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Diffusion tensor imaging (DTI) of the substantia nigra has shown promise in detecting and

quantifying neurodegeneration in Parkinson disease (PD). It remains unknown, however,

whether differences inmicrostructural changes within the basal ganglia underlie PDmotor

subtypes. We investigated microstructural changes within the basal ganglia of mild to

moderately affected PD patients using DTI and sought to determine if microstructural

changes differ between the tremor dominant (TD) and postural instability/gait difficulty

(PIGD) subtypes. Fractional anisotropy, mean diffusivity, radial, and axial diffusivity were

obtained from bilateral caudate, putamen, globus pallidus, and substantia nigra of 21 PD

patients (12 TD and 9 PIGD) and 20 age-matched healthy controls. T-tests and ANOVA

methods were used to compare PD patients, subtypes, and controls, and Spearman

correlations tested for relationships between DTI and clinical measures. We found our

cohort of PD patients had reduced fractional anisotropy within the substantia nigra and

increased mean and radial diffusivity within the substantia nigra and globus pallidus

compared to controls, and that changes within those structures were largely driven

by the PIGD subtype. Across all PD patients fractional anisotropy within the substantia

nigra correlated with disease stage, while in PIGD patients increased diffusivity within the

globus pallidus correlated with disease stage and motor severity. We conclude that PIGD

patients have more severely affected microstructural changes within the substantia nigra

compared to TD, and that microstructural changes within the globus pallidus may be

particularly relevant for the manifestation of the PIGD subtype.

Keywords: Parkinson disease, motor subtypes, diffusion tensor imaging, basal ganglia

INTRODUCTION

Heterogeneous clinical phenotypes such as tremor dominant (TD) and postural instability/gait
difficulty (PIGD) have long been recognized in Parkinson disease (PD) (Jankovic et al., 1990). These
PD motor subtypes differ in their clinical course, with the PIGD subtype generally having a more
severe course and greater association with non-motor symptoms (Burn et al., 2006; Rajput et al.,
2009; van Rooden et al., 2011; de Lau et al., 2014). Improvement in motor function following deep
brain stimulation (DBS) may also differ between these subtypes (Katz et al., 2015). Refinement in
the clinical classification of PD subtypes is an important goal in PD research to better understand
risk factors, mechanism of disease, underlying genetics, and clinical course, as well as to inform
better treatment strategies.
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Diffusion tensor imaging (DTI), classically used to probe
water motion at the cellular level to investigate white matter
integrity, can be used to investigate gray matter microstructure in
vivo (Schwarz et al., 2013). The gray matter structure of greatest
interest in PD has been the substantia nigra (SN) (Chan et al.,
2007; Vaillancourt et al., 2009; Zhan et al., 2012; Zhang et al.,
2015). In general, decreased fractional anisotropy (FA) along with
increased diffusivity measures including mean diffusivity (MD),
axial diffusivity (AD), and radial diffusivity (RD) of the SN has
demonstrated promise in being able to distinguish PD patients
from healthy controls. These prior reports, however, have also
shown variable and at times conflicting results (Chan et al., 2007;
Vaillancourt et al., 2009; Schwarz et al., 2013).

In PD, few DTI studies to date have investigated
microstructural changes affecting basal ganglia beyond the
SN. In a study by Kim et al. increased MD in the caudate,
putamen, and globus pallidus in the absence of significant FA
changes was found in a cohort of PD patients (Kim et al., 2013).
In a study by Prodoehl et al. FA and diffusivity measures in the
caudate, putamen, globus pallidus, as well as SN were found to
have the ability to discriminate PD from controls as well as PD
from atypical parkinsonism and essential tremor (Prodoehl et al.,
2013). These studies suggest that the microstructure in a variety
of subcortical brain regions may be differentially affected in PD
and atypical parkinsonian disorders.

In the present study, we utilized DTI to investigate
microstructural changes within the basal ganglia, including the
caudate, putamen, globus pallidus and SN, in PD patients
and healthy controls. Our objectives were to: (1) investigate
changes in DTI measures (FA, MD, AD, and RD) that occur in
PD within the basal ganglia beyond just the substantia nigra,
and (2) determine if the DTI measures obtained from these
structures differ between the TD and PIGD motor subtypes of
PD when compared to controls. We further tested whether DTI
measures within the basal ganglia correlated with clinical disease
characteristics including duration, stage and severity.

