work is of interest despite
the recent advent of theoretically optimal universal problem
solvers (Section 7.2), and how it can be viewed as a greedy but fea-
sible and sound implementation of the formal theory of creativity
(Section 7.4).

7.1. OUTGROWING TRIVIAL TASKS – COMPRESSING PREVIOUS
SOLUTIONS

What prevents PowerPlay from inventing trivial tasks forever by
extreme modularization, simply allocating a previously unused
solver part to each new task, which thus becomes rather quickly
verifiable, as its solution does not affect solutions to previous tasks
(Section 3.3.3)? On realistic but general architectures such as PCs
and RNNs, at least once the upper storage size limit of s is reached,
PowerPlay will start “compressing” previous solutions, making s

generalize in the sense that the same relatively short piece of code
(some part of s) helps to solve different tasks.

With many computational architectures, this type of compres-
sion will start much earlier though, because new tasks solvable by
partial reuse of earlier discovered code will often be easier to find
than new tasks solvable by previously unused parts of s. This also
holds for growing architectures with potentially unlimited storage
space.

Compare also PowerPlay Variant II of Section 6.1 whose
tasks may explicitly require improving the average time and space
complexity of previous solutions by some minimal value.

In general, however, over time the system will find it more and
more difficult to invent novel tasks without forgetting previous
solutions, a bit like humans find it harder and harder to learn
truly novel behaviors once they are leaving behind the initial rapid
exploration phase typical for babies. Experiments with various
problem solver architectures (e.g., (Srivastava et al., 2012b, 2013))
help to analyze such effects in detail.

7.2. RELATION TO THEORETICALLY OPTIMAL UNIVERSAL PROBLEM
SOLVERS

The new millenium brought universal problem solvers that are
theoretically optimal in a certain sense. The fully self-referential
(Gödel, 1931) Gödel machine (Schmidhuber, 2006b, 2009) may
interact with some initially unknown, partially observable envi-
ronment to maximize future expected utility or reward by solving
arbitrary user-defined computational tasks. Its initial algorithm
is not hardwired; it can completely rewrite itself without essen-
tial limits apart from the limits of computability, but only if a
proof searcher embedded within the initial algorithm can first
prove that the rewrite is useful, according to the formalized utility
function taking into account the limited computational resources.
Self-rewrites due to this approach can be shown to be globally
optimal, relative to Gödel’s well-known fundamental restrictions
of provability (Gödel, 1931). To make sure the Gödel machine
is at least asymptotically optimal even before the first self-rewrite,
one may initialize it by Hutter’s non-self-referential but asymptoti-
cally fastest algorithm for all well-defined problems Hsearch (Hutter,
2002), which uses a hardwired brute force proof searcher and
ignores the costs of proof search. Assuming discrete input/output
domains X/Y ⊂B∗, a formal problem specification f: X→Y (say,
a functional description of how integers are decomposed into their
prime factors), and a particular x ∈X (say, an integer to be factor-
ized), Hsearch orders all proofs of an appropriate axiomatic system
by size to find programs q that for all z ∈X provably compute f(z)
within time bound tq(z). Simultaneously it spends most of its time
on executing the q with the best currently proven time bound tq(x).
Hsearch is as fast as the fastest algorithm that provably computes
f(z) for all z ∈X, save for a constant factor smaller than 1+ ε (arbi-
trarily small real-valued ε > 0) and an f-specific but x-independent
additive constant (Hutter, 2002). Given some problem, the Gödel
machine may decide to replace Hsearch by a faster method suf-
fering less from large constant overhead, but even if it doesn’t, its
performance won’t be less than asymptotically optimal.

Why doesn’t everybody use such universal problem solvers
for all computational real-world problems? Because most real-
world problems are so small that the ominous constant slowdowns

www.frontiersin.org June 2013 | Volume 4 | Article 313 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

Algorithm 6.1: PowerPlay Framework (Variant II) Explicitly Handling Costs of SolvingTasks

Initialize s0 in some way
for i:= 1, 2, …do

Create new global variables Ti ∈ T , si ∈ S , pi ∈ P , ci , c∗i ∈ R (to be fixed by the end of repeat)
repeat

Let a search algorithm (Section 4.1) set pi, a new candidate program. Give pi limited time to do:
∗ Task Invention: Unless the user specifies Ti (Section 5), let pi set Ti.
∗ Solver Modification: Let pi set si by computing a modification of si-1 (Section 3.2).
∗ Correctness Demonstration: Let pi compute ci := Cost (si , T≤i), and c∗i := Cost (si−1, T≤i)

until c∗i − ci > ε (minimal savings of costs such as time/space/etc on all tasks so far)
Freeze/store forever pi, Ti, si, ci, c∗i

end for

(potentially relevant at least before the first self-rewrite) may be
large enough to prevent the universal methods from being feasible.

