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Being socially connected directly impacts our basic needs and survival. People with
deficits in social cognition might exhibit abnormal behaviors and face many challenges
in our highly social-dependent world. These challenges and limitations are associated
with a substantial economical and subjective impact. As many conditions where social
cognition is affected are highly prevalent, more treatments have to be developed. Based
on recent research, we review studies where non-invasive neuromodulatory techniques
have been used to promote Social Plasticity in developmental disorders. We focused
on three populations where non-invasive brain stimulation seems to be a promising
approach in inducing social plasticity: Schizophrenia, Autism Spectrum Disorder (ASD)
andWilliams Syndrome (WS). There are still very few studies directly evaluating the effects
of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation
(TMS) in the social cognition of these populations. However, when considering the
promising preliminary evidences presented in this review and the limited amount of clinical
interventions available for treating social cognition deficits in these populations today, it is
clear that the social neuroscientist arsenal may profit from non-invasive brain stimulation
techniques for rehabilitation and promotion of social plasticity.

Keywords: brain stimulation, neuromodulation, developmental disorders, autism, Williams syndrome,
schizophrenia, social cognition

Introduction

One of the crucial aspects of human beings is the urge to be socially connected. From the need to
be cared for (newborn babies) to the pleasure of being in a romantic relationship, being socially
connected directly impacts our basic needs and survival. People with deficits in social cognition
might present abnormal behaviors in our highly social-dependent world. Along this line, a lot of
effort has been allocated to studies on neuropsychiatric disorders. More specifically, several studies
have attempted to understand the role of social cognition in developmental disorders by examining
their behavioral manifestations. Also, electrophysiological and neuroimaging studies have taught
us about the functional and structural neuronal basis of different developmental disorders.

We have also been learning about brain plasticity—from the good, bad, and ugly. The negative
impact of lesions and the positive impact of enriched environments on cognitive functions are
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few examples of it. Based on recent research, we propose a
review of the use of non-invasive neuromodulatory techniques
to promote Social Plasticity (i.e., the modulation of the neural
substrate associated with social cognition aiming for more
adaptive social interactions) in some developmental disorders.
Particularly, we will focus on Transcranial Magnetic Stimulation
(TMS) and Transcranial Direct Current Stimulation (tDCS).

The impact of social cognition alterations or deficits faced
by some clinical populations is well known. Nonetheless, most
research on non-invasive brain stimulation techniques in the
treatment and rehabilitation of clinical populations has focused
on other aspects of cognition (such as executive functions,
attention, or memory). In this scenario, such techniques might
also play a crucial role in addressing impairments in social
cognition and behavior, as we will argue below. As social
neuroscience is a relatively new field and the use of non-invasive
brain stimulation techniques in this context is even more recent,
it should come as no surprise that only very few works have
used these techniques to approach these issues. In this paper
we will emphasize three populations where non-invasive brain
stimulation seems to be a promising technique in inducing social
plasticity: Schizophrenia, Autism Spectrum Disorder (ASD) and
Williams Syndrome (WS). Our main goal is to emphasize how
non-invasive brain modulation may be a valuable strategy in
this context and how the plasticity of social cognition and
behavior in clinical populations is a possible and relevant goal for
contemporary research.

Autism Spectrum Disorder

There are certainly more investigations of social cognition
in ASD than in schizophrenia and WS and it seems fair
to say (although a systematic comparison is lacking) that
there are more numerous and more effective interventions for
social cognition in ASD than in the other two disorders. A
review of therapies available for children with ASD can be
found in Warren et al. (2011). Among the recent and still
experimental ones we highlight intranasal oxytocin and the
Early Start Denver Model (all reviewed in Canitano, 2014).
Intranasal oxytocin has been shown to increase patients’ gaze
fixation on the most socially informative regions of the face
and to increase interactions with partners and feelings of
trust in an experimental paradigm (Andari et al., 2010). In
fact, a systematic review of seven studies evaluating oxytocin
interventions in ASD found significant effects in all studies
but one (Preti et al., 2014). A behavioral technique that has
also showed promising results is the Early Start Denver Model,
an applied behavior analysis based educational intervention
focused on building communicative abilities, enhancing social
attention and reinforcing social interaction (e.g., Fulton et al.,
2014).