MATERIALS AND METHODS

Subjects
Twenty-one patients diagnosed with idiopathic PD according to
the UK Parkinson Society Brain Bank criteria (Hughes et al.,
1992; 12 male; 61.1 ± 7.7 years) and 20 age-matched healthy
controls (11 male; 61.1± 9.0 years) were recruited. Patients were
Hoehn & Yahr (H&Y) stage I-III and known to be responsive to
dopaminergic medication. TD and PIGD scores were calculated
using the Movement Disorder Society Unified Parkinson Disease
Rating Scale (MDS-UPDRS) III motor scores for patients off
medication according to previously reported methods (Stebbins
et al., 2013). TD/PIGD ratios were generated at the time of
screening and subtypes assigned using a cutoff score of≥1.15 for
TD and ≤0.90 for PIGD; scores >0.9 and <1.15 were classified
as indeterminate. Indeterminate patients were excluded from
the study. Of the PD group, 12 were TD and 9 were PIGD.
All patients were evaluated using the total MDS-UPDRS for
clinical staging, the Montreal Cognitive Assessment (MoCA)
for cognitive evaluation, and the Beck Depression Inventory

(BDI) and Neuropsychiatric Inventory (NPI) for identification
of psychiatric comorbidities. The study was approved by the
local Institutional Review Board and patient consent followed the
principles of the Declaration of Helsinki.

DTI Imaging Acquisition
MR imaging was performed on a 3T Signa HDxt MRI (GE
Medical Systems, Milwaukee, WI) with an 8-channel brain
phased- array head coil. 32-direction diffusion imaging was
acquired with a spin echo, echo planar imaging (EPI) sequence
using the following parameters: FOV: 26 × 26 cm, TR/TE:
16000/92ms, matrix size: 128 × 128, slice thickness: 2mm, and
b-values of 0 and 1000 s/mm2.

Image Analysis
Image analysis was performed using the FMRIB Software Library
tools (FSL) (www.fmrib.ox.ac.uk/fsl). Source diffusion data was
initially pre-processed to remove the effects of eddy current
distortions with the FMRIB’s Diffusion Toolbox (FDT). Using
the FMRIB’s DTIfit tool, the eddy current corrected diffusion
data for each subject was processed to generate voxel-wise
maps of FA, MD, AD, and RD. The FMRIB’s Linear and Non-
Linear Image Registration Tools (FLIRT followed by FNIRT)
were then used to normalize each subject’s FA maps to 1 ×

1 × 1mm3 Montreal Neurological Institute (MNI) 152 standard
space using the FMRIB58-FA template as the target. This non-
linear transformation was performed to allow calculation of
inverse normalizations (using the invwarp tool) for transposition
of ROI masks to subject space as described below.

ROI Masks
Using the Harvard-Oxford cortical and subcortical structural
probabilistic atlas provided in FSLView, masks were extracted
from the labels for the right and left caudate nucleus, putamen
and globus pallidus. The probabilistic masks for each structure
were was then thresholded using the fslmaths tool to a probability
of 80% to decrease the possibility of overlap with adjacent
structures. As standard atlases such as the Harvard-Oxford atlas
lack labels for the SN, the Atlas of the Basal Ganglia (ATAG)
MNI 04 atlas (Keuken et al., 2014) was used to extract SN masks.
First the atlas was downsampled from 0.4 × 0.4 × 0.4 to 1 × 1
× 1mm3 in MNI 152 space. Then, in a similar fashion to the
caudate, putamen and globus pallidus, FSLView was then used
to extract the standard space mask for each SN and fslmaths was
used to threshold the resulting masks to 50%.

ROI Transposition to Subject Space and
Quality Assurance
The FMRIB’s invwarp tool was used to calculate the inverse
warp of the previously described non-linear transformation of
the FA maps to standard space. This inverse transformation was
then used with the applywarp tool to de-normalize all eight
thresholded, standard space masks to the subject space for each
study participant. This was performed so that all data evaluation
could be done in subject space to avoid possible datamodification
by the normalization process. A blinded quality assessment
review was then performed by a board certified neuroradiologist
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FIGURE 1 | Representative axial fractional anisotropy (FA) maps from

one subject showing the locations of the ROIs after transformation to

subject space. Blue, caudate nucleus; red, putamen; green, globus pallidus;

yellow, substantia nigra.

(J.M.H.), in which the ROIs in subject space were superimposed
on each subject’s FA map to confirm the final accuracy of the
ROI placement (Figure 1). From this review, six study subjects
(four controls and two patients) had either one or twomisaligned
masks (right SN in two controls and one PD patient, right caudate
in two controls and one PD patient, left SN in one PD patient and
left caudate in one control and one PD patient). The misaligned
ROIs were removed from subsequent analysis.

Extraction of DTI Measures for Analysis
Following the blinded qualitative assessment, the FMRIB’s fslstats
tool was used to apply the native space masks for each subcortical
structure to the voxel wise maps of FA, MD, AD, and RD in each
study subject and extract the mean values.