PowerPlay, on the other hand, is designed to incrementally
build a practical more and more general problem solver that can
solve numerous tasks quickly, not in the asymptotic sense, but by
exploiting to the max its given particular search algorithm and
computational architecture, with all its space and time limitations,
including those reflected by constants ignored by the asymptotic
optimality notation.

As mentioned in Section 5, however, one must now analyze
under which conditions PowerPlay’s self-generated tasks can
accelerate the solution to externally generated tasks (compare pre-
vious experimental studies of this type (Schmidhuber,1991a,1999,
2002; Storck et al., 1995)).

7.3. CONNECTION TO TRADITIONAL ACTIVE LEARNING
Traditional active learning methods (Fedorov, 1972) such as
AdaBoost (Freund and Schapire, 1997) have a totally different
set-up and purpose: there the user provides a set of samples
to be learned, then each new classifier in a series of classi-
fiers focuses on samples badly classified by previous classifiers.
Open-ended PowerPlay, however, (1) considers arbitrary com-
putational problems (not necessarily classification tasks); (2) can
self-invent all computational tasks; (3) takes into account all com-
putational costs, ordering task candidates by time and space com-
plexity, relative to the present knowledge. There is no need for a
pre-defined global set of tasks that each new solver tries to solve
better, instead the task set continually grows based on which task
is easy to invent and validate, given what is already known.

7.4. GREEDY IMPLEMENTATION OF ASPECTS OF THE FORMAL
THEORY OF CREATIVITY

The Formal Theory of Creativity (Schmidhuber, 2006a, 2010) con-
siders agents living in initially unknown environments. At any
given time, such an agent uses a reinforcement learning (RL)
method (Kaelbling et al., 1996) to maximize not only expected
future external reward for achieving certain goals, but also intrin-
sic reward for improving an internal model of the environmental
responses to its actions, learning to better predict or compress1

1It is hard to overestimate the cognitive significance of compressing the observation
history. For example, consider the video-like image sequence perceived by your brain

the growing history of observations influenced by its behavior,
thus achieving wow-effects, actively learning skills to influence
the input stream such that it contains previously unknown but
learnable algorithmic regularities. I have argued that the the-
ory explains essential aspects of intelligence including selective
attention, curiosity, creativity, science, art, music, humor, e.g.,
(Schmidhuber, 2006a, 2010). Compare recent related work, e.g.,
(Salge et al., 2012; Barto, 2013; Dayan, 2013; Nehmzow et al., 2013;
Oudeyer et al., 2013).

Like PowerPlay, such a creative agent produces a sequence of
self-generated tasks and their solutions, each task still unsolvable
before learning, yet becoming solvable after learning. The costs of
learning as well as the learning progress are measured, and enter
the reward function. Thus, in the absence of external reward for
reaching user-defined goals, at any given time the agent is moti-
vated to invent a series of additional tasks that maximize future
expected learning progress.

For example, by restricting its input stream to self-generated
pairs (I, O)∈I ×O like in Section 3.1.1, and limiting it to predict
only O, given I (instead of also trying to predict future (I, O) pairs
from previous ones, which the general agent would do), there will
be a motivation to actively generate a sequence of (I, O) pairs such
that the O are first subjectively unpredictable from their I but
then become predictable with little effort, given the limitations of
whatever learning algorithm is used.

Below some of PowerPlay’s apparent drawbacks are listed in
light of the above, followed by certain thoughts relativizing those
drawbacks.

as you are moving through your office. The natural way of greatly compressing it is
to construct an internal 3D model of the office space (here I am generalizing a pre-
vious analysis of the emergence of the concept of space (Philipona et al., 2004)). The
3D model allows for re-computing the entire high-resolution video from a com-
pact sequence of very low-dimensional eye coordinates and eye directions. (The
model itself typically can be specified by far fewer bits of information than needed
to store raw pixel data of a long video.) Even if the 3D model is not quite precise,
only relatively few extra bits will be required to encode the observed deviations
from the predictions of the model. It seems clear that the enormous compression of
sensory inputs achievable through an internal 3D world model is the main reason
for the latter’s existence. Data compression also explains the emergence of office
space-independent internal representations of movable objects such as pens. Many
additional examples of data compression in art and science and humor can be found
in previous papers (Schmidhuber, 2006a, 2010).

Frontiers in Psychology | Cognitive Science June 2013 | Volume 4 | Article 313 | 10

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

1. Instead of maximizing future expected reward, PowerPlay
is greedy, always trying to find the simplest (easiest to find
and validate) task to add to the repertoire, or the simplest
way of improving the efficiency or compressibility of previ-
ous solutions, instead of looking further ahead, as a universal
RL method (Schmidhuber, 2006a, 2010) would do. That is,
PowerPlay may potentially sacrifice large long-term gains for
small short-term gains: the discovery of many easily solvable
tasks may at least temporarily prevent it from learning to solve
hard tasks.