These interventions and results show that it is indeed possible
to induce plasticity of social functioning in ASD patients.
Nonetheless, ASD expression is very heterogeneous, comprising
a whole spectrum of different symptoms in different severities.
The outcomes of possible interventions tend to be very variable
too (e.g., Warren et al., 2011; Magiati et al., 2014; Preti et al.,

2014). Also, side effects of medical interventions might be
significant (e.g., Warren et al., 2011). In this context new
interventions must be developed, including combinations of
complementary strategies. Until now, few studies involving
neuromodulation techniques in patients with autism have
been conducted and most part used Transcranial Magnetic
Stimulation (TMS) (see Table 1).

Some studies with TMS focus on motor functions, taking
into account assumptions about partial impairment of the
mirror neuron system (MNS). The MNS is responsible for
understanding intention and imitation of behavior observed
in other subjects. In addition to being involved in language
development (Williams et al., 2001).

Studies with observation and/or mentoring of motor actions
have been used to study the functions of the MNS. From the
studies conducted in healthy volunteers (Fadiga et al., 1999;
Fourkas et al., 2006; Cesari et al., 2011), it can be seen that
TMS provides accurate measurements of cortical excitability
and confirms the increased activity as well as motor threshold
reduction in motor cortical areas during observation and
mental imagery related to motor function. Considering these
data, some authors have investigated the relationship between
motor imagery and cortical excitability in ASD. Théoret et al.
(2005) showed that cortical excitability in autism is significantly
lower compared to a control group during a finger movement
observation task. The observation of the movements of the
fingers facilitated motor evoked potential generated by TMS in
the control group but not in the autism group. Other studies
with single-pulse TMS show that the observation of specific
motor movements or observations of painful movements do not
induce corticospinal modulation in patients with ASD (Minio-
Paluello et al., 2009; Enticott et al., 2012). Similar results were
observed by Puzzo et al. (2009). After measurement of motor
evoked potentials MEPs during observation of videos with hand
or mouth movements, static images of hand or mouth, and
white screen images in patients with high and low traits of
autism, no difference between groups was observed for the white
screen condition. However, participants with low traits of autism
showed higher MEP amplitudes during observation of actions
videos compared to static images. This result was not observed in
patients with high traits of autism, which exhibited similar MEP
amplitude in the observation of actions and observation of static
images (Puzzo et al., 2009).

Another possibility would be the use of TMS application as
a social cognitive rehabilitation tool. In a preliminary study,
Sokhadze et al. (2009) rTMS applied low frequency (0.5Hz)
in the left DLPFC in 8 patients with autism, 2 times per
week for 3 weeks. The results showed changes in relation
to electrophysiological measures such as the reduction in the
amplitude and latency of the P3 component to non-target stimuli.
In addition to the normalization of P3 component, it was also
observed decreased gamma frequency in frontal and parietal
regions to non-target stimuli. Regarding clinical outcomes,
decreased ritualistic behavior was observed as measured by
scales and caregivers reported a decrease in repetitive behavior
and obsessive-compulsive behaviors. Subsequent studies have
replicated these results, showing the reduction of repetitive
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behaviors and irritability (Baruth et al., 2010; Sokhadze et al.,
2010). Still on the observation of improvement in these behaviors,
Casanova et al. (2012) used a protocol of rTMS (1Hz) on
CLPFC for 12, 6 weeks over left hemisphere and 6 weeks over
right hemisphere. The results showed better performance on the
selective attention task and improve behaviors of irritability and
repetition. By using the same protocol, Sokhadze et al. (2012)
also found improved performance in the error-monitoring task.
In consonance with that, Sokhadze et al. (2014) have observed
modulation of many electrophysiological markers and a decrease
in social withdrawal scores after 18 sessions of rTMS combined
with neurofeedback in ASD patients. Finally, Enticott et al. (2014)
showed improvement of social skills and anxiety symptoms in
28 patients with autism (high functioning and Asperger’s), after
application of deep bilateral rTMS in PFC medial dorsal of
5Hz for 15min for 15 consecutive days. This improvement was
maintained after 1 month of stimulation.