Statistical Analyses
Demographic variables were compared using two-tailed t-tests
and chi-squared tests with significance was set to p < 0.05.
Two sided Satterthwaite T-test contrasts were used to compare
FA, MD, AD, and RD values of right and left deep gray matter
structures in all PD patients vs. controls, with significance set
to p < 0.05. To determine if DTI measures differ between
PD subtypes, we used an analysis of variance (ANOVA) with
unequal variance and Satterthwaite degrees of freedom to test
for a significant group effect across all groups and between each
pairwise group comparison (TD vs. Controls, PIGD vs. Controls,
and TD vs. PIGD). If the overall ANOVA F-test identified any
differences among the three groups, then pairwise comparisons
were made among the groups using a Tukey-Kramer adjustment
for multiple comparisons.

Partial Spearman’s correlations by group (all PD patients, TD,
and PIGD) and adjusted for age were used to check for post
hoc correlations between FA and MD and disease duration (in
years), disease stage (H&Y stage), and motor severity (MDS-
UPDRS III) for those basal ganglia structures identified as having
significant group differences in the ANOVA affecting at least one
side. Clinical correlations with AD and RD were not tested in
order to limit the overall number of correlations tested and to

avoid multicollinearity issues as these measures were strongly
correlated with MD in our control dataset (MD to AD with mean
rho: 0.93± 0.065; and MD to RD with mean rho: 0.98± 0.017).

As patients with PD generally have an asymmetric onset
and progression of their symptoms, we repeated our statistical
analysis using an approach to try to control for the predominant
symptom side and assess whether aligning the presumed more
affected sides in patients altered our findings. To do this, patients
who had their left side body (right brain) affected at onset
had their brain data flipped right to left such that the left
brain represented the presumably more affected side across PD
patients. Similar statistical tests were then applied as described
above with the exception that an average of the left and right
sides was used for the healthy control values when making
comparisons between PD patients and healthy controls.

RESULTS

Subject Characteristics
Healthy controls (N = 20) and PD patients (N = 21) were
closely matched in age (61.1 ± 9.0 vs. 61.1 ± 7.7, p = 0.97)
and gender (11M:9F vs. 12M:9F, p= 0.89). Patient demographics
broken down by motor subtype are shown in Table 1. Disease
severity ranged from mild to moderate (mean H&Y = 2.2 ±

0.7). No significant differences in motor severity were seen, as
per MDS-UPDRS III, in either “off” or “on” medication states
between TD and PIGD. No significant differences were identified
between the groups in the MoCA (TD: 27.8 ± 1.5, PIGD: 27.6 ±
1.7; p = 0.79), BDI (TD: 8.5 ± 5.3, PIGD: 7.8 ± 6.4; p = 0.79),
and NPI (TD: 2.2± 1.8, PIGD: 3.1± 3.4; p= 0.46).

Comparison of PD Patients to Healthy
Controls
PD patients had reduced FA in the right SN (p = 0.020), and
increased MD in the SN (left: p = 0.039; right: p = 0.020) and
globus pallidus (left: p= 0.020; right: p= 0.049) when compared
to controls (Table 2). Additionally, PD patients had increased RD
in the right SN (p= 0.022) and bilateral globus pallidus (left: p=
0.026; right: p = 0.049). No significant differences were seen for
the caudate or putamen. When adjusting data for predominant
motor symptom side, reduced FA persisted in the SN ipsilateral
to the more affected body side (p = 0.034) and a difference
in FA in the SN contralateral to the more affected body side
came close to being significant (p = 0.007). In addition, the
findings of increased MD in the SN (contralateral to the more
affected side: p = 0.027; ipsilateral to the more affected side:
p = 0.008) and globus pallidus (contralateral to the more affected
side: p = 0.023; ipsilateral to the more affected side: p = 0.021),
as well as increased RD in the SN ipsilateral to the more affected
side (p = 0.013) and bilateral globus pallidus (contralateral to
the more affected side: p = 0.025; ipsilateral to the more affected
side: p = 0.025), were still present.

Comparison of TD and PIGD Motor
Subtypes and Healthy Controls
ANOVA testing across the TD and PIGD motor subtypes and
healthy controls revealed significant differences in FA (F = 6.3,
p = 0.007), MD (F = 4.4, p = 0.029), and RD (F = 5.2,p =
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TABLE 1 | Patient demographic data.