However, on general computational architectures such as
RNNs (Section 4.1.2), PowerPlay is expected to soon run
out of easy tasks that are not yet solvable, due to the architec-
ture’s limited capacity and its unavoidable generalization effects
(many never-tried tasks will become solvable by solutions to the
few explicitly tested Ti). Compare Section 7.1.

2. The general creative agent above (Schmidhuber, 2006a, 2010)
is motivated to improve performance on the entire history of
previous still unsolved tasks, while PowerPlay may discard
much of this history, keeping only a selective list of previously
solved tasks.

However, as the system is interacting with its environment,
one could store the entire continually growing history, and
make sure that T always allows for defining the task of better
compressing the history so far.

3. PowerPlay as in Section 2 has a binary criterion for adding
knowledge (was the new task solvable without forgetting old
solutions?), while the general agent (Schmidhuber, 2006a,
2010) uses a more informative information-theoretic measure.

However, the cost-based PowerPlay framework (Algo-
rithm 6.1) of Section 6 offers similar, more flexible options,
rewarding compression or speedup of solutions to previously
solved tasks.

On the other hand, drawbacks of previous implementations of
formal creativity theory include:

1. Some previous approximative implementations (Schmidhu-
ber, 1991a; Storck et al., 1995) used traditional RL methods
(Kaelbling et al., 1996) with theoretically unlimited look-ahead.
But those are limited in many ways and not guaranteed to
work well in partially observable and/or non-stationary envi-
ronments where the reward function changes over time. They
won’t necessarily generate an optimal sequence of future tasks
or experiments.

2. Theoretically optimal implementations (Schmidhuber, 2006a,
2010) are currently still impractical, for reasons similar to those
discussed in Section 7.2.

Hence PowerPlay may be viewed as a greedy but feasible imple-
mentation of certain basic principles of creativity (Schmidhuber,
2006a, 2010). PowerPlay-based systems are continually moti-
vated to invent new tasks solvable by formerly unknown proce-
dures, or to compress or speed up problem-solving procedures
discovered earlier. Unlike previous implementations, PowerPlay
extracts from the lifelong experience history a sequence of clearly
identified and separated tasks with explicitly recorded solutions.

By design it cannot suffer from online learning problems affecting
its solver’s performance on previously solved problems.

7.5. BEYOND ALGORITHMIC ZERO-SUM TASK-INVENTION GAMES
PowerPlay’s most closely related previous task-inventing sys-
tem is the dual brain (Schmidhuber, 1997, 1999, 2002). There,
to address the computational costs of learning, and the costs of
measuring learning progress, computationally powerful encoders
and problem solvers (Schmidhuber, 1997, 2002) are implemented
as two very general, co-evolving, symmetric, opposing modules
called the right brain and the left brain. Both are able to influence
the construction of self-modifying probabilistic programs written
in a universal programing language. An internal storage for tem-
porary computational results of the programs is viewed as part of
the changing environment. Each module can suggest experiments
or self-invented computational tasks in the form of probabilis-
tic algorithms to be executed, and make predictions about their
effects, betting intrinsic reward on their outcomes. The opposing
module may accept such a bet in a zero-sum game by making a
contrary prediction, or reject it. In case of acceptance, the win-
ner is determined by executing the experiment and checking its
outcome; the intrinsic reward eventually gets transferred from the
surprised loser to the confirmed winner. Both modules try to max-
imize reward using a rather general RL algorithm (the so-called
success-story algorithm SSA (Schmidhuber et al., 1997)) designed
for complex stochastic policies (alternative RL algorithms could be
plugged in as well). Thus both modules are motivated to discover
novel tasks exhibiting novel algorithmic patterns/compressibility
(=surprising wow-effects), where the subjective baseline for nov-
elty is given by what the opponent already knows about the (exter-
nal or internal) world’s repetitive patterns. Since the execution of
any computational or physical action costs something (as it will
reduce the cumulative reward per time ratio), both modules are
motivated to focus on self-invented tasks that involve those parts
of the dynamic world that currently make surprises and learn-
ing progress easy, to minimize the costs of identifying promising
experiments and executing them. The system learns a partly hier-
archical structure of more and more complex skills or programs
necessary to solve the growing sequence of self-generated tasks,
reusing previously acquired simpler skills where this is benefi-
cial. Experimental studies exhibit several sequential developmental
stages, with and without external reward (Schmidhuber, 1999,
2002).

However, the dual brain system (Schmidhuber, 1999, 2002)
did not have a built-in guarantee that it cannot forget previously
learned skills, while PowerPlay as in Section 2 does (and the
time and space complexity-based variant Algorithm 6.1 of Section
6 can forget only if this improves the average efficiency of previous
solutions).