These few studies showing substantial TMS effects in social
cognition in ASD might be directly related to the well-known
inhibitory/excitatory neural dynamics that seems to be affected
in ASD and this phenomenon seems to take place at least in part
through dysfunctional glutamate and GABA neurotransmitter
systems (Won et al., 2013). In fact, reduced GABA synthesis
and dysfunctional GABA receptors were found in autistic brains
(Fatemi et al., 2010). Abnormally low levels of glutamine and
glutamate were also found in autistic children (Rolf et al., 1993).
Given the fact that tDCS is known to influence glutamate and
GABA concentrations depending on stimulation polarity (e.g.,
Filmer et al., 2014), it is reasonable to expect that this tool might
be helpful in ASD rehabilitation.

Given the aforementioned advantages of tDCS relative to
TMS, patients would face fewer restrictions when undergoing
a treatment with the former technique, when compared to the
latter. Therefore, more investigations with tDCS in ASD must
be done, in order to evaluate if similar effects to the ones
induced by rTMS could be achieved. Here we highlight one
example of substantial tDCS modulation of structures that were
also successfully modulated by TMS in previous research, and
that are relevant to the treatment of ASD. Theory of mind was
found to be modulated by TMS of the right temporal parietal
junction (Young et al., 2010). Later, Santiesteban et al. (2012)
demonstrated improvements in theory of mind and increased
social ability after tDCS of the temporal parietal junction.
Both experiments were performed with participants with typical
development.

Childhood is arguably the most critical windows for
interventions and therapy in ASD (e.g., Warren et al., 2011).
The fact that the use of tDCS in children is still controversial
and poorly understood (with almost no studies on safety and
tolerability, e.g., Gillick et al., 2015) may be considered a
drawback for its application in ASD. Nonetheless, tDCS can be
applied to young adults and this is still a reasonable moment
for interventions, especially if one considers that ASD symptoms
will frequently still be present throughout adulthood (e.g., Tobin
et al., 2014).

Lastly, a recent case study with an adult diagnosed with ASD
since the age of 2 years supports all that has been proposed
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here. D’Urso et al. (2015) report what seems to be the first
investigation to use tDCS in an ASD patient. These authors have
delivered 10 daily sessions of cathodal tDCS to the left DLPFC in
a patient that was non-respondent to pharmacological treatments
and showed limited outcomes for behavioral interventions. The
patient showed a 45% decrease in social withdrawal scores and a
58% decrease in hyperactivity (as measured in the ABC scale).
The results by D’Urso et al. (2015) are very encouraging and
support the need for more tDCS based investigations in all
aspects of ASD, not only social cognition.

Schizophrenia

In conditions such as schizophrenia, deficits in social cognition
are known to take place and to be determinants of patients’ limits
in functional abilities. These deficits include impairments in
Theory of Mind strategies, emotional content processing, among
others (Pinkham et al., 2003). In fact, in a recent meta-analysis
that investigates the relations between neurocognition (defined
in this context as attention, memory, executive functions, etc.,)
and social cognition in schizophrenia, Fett et al. (2011) have
found that social cognition deficits were stronger determinants
of patients’ functional outcomes than neurocognition deficits.
Another recent work has shown that these social cognition
deficits are also present during remission and are only weakly
correlated to neurocognition deficits (Mehta et al., 2013). These
findings draw attention to the crucial role played by social
cognition deficits in schizophrenia and the need to focus on social
cognition in the research and treatment of these patients.

As some authors have proposed (reviewed in a meta-analysis
by McGurk et al., 2007), cognitive interventions in schizophrenia
are generally only able to improve functionality to a small or
medium extent. As there is evidence that these social cognition
impairments are present even during remission, more effort has
to be put into improving this crucial aspect in this population.
Therefore, non-invasive brain stimulation interventions may be
very valuable and as we will present ahead, there is compelling
evidence (although with only few investigations yet) that this is
indeed a promising strategy.