Parkinson Disease Patients

All TD PIGD p-value

N = 21 N = 12 N = 9 (TD vs. PIGD)

Age, y 61.1 ± 7.7 60.9 ± 8.3 61.4 ± 7.4 0.88

Gender (M:F) 12:9 9:3 3:6 0.06

Initial side affected (L:R) 9:12 4:8 5:4 0.33

Disease duration, y 5.5 ± 3.4 5.2 ± 2.7 5.9 ± 4.3 0.64

Disease stage (H&Y) 2.2 ± 0.7 2.0 ± 0.4 2.5 ± 0.9 0.08

MDS-UPDRS I 9.6 ± 4.5 9.1 ± 4.3 10.2 ± 5.0 0.58

MDS-UPDRS II 9.8 ± 6.7 7.3 ± 3.5 13.1 ± 8.6 0.05

MDS-UPDRS III

Off 31.4 ± 10.0 33.5 ± 10.0 28.7 ± 10.0 0.29

On 22.2 ± 9.6 23.5 ± 8.4 20.6 ± 11.4 0.50

MDS-UPDRS IV 1.9 ± 2.1 1.8 ± 1.8 2.0 ± 2.6 0.80

LEDD,mg 505.4 ± 366.7 537.3 ± 384.0 462.9 ± 360.4 0.66

MoCA 27.7 ± 1.5 27.8 ± 1.5 27.6 ± 1.7 0.78

BDI 8.2 ± 5.7 8.5 ± 5.3 7.8 ± 6.4 0.78

NPI-Severity 2.6 ± 3.4 2.2 ± 1.8 3.1 ± 3.4 0.42

Values shown as mean ± sd except where indicated. p-values calculated using two-tailed independent sample t-tests except for gender and initial side affected differences tested

using chi-square test. BDI, Beck Depression Inventory; H&Y, Hoehn & Yahr score; LEDD, Levodopa equivalent daily dose; MDS-UPDRS, Movement Disorder Society-Unified Parkinson

Disease Rating Scale; MoCA, Montreal Cognitive Assessment; NPI, Neuropsychiatric Inventory; PIGD, Postural Instability Gait Difficulty; TD, Tremor Dominant.

0.017) in the left SN (Table 3). Pairwise comparisons showed
that these differences were driven by the PIGD subtype and
that no significant differences were seen between TD patients
and controls (Table 3, Figure 2). Similar group differences were
seen in the right SN, but these did not reach significance. No
significant differences across groups were seen for the caudate,
putamen, or globus pallidus. When accounting for predominant
motor symptom side, similar differences in DTI measures across
groups were seen in the SN ipsilateral to the more affected side
(FA: F = 6.6, p = 0.008; MD: F = 5.3, p = 0.018; RD: F = 5.5,
p = 0.016). A difference across groups in MD within the globus
pallidus contralateral to the more affected side also reached our
significance threshold (F = 4.6, p = 0.021). For each of these
findings, pairwise comparisons showed revealed that the group
differences were driven by the PIGD subtype (Table 3).

Clinical Correlations with DTI Measures
Across all PD patients, H&Y disease stage showed a negative
correlation with FA in the left SN (r= −0.482, p= 0.037).Within
TD, there were no significant correlations between DTI measures
in the SN or globus pallidus and clinical measures. In the PIGD
group, however, MD in the globus pallidus showed a positive
correlation with H&Y disease stage (right: r = 0.764, p = 0.027)
and MDS-UPDRS III scores (left: MD: r = 0.814, p = 0.014).
After adjusting our data for the predominant motor symptom
side, no significant correlations were found between FA in the SN
and clinical assessments in the PD patients. In the PIGD group,
MD in the globus pallidus ipsilateral to the more affected side was
positively correlated withMDS-UPDRS III scores (r = 0.785, p=
0.021). No significant correlations were seen between any of DTI
measures and disease duration either across or within subtypes.

DISCUSSION

Our results build upon prior reports of reduced FA and increased
diffusivity measures within the SN in PD by demonstrating that
such changes are much more prominent in PIGD patients than
TD patients. Furthermore, increased MD in the globus pallidus
in PD patients was also driven by the PIGD patients, and these
changes correlated with disease stage and motor severity in
patients with this motor subtype.

Decreased FA along with increasedMD and RD within the SN
have been previously reported in a 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced murine PD model (Boska
et al., 2007). In this study, RD and MD values correlated with the
degree of depletion of the dopaminergic nigrostriatal neurons.
In PD patients, decreased FA within the SN have also been
detected using DTI. Cochrane and Ebmeier, in a meta-analysis
of DTI studies and Parkinsonian syndromes, noted that 7 out of
9 PD studies reported significantly decreased nigral FA values
(Cochrane and Ebmeier, 2013) compared to controls. Schwarz
et al. in another meta-analysis, described 9 out of 10 studies
reporting decreased FA in the SN of PD patients, however, with a
wide range of FA values reported (Schwarz et al., 2013). Although
our absolute FA values were higher than those obtained from
the standard reference DTI atlas in the report by Schwarz et al.
they were comparable to a number of prior studies (Vaillancourt
et al., 2009; Péran et al., 2010; Du et al., 2012; Zhan et al.,
2012).