7.6. OPPOSING FORCES: IMPROVING GENERALIZATION THROUGH
COMPRESSION, BREAKING GENERALIZATION THROUGH NOVELTY
Two opposing forces are at work in PowerPlay. On the one hand,
the system continually tries to improve previously learned skills,
by speeding them up, and by compressing the used parameters
of the problem solver, reducing its effective size. The compression
drive tends to improve generalization performance, according to

www.frontiersin.org June 2013 | Volume 4 | Article 313 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

the principles of Occam’s Razor and Minimum Description Length
(MDL) and Minimum Message Length (MML) (Solomonoff, 1964,
1978; Kolmogorov, 1965; Wallace and Boulton, 1968; Rissanen,
1978; Wallace and Freeman, 1987; Li and Vitányi, 1997; Hutter,
2005). On the other hand, the system also continually tries to
invent new tasks that break the generalization capabilities of the
present solver.

PowerPlay’s time-minimizing search for new tasks auto-
matically manages the trade-off between these opposing forces.
Sometimes it is easier (because fewer computational resources are
required) to invent and solve a completely new, previously unsolv-
able problem. Sometimes it is easier to compress (or speed up)
solutions to previously invented problems.

7.7. RELATION TO GÖDEL’S SEQUENCE OF INCREASINGLY POWERFUL
AXIOMATIC SYSTEMS
In 1931, Kurt Gödel showed that for each sufficiently powerful
(ω-) consistent axiomatic system there is a statement that must be
true but cannot be proven from the axioms through an algorith-
mic theorem-proving procedure (Gödel, 1931). This unprovable
statement can then be added to the axioms, to obtain a more
powerful formal theory in which new formerly unprovable the-
orems become provable, without affecting previously provable
theorems.

In a sense, PowerPlay is doing something similar. Assume
the architecture of the solver is a universal computer (Gödel,
1931; Church, 1936; Post, 1936; Turing, 1936). Its software s can
be viewed as a theorem-proving procedure implementing certain
enumerable axioms and computable inference rules. PowerPlay
continually tries to modify s such that the previously proven the-
orems remain provable within certain time bounds, and a new
previously unprovable theorem becomes provable.

7.8. FIRST ILLUSTRATIVE EXPERIMENTS
First experiments with PowerPlay were reported in separate
papers (Srivastava et al., 2012b, 2013) (some experiments were also
briefly mentioned in the original report (Schmidhuber, 2011)).
Standard NNs as well as SLIM RNNs (Schmidhuber, 2012) were
used as computational problem-solving architectures. The weights
of SLIM RNNs can encode essentially arbitrary computable tasks
as well as arbitrary, self-delimiting, halting or non-halting pro-
grams solving those tasks (Section 4.1.2). Such programs may
affect both environment (through effectors) and internal states
encoding abstractions of event sequences. For example, in the
experiments a SLIM RNN learned to control a fovea that can
be shifted across a visual scene. The sequences of dynamically

changing sensory inputs from the fovea contributed to the for-
mation of internal SLIM RNN states, that is, vectors of neural
activations encoding possible goals. In open-ended fashion, our
PowerPlay-driven NNs learned to become increasingly gen-
eral solvers of self-invented tasks. Sometimes they added new
problem-solving procedures to the growing repertoire. Sometimes
they preferred to compress/speed up previously invented skills,
depending on what was computationally easiest at this point in
time. The NNs also exhibited interesting developmental stages,
incrementally moving from apparently simple self-invented prob-
lems to more complex ones. Furthermore, it was shown how
a PowerPlay-driven SLIM NN automatically self-modularizes
(Srivastava et al., 2013), frequently re-using code for previously
invented skills, keeping track which connections affect which tasks
(Section 3.3.2), always trying to invent novel tasks that can be
quickly validated because they do not require too many weight
changes affecting too many previous tasks.

8. WORDS OF CAUTION
The behavior of PowerPlay is determined by the nature and the
limitations of T , S , P , and its algorithm for searching P . If T
includes all computable task descriptions, and both S and P allow
for implementing arbitrary programs, and the search algorithm
is a general method for search in program space (Section 4), then
there are few limits to what PowerPlay may do (besides the limits
of computability (Gödel, 1931)).

It may not be advisable to let a general variant of PowerPlay
loose in an uncontrolled situation, e.g., on a multi-computer net-
work on the internet, possibly with access to control of physical
devices, and the potential to acquire additional computational
and physical resources (Section 3.1.2) through programs exe-
cuted during PowerPlay. Unlike, say, traditional virus programs,
PowerPlay-based systems will continually change in a way hard
to predict, incessantly inventing and solving novel, self-generated
tasks, only driven by a desire to increase their general problem-
solving capacity, perhaps a bit like many humans seek to increase
their power once their basic needs are satisfied. This type of
artificial curiosity/creativity, however, may conflict with human
intentions on occasion. On the other hand, unchecked curiosity
may sometimes also be harmful or fatal to the learning system
itself (Section 5) – curiosity can kill the cat.