Three meta-analyses—one on the effects of TMS in
diminishing auditory hallucinations and two on the TMS use
for treating negative symptoms—support that TMS is a valuable
intervention for treating schizophrenia symptoms (Aleman et al.,
2007; Freitas et al., 2009; Shi et al., 2014). Aleman et al. (2007)
have found substantial evidence for the applicability of TMS for
the treatment of auditory hallucinations in schizophrenia but no
significant effect on a general index of psychotic symptoms after
reviewing 10 studies. Nonetheless, Freitas et al. (2009) and Shi
et al. (2014) have found significant effects of TMS on decreasing
negative symptoms, a finding that supports the adequacy of
this technique in treating social symptoms in schizophrenia.
The rationale in most of the studies is that there is a deficit of
intracortical inhibition in schizophrenia and that inhibitory
non-invasive brain stimulation might improve this aspect of
the disease (see Hasan et al., 2013 for a review of intracortical
inhibition in schizophrenia). In fact, there is substantial evidence
for a reduced density of GABA interneurons in schizophrenia
and some evidence that this intracortical inhibition deficit in

schizophrenia (as assessed by TMS) is significantly correlated to
deficits in social cognition (Mehta et al., 2014).

tDCS has also been used in few investigation with
schizophrenic patients and is showing promising outcomes. A
recent systematic review by Brunoni et al. (2014) has found a
number of investigations where tDCS was shown to improve
auditory or visual hallucinations in schizophrenia. Two of these
works have also reported a global improvement in symptoms
experienced by the patients (Brunelin et al., 2012 and a case
report by Palm et al., 2013). The study of Brunelin et al. (2012),
for example, observed a significant reduction of auditory
hallucinations (average reduction of 31%), negative and positive
symptoms that was visible for up to 3 months after the tDCS
sessions. Palm et al. (2013) has also found a decrease in negative
symptoms and auditory hallucinations after 2 weeks of tDCS.
If an improvement in negative symptoms is observed, some
improvement in sociability is also expected.

The improvements reported in these studies are in accordance
with what was observed in the computational models of current
flow for the tDCS montages most frequently employed in this
field. Brunoni et al. (2014) identified that the electrode montage
used most frequently in these investigations targets the left
dorsolateral prefrontal cortex (an area associated with negative
symptoms in schizophrenia) and that the current generally
flows through deeper structures involved in schizophrenic
symptoms (as the cingulated cortex, insula, basal ganglia, and
hippocampus).

All the evidence mentioned here supports the need and
relevance of more studies on brain stimulation and social
cognition in schizophrenia. As we have argued above, social
cognition is impaired in schizophrenia and it seems to
be a stronger determinant of patients’ functional outcomes
than neurocognition (Fett et al., 2011). Therefore, it is
surprising and noteworthy how there are still very few
investigations of the non-invasive brain stimulation effects in
social functioning in schizophrenic These techniques seem to
have an important role as tools to modulate positive and
negative symptoms in schizophrenia. This is particularly relevant
when considering that many participants are drug resistant or
present medication refractory schizophrenia. In these cases, non-
pharmacological interventions as TMS and tDCS might be great
alternatives.