Vaillacourt et al. recently reported that with accurate
placement of SN ROIs, FA in the SN could separate PD patients
and controls with 100% sensitivity and specificity (Vaillancourt
et al., 2009). Given the neuropathologic hallmark of PD is
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TABLE 2 | DTI measures across study subjects.

Study Subjects PD vs. HC

Controls PD TD PIGD p-values (side-adjusted)

FA VALUES

Substantia Nigra L 0.63 ± 0.07 0.62 ± 0.06 0.65 ± 0.06 0.57 ± 0.05 0.4501 (0.0700)

R 0.67 ± 0.06 0.62 ± 0.07 0.63 ± 0.06 0.60 ± 0.08 0.0198 (0.0337)

Globus Pallidus L 0.49 ± 0.10 0.44 ± 0.08 0.44 ± 0.08 0.45 ± 0.09 0.1067 (0.0794)

R 0.48 ± 0.08 0.44 ± 0.06 0.42 ± 0.07 0.45 ± 0.06 0.1009 (0.1022)

Caudate L 0.23 ± 0.05 0.24 ± 0.07 0.24 ± 0.08 0.23 ±0.07 0.5538 (0.5424)

R 0.22 ± 0.05 0.23 ± 0.05 0.23 ± 0.04 0.24 ± 0.07 0.4052 (0.5340)

Putamen L 0.31 ± 0.08 0.30 ± 0.06 0.29 ± 0.06 0.30 ± 0.08 0.4109 (0.4849)

R 0.30 ± 0.04 0.29 ± 0.05 0.28 ± 0.04 0.30 ± 0.06 0.6879 (0.4881)

MD VALUES (× 10−3 mm2/s)

Substantia Nigra L 0.73 ± 0.23 0.88 ± 0.2 0.79 ± 0.16 0.98 ± 0.20 0.0385 (0.0273)

R 0.77 ± 0.20 0.94 ± 0.22 0.90 ± 0.19 0.99 ± 0.25 0.0204 (0.0083)

Globus Pallidus L 0.70 ± 0.12 0.79 ± 0.11 0.77 ± 0.11 0.81 ± 0.10 0.0197 (0.0225)

R 0.74 ± 0.13 0.81 ± 0.10 0.81 ± 0.10 0.82 ± 0.10 0.0492 (0.0211)

Caudate L 1.06 ± 0.57 0.98 ± 0.61 0.95 ± 0.54 1.02 ± 0.73 0.6368 (0.6726)

R 1.10 ± 0.55 0.99 ± 0.50 0.95 ± 0.41 1.05 ± 0.64 0.4904 (0.6880)

Putamen L 0.75 ± 0.13 0.78 ± 0.05 0.77 ± 0.00 0.79 ± 0.00 0.3282 (0.6503)

R 0.79 ± 0.07 0.79 ± 0.04 0.79 ± 0.00 0.78 ± 0.00 0.7880 (0.5120)

AD VALUES (× 10−3 mm2/s)

Substantia Nigra L 1.33 ±0.28 1.50 ± 0.31 1.48 ± 0.19 1.52 ± 0.42 0.0901 (0.1171)

R 1.46 ± 0.28 1.61 ± 0.34 1.62 ± 0.24 1.59 ± 0.45 0.1431 (0.0614)

Globus Pallidus L 1.06 ± 0.12 1.14 ± 0.13 1.11 ± 0.13 1.18 ± 0.13 0.0526 (0.0762)

R 1.10 ± 0.15 1.17 ± 0.13 1.15 ± 0.13 1.21 ± 0.14 0.1115 (0.0579)

Caudate L 1.25 ± 0.60 1.17 ± 0.63 1.14 ± 0.57 1.21 ± 0.76 0.6658 (0.6907)

R 1.30 ± 0.58 1.17 ± 0.53 1.13 ± 0.44 1.24 ± 0.67 0.4925 (0.7126)

Putamen L 0.98 ± 0.12 1.01 ± 0.06 1.00 ± 0.00 1.03 ± 0.00 0.3384 (0.8304)

R 1.03 ± 0.10 1.02 ± 0.07 1.01 ± 0.00 1.02 ± 0.00 0.6702 (0.6418)

RD VALUES (× 10−3 mm2/s)

Substantia Nigra L 0.43 ± 0.21 0.55 ± 0.19 0.45 ± 0.15 0.66 ± 0.18 0.0790 (0.0375)

R 0.43 ± 0.18 0.58 ± 0.21 0.53 ± 0.17 0.64 ± 0.25 0.0221 (0.0123)