ACKNOWLEDGMENTS
Thanks to Mark Ring, Bas Steunebrink, Faustino Gomez, Sohrob
Kazerounian, Hung Ngo, Leo Pape, Giuseppe Cuccu, and several
anonymous reviewers, for useful comments.

REFERENCES
Barto, A. (2013). “Intrinsic motiva-

tion and reinforcement learning,” in
Intrinsically Motivated Learning in
Natural and Artificial Systems, eds G.
Baldassarre, and M. Mirolli (Berlin:
Springer), 17–47.

Berlyne, D. E. (1954). A theory of
human curiosity. Br. J. Psychol. 45,
180–191.

Bishop, C. M. (2006). Pattern Recogni-
tion and Machine Learning. Springer.

Church, A. (1936). An unsolvable prob-
lem of elementary number the-
ory. Am. J. Math. 58, 345–363.
doi:10.2307/2371045

Cuccu, G., Luciw, M., Schmidhuber, J.,
and Gomez, F. (2011). “Intrinsically
motivated evolutionary search for
vision-based reinforcement learn-
ing,” in Proceedings of the 2011
IEEE Conference on Development
and Learning and Epigenetic Robotics
IEEE-ICDL-EPIROB (IEEE).

Dayan, P. (2013). “Exploration from
generalization mediated by multi-
ple controllers,” in Intrinsically Moti-
vated Learning in Natural and Artifi-
cial Systems, eds G. Baldassarre, and
M. Mirolli (Berlin: Springer), 73–91.

Fedorov, V. V. (1972). Theory of Optimal
Experiments. Academic Press.

Fitting, M. C. (1996). First-Order Logic
and Automated Theorem Proving.
Graduate Texts in Computer Science,
2nd Edn. Berlin: Springer-Verlag.

Freund, Y., and Schapire, R. E.
(1997). A decision-theoretic gener-
alization of on-line learning and
an application to boosting. J.
Comput. Syst. Sci. 55, 119–139.
doi:10.1006/jcss.1997.1504

Gödel, K. (1931). Über formal
unentscheidbare Sätze der
principia mathematica und
verwandter systeme I. Monatsh.
Mathematik Physik 38, 173–198.
doi:10.1007/BF01700692

Frontiers in Psychology | Cognitive Science June 2013 | Volume 4 | Article 313 | 12

http://dx.doi.org/10.2307/2371045
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1007/BF01700692
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

Gomez, F. J., Schmidhuber, J., and
Miikkulainen, R. (2008). Accelerated
neural evolution through coopera-
tively coevolved synapses. J. Mach.
Learn. Res. 9, 937–965.

Harlow, H. F., Harlow, M. K., and Meyer,
D. R. (1950). Novelty and curios-
ity as determinants of exploratory
behavior. J. Exp. Psychol. 41, 68–80.

Hochreiter, S., and Schmidhuber, J.
(1997). Long short-term mem-
ory. Neural Comput. 9, 1735–1780.
doi:10.1162/neco.1997.9.8.1735

Hutter, M. (2002). The fastest
and shortest algorithm for all
well-defined problems. Int. J.
Found. Comput. Sci. 13, 431–443.
doi:10.1142/S0129054102001199
(On J. Schmidhuber’s SNF grant
20-61847).

Hutter, M. (2005). Universal Artifi-
cial Intelligence: Sequential Decisions
based on Algorithmic Probability.
Berlin: Springer. (On J. Schmidhu-
ber’s SNF grant 20-61847).

Kaelbling, L. P., Littman, M. L., and
Moore, A. W. (1996). Reinforce-
ment learning: a survey. J. AI Res. 4,
237–285.

Kolmogorov, A. N. (1965). Three
approaches to the quantitative defi-
nition of information. Probl. Inform.
Transm. 1, 1–11.

Levin, L. A. (1973). Universal sequen-
tial search problems. Probl. Inform.
Transm. 9, 265–266.

Li, M., and Vitányi, P. M. B. (1997).
An Introduction to Kolmogorov Com-
plexity and its Applications, 2nd Edn.
Springer.

Luciw, M., Graziano, V., Ring, M.,
and Schmidhuber, J. (2011). “Arti-
ficial curiosity with planning for
autonomous perceptual and cogni-
tive development,” in Proceedings of
the First Joint Conference on Devel-
opment Learning and on Epigenetic
Robotics ICDL-EPIROB, Frankfurt.

Nehmzow, U., Gatsoulis, Y., Kerr, E.,
Condell, J., Siddique, N. H., and
McGinnity, T. M. (2013). “Novelty
detection as an intrinsic motivation
for cumulative learning robots,” in
Intrinsically Motivated Learning in
Natural and Artificial Systems, eds G.
Baldassarre, and M. Mirolli (Berlin:
Springer), 185–207.

Newell, A., and Simon, H. (1963).
“GPS, a program that simulates
human thought,” in Computers and
Thought, eds E. Feigenbaum, and J.
Feldman (New York: McGraw-Hill),
279–293.

Oudeyer, P.-Y., Baranes, A., and Kaplan,
F. (2013). “Intrinsically motivated
learning of real world sensorimo-
tor skills with developmental con-
straints,” in Intrinsically Motivated

Learning in Natural and Artifi-
cial Systems, eds G. Baldassarre,
and M. Mirolli (Berlin: Springer),
303–365.

Philipona, D., O’Regan, J. K., and Nadal,
J. P. (2004). “Perception of the struc-
ture of the physical world using
unknown sensors and effectors,” in
Advances in Neural Information Pro-
cessing Systems, Vol. 16 (MIT Press),
945–952.

Piaget, J. (1955). The Child’s Construc-
tion of Reality. London: Routledge
and Kegan Paul.

Post, E. L. (1936). Finite combi-
natory processes-formulation
1. J. Symbol. Log. 1, 103–105.
doi:10.2307/2269031

Rechenberg, I. (1971). Evolutionsstrate-
gie – Optimierung Technischer Sys-
teme nach Prinzipien der Biologischen
Evolution. Dissertation, Fromman-
Holzboog, Stuttgart.

Ring, M. B. (1994). Continual Learn-
ing in Reinforcement Environments.
Ph.D. thesis, University of Texas at
Austin, Austin, TX.

Rissanen, J. (1978). Modeling by
shortest data description. Automat-
ica 14, 465–471. doi:10.1016/0005-
1098(78)90005-5

Robinson, A. J., and Fallside, F.
(1987). The Utility Driven Dynamic
Error Propagation Network. Techni-
cal Report CUED/F-INFENG/TR.1.
Cambridge: Cambridge University
Engineering Department.

Salge, C., Glackin, C., and Polani, D.
(2012). Approximation of empow-
erment in the continuous domain.
Adv. Complex Syst. 16, 1250079.
doi:10.1142/S0219525912500798

Schaul, T., Yi, S., Wierstra, D., Gomez,
F., and Schmidhuber, J. (2011).
“Curiosity-driven optimization,” in
IEEE Congress on Evolutionary Com-
putation (CEC), New Orleans.

Schmidhuber, J. (1990). Dynamische
neuronale Netze und das fundamen-
tale raumzeitliche Lernproblem. Dis-
sertation, Institut für Informatik,
Technische Universität München,
München.

Schmidhuber, J. (1991a). “Curious
model-building control systems,”
in Proceedings of the International
Joint Conference on Neural Net-
works,Vol. 2 (Singapore: IEEE Press),
1458–1463.

Schmidhuber, J. (1991b). “A possibil-
ity for implementing curiosity and
boredom in model-building neural
controllers,” in Proceedings of the
International Conference on Simula-
tion of Adaptive Behavior: From Ani-
mals to Animats, eds J. A. Meyer, and
S. W. Wilson (MIT Press/Bradford
Books), 222–227.

Schmidhuber, J. (1992a). A fixed
size storage O(n3) time complex-
ity learning algorithm for fully
recurrent continually running net-
works. Neural Comput. 4, 243–248.
doi:10.1162/neco.1992.4.2.243

Schmidhuber, J. (1992b). Learning
to control fast-weight memo-
ries: an alternative to recurrent
nets. Neural Comput. 4, 131–139.
doi:10.1162/neco.1992.4.1.131

Schmidhuber, J. (1993a). “On decreas-
ing the ratio between learning
complexity and number of time-
varying variables in fully recurrent
nets,” in Proceedings of the Interna-
tional Conference on Artificial Neural
Networks (Amsterdam: Springer),
460–463.

Schmidhuber, J. (1993b). “A
self-referential weight matrix,”
in Proceedings of the International
Conference on Artificial Neural
Networks (Amsterdam: Springer),
446–451.

Schmidhuber, J. (1997). What’s
Interesting? Technical Report
IDSIA-35-97. IDSIA. Available
at: ftp://ftp.idsia.ch/pub/juergen/
interest.ps.gz; extended abstract in
Proceedings of the Snowbird’98,
UT.

Schmidhuber, J. (1999). “Artificial
curiosity based on discovering novel
algorithmic predictability through
coevolution,” in Congress on Evolu-
tionary Computation, eds P. Ange-
line, Z. Michalewicz, M. Schoenauer,
X. Yao, and Z. Zalzala (IEEE Press),
1612–1618.

Schmidhuber, J. (2002). “Exploring the
predictable,” in Advances in Evolu-
tionary Computing, eds A. Ghosh,
and S. Tsuitsui (Springer), 579–612.