Globus Pallidus L 0.52 ± 0.14 0.61 ± 0.11 0.60 ± 0.11 0.62 ± 0.12 0.0263 (0.0245)

R 0.56 ± 0.13 0.63 ± 0.10 0.64 ± 0.10 0.63 ± 0.10 0.0485 (0.0254)

Caudate L 0.97 ± 0.55 0.88 ± 0.60 0.85 ± 0.53 0.93 ± 0.71 0.6210 (0.6635)

R 1.01 ± 0.53 0.89 ± 0.49 0.85 ± 0.39 0.95 ± 0.62 0.4908 (0.6750)

Putamen L 0.63 ± 0.14 0.67 ± 0.06 0.66 ± 0.00 0.67 ± 0.00 0.3625 (0.6028)

R 0.67 ± 0.07 0.67 ± 0.04 0.68 ± 0.00 0.66 ± 0.00 0.9133 (0.4923)

Values shown as mean ± sd except where indicated. p-values calculated using two-tailed independent samples t-tests. Significant p-values, p < 0.05, are shown in bold. See text for

details on side adjustment analysis in PD patients. For side-adjusted values, L is contralateral to the more affected body side and R is ipsilateral to the more affected body side. AD,

Axial Diffusivity; FA, Fractional Anisotropy; MD, Mean Diffusivity; PD, Parkinson disease; PIGD, Postural Instability/Gait Difficulty; RD, Radial Diffusivity; TD, Tremor Dominant.

the loss of nigrostriatal dopaminergic neurons (Rudow et al.,
2008), our findings help further support that abnormal diffusivity
measures in the SN stem directly from neurodegeneration of
nigral neurons. A recent DTI study involving a large population
of patients from the Parkinson’s Progression Marker Initiative
(PPMI) however, failed to duplicate the degree of sensitivity in
Vaillacourt’s report despite using the same ROI drawing approach
(Schuff et al., 2015).

Only a small number of DTI studies to date have reported
microstructural abnormalities outside the SN in PD. Increased
MD in the globus pallidus, in line with our findings, was

reported by Kim et al. in a study using voxel-based Tract-Based
Spatial Statistics (TBSS; Kim et al., 2013). In that study, findings
also included increased diffusivity in the putamen, caudate,
thalamus and multiple white matter tracts, despite absence of
FA or MD changes in the SN. Pallidal changes in PD are
further supported by a pathologic study by Rajput et al. who
measured dopamine concentrations in the basal ganglia in post-
mortem fresh brain tissue of PD patients using high performance
liquid chromatography with electrochemical detection (Rajput
et al., 2008). Decreased levels of dopamine were found both
in the internal and external globus pallidus of PD patients in
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TABLE 3 | Pairwise group comparisons of DTI measures in bilateral basal ganglia.

FA values ANOVA Pairwise comparisons

F/p-values F/p (side-adjusted) p-values (side-adjusted)

TD vs. HC PIGD vs. HC TD vs. PIGD

Substantia Nigra L 6.30/0.0073 2.07/0.1612 0.6867 (0.5991) 0.0351 (0.1561) 0.0096 (0.4877)

R 3.01/0.0808 6.55/0.0078 0.2270 (0.8649) 0.1094 (0.0077) 0.6108 (0.0344)

Globus Pallidus L 1.37/0.2795 1.61/0.2278 – – –

R 1.76/0.1966 2.37/0.1218 – – –

Caudate L 0.21/0.8154 0.20/0.8240 – –

R 0.35/0.7126 0.19/0.8274 – – –

Putamen L 0.48/0.6299 0.35/0.7113 – – –

R 0.63/0.5459 0.85/0.4455 – –

MD VALUES (× 10−3 mm2/s)

Substantia Nigra L 4.43/0.0285 3.04/0.0770 0.6624 (0.3670) 0.0233 (0.0767) 0.0912 (0.4639)

R 3.05/0.0772 5.25/0.0176 0.1127 (0.2854) 0.0518 (0.0150) 0.6343 (0.1956)

Globus Pallidus L 3.45/0.0524 4.61/0.0210 0.2282 (0.3910) 0.0505 (0.0172) 0.6954 (0.4160)

R 2.08/0.1532 2.89/0.0842 – – –

Caudate L 0.17/0.8431 0.19/0.8253 – – –

R 0.42/0.667 0.15/0.8597 – – –

Putamen L 0.74/0.4852 0.53/0.5928 – – –

R 0.07/0.9339 0.33/0.7223 – – –

AD VALUES(× 10−3 mm2/s)