Schmidhuber, J. (2003). “Bias-optimal
incremental problem solving,” in
Advances in Neural Information Pro-
cessing Systems 15 (NIPS 15), eds
S. Becker, S. Thrun, and K. Ober-
mayer (Cambridge, MA: MIT Press),
1571–1578.

Schmidhuber, J. (2004a). OOPS Source
Code in Crystalline Format. Available
at: http://www.idsia.ch/~juergen/
oopscode.c

Schmidhuber, J. (2004b). Optimal
ordered problem solver. Mach.
Learn. 54, 211–254. doi:10.10
23/B:MACH.0000015880.99707.b2

Schmidhuber, J. (2006a). Develop-
mental robotics, optimal artificial
curiosity, creativity, music, and the
fine arts. Conn. Sci. 18, 173–187.
doi:10.1080/09540090600768658

Schmidhuber, J. (2006b). “Gödel
machines: fully self-referential
optimal universal self-improvers,”
in Artificial General Intelligence,

eds B. Goertzel, and C. Pen-
nachin (Springer Verlag), 199–226.
arXiv:cs.LO/0309048.

Schmidhuber, J. (2009). Ultimate cog-
nition à la Gödel. Cognit. Com-
put. 1, 177–193. doi:10.1007/s12559-
009-9014-y

Schmidhuber, J. (2010). Formal the-
ory of creativity, fun, and intrin-
sic motivation (1990–2010). IEEE
Trans. Auton. Ment. Dev. 2, 230–247.
doi:10.1109/TAMD.2010.2056368

Schmidhuber, J. (2011). PowerPlay:
Training an Increasingly General
Problem Solver by Continually
Searching for the Simplest Still
Unsolvable Problem. Technical
Report arXiv:1112.5309v1 [cs.AI].

Schmidhuber, J. (2012). Self-Delimiting
Neural Networks. Technical Report
IDSIA-08-12, arXiv:1210.0118v1
[cs.NE], IDSIA.

Schmidhuber, J., Zhao, J., and Wier-
ing, M. (1997). Shifting inductive
bias with success-story algo-
rithm, adaptive Levin search, and
incremental self-improvement.
Mach. Learn. 28, 105–130.
doi:10.1023/A:1007383707642

Sehnke, F., Osendorfer, C., Rück-
stieß, T., Graves, A., Peters, J.,
and Schmidhuber, J. (2010).
Parameter-exploring policy gradi-
ents. Neural Netw. 23, 551–559.
doi:10.1016/j.neunet.2009.
12.004

Solomonoff, R. J. (1964). A formal the-
ory of inductive inference. Part I. Inf.
Control 7, 1–22. doi:10.1016/S0019-
9958(64)90131-7

Solomonoff, R. J. (1978). Complexity-
based induction systems. IEEE
Trans. Inf. Theory IT-24, 422–432.
doi:10.1109/TIT.1978.1055913

Srivastava, R. K., Steunebrink, B. R., and
Schmidhuber, J. (2012a). First Exper-
iments with PowerPlay. Technical
Report arXiv:1210.8385v1 [cs.AI].

Srivastava, R. K., Steunebrink, B. R.,
Stollenga, M., and Schmidhuber,
J. (2012b). “Continually adding
self-invented problems to the reper-
toire: first experiments with pow-
erplay,” in Proceedings of the
2012 IEEE Conference on Develop-
ment and Learning and Epigenetic
Robotics IEEE-ICDL-EPIROB, San
Diego.

Srivastava, R. K., Steunebrink, B. R.,
and Schmidhuber, J. (2013). First
experiments with PowerPlay.
Neural Netw. 41, 130–136.
doi:10.1016/j.neunet.2013.01.022

Storck, J., Hochreiter, S., and Schmid-
huber, J. (1995). “Reinforcement
driven information acquisition in
non-deterministic environments,”
in Proceedings of the International

www.frontiersin.org June 2013 | Volume 4 | Article 313 | 13

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1142/S0129054102001199
http://dx.doi.org/10.2307/2269031
http://dx.doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1016/0005-1098(78)90005-5
http://dx.doi.org/10.1142/S0219525912500798
http://dx.doi.org/10.1162/neco.1992.4.2.243
http://dx.doi.org/10.1162/neco.1992.4.1.131
http://www.idsia.ch/~juergen/oopscode.c
http://www.idsia.ch/~juergen/oopscode.c
http://dx.doi.org/10.10{\penalty -\@M }23/B:MACH.0000015880.99707.b2
http://dx.doi.org/10.10{\penalty -\@M }23/B:MACH.0000015880.99707.b2
http://dx.doi.org/10.1080/09540090600768658
http://dx.doi.org/10.1007/s12559-009-9014-y
http://dx.doi.org/10.1007/s12559-009-9014-y
http://dx.doi.org/10.1109/TAMD.2010.2056368
http://dx.doi.org/10.1023/A:1007383707642
http://dx.doi.org/10.1016/j.neunet.2009.{\penalty -\@M }12.004
http://dx.doi.org/10.1016/j.neunet.2009.{\penalty -\@M }12.004
http://dx.doi.org/10.1016/S0019-9958(64)90131-7
http://dx.doi.org/10.1016/S0019-9958(64)90131-7
http://dx.doi.org/10.1109/TIT.1978.1055913
http://dx.doi.org/10.1016/j.neunet.2013.01.022
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