Substantia Nigra L 1.66/0.2269 1.46/0.2671 – – –

R 1.43/0.273 2.17/0.1519 – – –

Globus Pallidus L 2.98/0.0771 3.24/0.0624 – – –

R 1.65/0.2206 2.00/0.1668 – – –

Caudate L 0.14/0.8714 0.18/0.8387 – – –

R 0.42/0.6641 0.13/0.8792 – – –

Putamen L 1.3/0.2884 0.80/0.4630 – – –

R 0.21/0.8089 0.20/0.8230 – – –

RD VALUES(× 10−3 mm2/s)

Substantia Nigra L 5.17/0.0173 2.82/0.0906 0.9396 (0.4693) 0.0194 (0.0859) 0.0358 (0.4109)

R 2.95/0.0844 5.46/0.0161 0.2738 (0.4652) 0.1081 (0.0137) 0.5739 (0.1003)

Globus Pallidus L 2.69/0.0943 3.43/0.0518 – – –

R 2.06/0.1561 3.12/0.0710 – – –

Caudate L 0.19/0.8274 0.20/0.8188 – – –

R 0.41/0.6693 0.17/0.8486 – – –

Putamen L 0.44/0.6506 0.20/0.8221 – – –

R 0.3/0.7411 0.71/0.5032 – – –

F-and p-values calculated using ANOVA with unequal variance across controls, TD and PIGD groups. Pairwise comparisons were adjusted for multiple comparisons using a Tukey-

Kramer correction. Significant p-values, p< 0.05 (corrected), are shown in bold. See text for details on side adjustment analysis in PD patients. For side-adjusted values, L is contralateral

to the more affected body side and R is ipsilateral to the more affected body side. AD, Axial Diffusivity; FA, Fractional Anisotropy; MD, Mean Diffusivity; PIGD, Postural Instability/Gait

Difficulty; RD, Radial Diffusivity; TD, Tremor Dominant.

comparison to healthy controls to a degree felt to be significant
to impair normal motor function.

We found in our study here that significant group differences
in FA, MD, and RD in the SN, as well as in MD in the
globus pallidus, were driven by the PIGD motor subtype,
suggesting that changes in DTI measures are larger in
PD patients with predominant balance and gait impairment
and not as prominent in tremor-dominant patients. Only
a few studies have specifically compared DTI measures
in these PD motor subtypes (Lenfeldt et al., 2013; Chan

et al., 2014; Schuff et al., 2015). Lenfeldt et al. reported
increased MD in the thalamus of TD patients compared
to PIGD (Lenfeldt et al., 2013), raising the possibility that
microstructural changes within structures outside the basal
ganglia could differ between subtypes. No abnormalities were
found in the SN or globus pallidus, however, possibly due to
methodological differences in DTI acquisition and analysis as
their investigation was performed using a 1.5T MRI scanner and
two different DTI protocols (6 and 32 gradient directions) were
used.
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FIGURE 2 | DTI measures from left substantia nigra across groups

showing significant differences (*p < 0.05, corrected for multiple

comparisons using Tukey-Kramer adjustment).

In a DTI study by Chan et al. (2014), FA within the SN did not
significantly differ between PIGD compared to other PD patients
and controls. The patients with the PIGD subtype, however, did
show significant differences in FA within the transcallosal motor
tract that differentiated them frommore typical PD patients with
tremor. Our evaluation was focused on the basal ganglia and
not a whole brain analysis, possibly giving us greater power to
detect differences between motor subtypes within the SN. In the
recent PPMI-based DTI study noted above, PD patients were
dichotomized as tremor dominant or non-tremor dominant and
diffusion measures within the SN were evaluated (Schuff et al.,
2015). While a tendency toward higher AD and RD values in the
SNwere seen in the non-tremor dominant patients, no significant
FA changes were noted between the two groups. Although
this study involved a larger cohort compared to our study,
patients with an indeterminate motor subtype were combined
with non-tremor dominant patients and subjects were recruited
and scanned at 10 different sites potentially leading to greater
variability within the data. Furthermore, the analysis focused only
on the SN and the ROI placement was performed manually,
which may be less reliable than our atlas-based approach.

A post-mortem neuropathologic study by Jellinger et al. helps
support our finding that microstructural changes in the SN
may differentiate PD motor subtypes. In this study, significant
differences in the pattern of distribution of dopaminergic
neuronal loss, being predominantly ventrolateral in the SN
pars compacta projecting to the dorsal putamen in PIGD and
more medial in the SN projecting to the caudate nucleus and
anterior putamen in TD (Jellinger, 1999). In the present study
we utilized probabilistic maps for automated ROI delineation
of basal ganglia structures to minimize human interference and
imprecisions from manual placement in each subject. The SN
ROI we used was obtained from a probabilistic map generated
using an ultra-high resolution Fast Low Angle Shot (FLASH)
sequence with 0.5mm isotropic voxels providing exquisite details
to delineate the SN (Keuken et al., 2014). We set a fairly high
threshold of up to 50% to the margins of the ROI to ensure
that we were well within the confines of the SN. One drawback

of this approach is that sub-regions of the SN, such as the
rostral and caudal aspects, were not amenable to assessment.
Further investigation using improved DTI techniques or a higher
field strength MRI will be needed to help answer whether
diffusion changes within sub-regions of the SN, as well as within
other brainstem structures thought to contribute to postural
instability and gait impairment such the pedunculopontine
nucleus, underlie the differing motor manifestations in PD.