Schmidhuber PowerPlay

Conference on Artificial Neural
Networks, Vol. 2 (Paris: EC2 & Cie),
159–164.

Sutton, R. S., and Barto, A. G.
(1998). Reinforcement Learning: An
Introduction. Cambridge, MA: MIT
Press.

Turing, A. M. (1936). On computable
numbers, with an application to the
Entscheidungsproblem. Proc. Lond.
Math. Soc. 41, 230–267. (Series 2).

Wallace, C. S., and Boulton, D. M.
(1968). An information theo-
retic measure for classification.
Comput. J. 11, 185–194.
doi:10.1093/comjnl/11.2.185

Wallace, C. S., and Freeman, P. R.
(1987). Estimation and inference by

compact coding. J. R. Stat. Soc. B
Stat. Methodol. 49, 240–265.

Werbos, P. J. (1988). Generalization
of backpropagation with application
to a recurrent gas market model.
Neural Netw. 1, doi:10.1016/0893-
6080(88)90007-X

Wierstra, D., Schaul, T., Peters, J., and
Schmidhuber, J. (2008). “Natural
evolution strategies,” in Congress of
Evolutionary Computation.

Williams, R. J., and Zipser, D. (1994).
“Gradient-based learning algo-
rithms for recurrent networks and
their computational complexity,” in
Back-Propagation: Theory, Architec-
tures and Applications (Hillsdale,
NJ: Erlbaum).

Yi, S., Gomez, F., and Schmidhuber,
J. (2011). “Planning to be sur-
prised: optimal Bayesian exploration
in dynamic environments,” in Pro-
ceedings of the Fourth Conference on
Artificial General Intelligence (AGI).
Mountain View, CA: Google.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 05 February 2013; accepted:
15 May 2013; published online: 07 June
2013.

Citation: Schmidhuber J (2013) Pow-
erPlay: training an increasingly general
problem solver by continually search-
ing for the simplest still unsolvable
problem. Front. Psychol. 4:313. doi:
10.3389/fpsyg.2013.00313
This article was submitted to Frontiers in
Cognitive Science, a specialty of Frontiers
in Psychology.
Copyright © 2013 Schmidhuber. This is
an open-access article distributed under
the terms of the Creative Commons Attri-
bution License, which permits use, distri-
bution and reproduction in other forums,
provided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Psychology | Cognitive Science June 2013 | Volume 4 | Article 313 | 14

http://dx.doi.org/10.1093/comjnl/11.2.185
http://dx.doi.org/10.1016/0893-6080(88)90007-X
http://dx.doi.org/10.1016/0893-6080(88)90007-X
http://dx.doi.org/10.3389/fpsyg.2013.00313
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive

	PowerPlay: training an increasingly general problem solver by continually searching for the simplest still unsolvable problem
	Introduction
	Basic ideas
	Outline of remainder

	Notation and algorithmic framework powerPlay (Variant I)
	Task invention, solver modification, correctness demo
	Implementing task invention
	Example: pattern recognition tasks
	Example: general decision-making tasks in dynamic environments

	Implementing solver modification
	Implementing correctness demonstration
	Most general: proof search
	Keeping track which components of the solver affect which tasks
	Advantages of prefix code-based problem solvers

	Implementations of PowerPlay
	Implementation based on optimal ordered problem solver OOPS
	Building on existing OOPS source code
	Alternative problem solvers based on recurrent neural networks

	Adapting the probability distribution on programs
	Implementation based on stochastic or evolutionary search

	Adding external tasks
	Self-reference through novel task search as an external task

	Softening task acceptance criteria of PowerPlay
	PowerPlay variant II: explicitly penalizing time and space complexity
	Probabilistic PowerPlay variants

	Discussion
	Outgrowing trivial tasks – compressing previous solutions
	Relation to theoretically optimal universal problem solvers
	Connection to traditional active learning
	Greedy implementation of aspects of the formal theory of creativity
	Beyond algorithmic zero-sum task-invention games
	Opposing forces: improving generalization through compression, breaking generalization through novelty
	Relation to gödel's sequence of increasingly powerful axiomatic systems
	First illustrative experiments

	Words of caution
	Acknowledgments
	References