In our study we found that decreased FA within the SN in
PD patients correlated with H&Y stage. Similar findings have
been reported in prior DTI studies of PD patients (Chan et al.,
2007; Prakash et al., 2012; Zhan et al., 2012; Zhang et al.,
2015). By investigating relationships between DTI and clinical
measures by PD subtype, we also found that diffusivity changes
in the globus pallidus of PIGD patients correlated with both
H&Y stage and MDS-UPDRS III scores. When our data were
adjusted for side of symptom onset, we no longer saw correlations
between DTI measures and H&Y stage, but we continued to
see a correlation between MD in the globus pallidus and motor
severity as measured by MDS-UPDRS III. These findings suggest
that greater structural disruption within the globus pallidus could
underlie the more severe postural and gait impairments that
define the PIGD subtype. This is supported by the study by
Rajput et al. discussed above that found that PIGD patients have
a greater reduction of dopamine in their globus pallidus overall
when compared to healthy controls, TD patients, and PD patients
with indeterminate motor subtype (Rajput et al., 2008).

Additional evidence of the importance of the globus pallidus
in the phenotypic expression of PD comes from DBS literature.
A meta-analysis of the long-term effects of DBS on motor
symptoms conducted by George et al. found that PIGD patients
had improvement in posture and gait following stimulation
of both the globus pallidus and subthalamic nucleus, but
improvement in those patients with subthalamic stimulation was
followed by a decline not observed with pallidal stimulation (St
George et al., 2010). In contrast, in a recent re-analysis of a
large DBS clinical trial taking into account the different motor
subtypes (Katz et al., 2015), the authors concluded that while
the overall response to DBS of either the globus pallidus or
subthalamic nucleus did not significantly differ between motor
phenotypes, TD patients may have greater improvement in gait
with pallidal DBS. Although these studies provide a hint that
the globus pallidus may be particularly important in regards to
posture and gait in PD, further research is needed to determine
its role in the expression of its different motor phenotypes.

Despite revealing robust differences in DTI measures between
PIGD and TD subtypes, our study is limited by a small
sample size and so our results should be interpreted with
caution. A larger DTI study of PD subtypes is needed to help
confirm the validity of our findings and allow more stringent
multiple comparison corrections to be applied. In addition, how
alterations in FA and diffusivity relate to specific underlying
neuropathological changes remains unclear. In a MPTP-induced
PD animal model, decreased FA and increased MD, along with
increased RD in the SN have been correlated to the degree
of depletion of dopaminergic neurons along the nigrostriatal
pathways (Boska et al., 2007). Dopamine levels, however, cannot
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be the only factor contributing to changes in DTI measures
in PD as we found no significant differences in the caudate
and putamen, which are known to harbor the greatest loss of
dopaminergic nigral projections in PD (Rajput et al., 2008).

Changes in morphology of cells such as demonstrated in
pathologic studies in humans showing atrophy of the remaining
pigmented cells in the SN in PD as opposed to hypertrophic
cells seen in normal aging subjects (Rudow et al., 2008) could
also account for our DTI findings. Adding complexity to the
interpretation of our results, there are likely differences in the
degree of damage within sub-regions of the basal ganglia in
PD (Jellinger, 1999; Rajput et al., 2008; Eggers et al., 2011).
Furthermore, iron accumulation within the SN may have
influenced our DTI processing, and due to the presence of iron
methods such as quantitative susceptibility mapping could be a
more sensitive means to image changes within the SN in PD (Du
et al., 2015).

In conclusion, our results support that DTI can detect
microstructural alterations in the SN and globus pallidus of PD
patients, and suggest that such changes within the SN may be
able to differentiate PIGD and TD motor subtypes. In addition,
our findings suggest that diffusivity changes in the globus pallidus
are particularly relevant to patients with the PIGDmotor subtype
and may more accurately reflect motor severity and disease stage
than changes affecting the SN. Although our findings need to be
validated in a larger population, they suggest further investigation

into the role of the globus pallidus in PD motor subtypes could
lead to a better understanding of the pathophysiology underlying
these different phenotypes.
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