Williams Syndrome

Williams syndrome (WS) is a rare neurodevelopmental disorder
caused by a multiple gene deletion on chromosome 7q11.23
(Korenberg et al., 2000). Apart from a set of medical, physical,
and cognitive features (including mild to moderate intellectual
disability), individuals with the disorder are commonly described
as having the opposite social profile of individuals with ASD
(Karmiloff-Smith et al., 2012). Indeed, several studies have
reported exacerbated interest in social stimuli and excessive
social approach (including to strangers) as remarkable features
present from early infancy into adulthood—a tendency termed
hypersociability (Jones et al., 2000; Mervis et al., 2001; Laing et al.,
2002; Riby and Hancock, 2008, 2009). However, these seemingly
endearing personality features often pose important threats to
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these individuals, putting them at risk in unsupervised social
interactions. For instance, studies showed that persons with WS
tend to rate unfamiliar faces as significantly more approachable
than age-matched controls (Jones et al., 2000; Martens et al.,
2009). Furthermore, a recent study found that these individuals
are more likely to consider approaching and ultimately choose
to approach untrustworthy faces significantly more than controls
matched in chronological age (Martens et al., 2012). These same
behavioral tendencies studied in laboratory settings are reported
to occur in everyday interactions, with a significant negative
impact for individuals with this syndrome. In particular, they
experience greater rates of sexual abuse when compared to
samples with intellectual disability (Rosner et al., 2004). In a
recent paper by Fisher et al. (2013) parents of individuals withWS
reported higher levels of social vulnerability—particularly lower
risk awareness by their children—than parents of individuals
with ASD or Down syndrome. Consistent with these reports,
some authors highlight how hypersociability goes alongside
difficulties in regulating social behaviors (Jawaid et al., 2012;
Riby et al., 2014), drawing attention to the deleterious effects of
hypersociability for individuals with WS and their families.

Several hypotheses have been advanced to explain this trait,
namely the amygdala hypothesis and the prefrontal hypothesis
(Jawaid et al., 2008; Capitão et al., 2011). The former suggests
that structural or functional alterations in the amygdala might
account for the difficulties in recognizing threat—particularly in
social interactions—, while the latter proposes that despite being
able to detect social threat, individuals with WS are unable to
inhibit approach behaviors due to prefrontal impairments. The
results reported so far seem to suggest that these hypotheses
might be complementary, rather than mutually exclusive
(Mimura et al., 2010; Capitão et al., 2011). In this line, Meyer-
Lindenberg et al. (2005) demonstrated the joint activation of
the amygdala along with dorsolateral prefrontal cortex (DLPFC),
medial prefrontal cortex (MPFC), and orbitofrontal cortex (OFC)
in a threatening face matching task in healthy controls. In
contrast, this pattern of joint activation was absent in a select
sample of WS with intact cognitive abilities. More specifically,
OFC was not selectively recruited and path analysis further
showed that this region was not functionally connected to the
amygdala—a result that is consonant with the strong social
disinhibition seen inWS. In addition, abnormal interactions were
found between MPFC and DLPFC in WS, which were consistent
with a possible compensatory mechanism for the disrupted OFC-
amygdala circuit (Meyer-Lindenberg et al., 2005). In a subsequent
study with the same sample, Munoz et al. (2010) reported further
evidence of abnormal circuitry involved in the processing of
social vs. non-social threat in WS, reinforcing these regions as
likely involved in the emergence of hypersociability.

Together, these findings open new avenues for the use of
neuromodulation, as the aforementioned brain regions afford
possible target areas aimed at improving social cognition
and reducing hypersociable tendencies in WS. So far, only
sparse behavioral interventions (mostly case studies) have been
implemented with these goals in mind, with inconsistent success
(Klein-Tasman and Albano, 2007; Phillips and Klein-Tasman,
2009; Jawaid et al., 2012). Importantly, no studies have employed
either TMS or tDCS in this clinical population. We argue

that the successful use of these non-invasive and generally
safe techniques in several other neurodevelopmental disorders
(particularly those cited in this paper) provides encouragement
for future studies to test its therapeutic potential in WS.

Noteworthy Issues in Brain Stimulation

The current review focuses on two of the most popular brain
stimulation techniques: tDCS and TMS. These techniques differ
in dynamics and mechanisms of action to a great extent. tDCS
is associated with moderate modulation of the voltage gradient
between the intracellular and extracellular medium, while TMS
can induce action potentials. These techniques also differ in
the focality of the stimulation and its potential outcomes. For
recent reviews of parameters and mechanisms of action we refer
to Stagg and Nitsche (2011) and Filmer et al. (2014) for tDCS
and Pascual-Leone et al. (2000) and Miniussi and Rossini (2011)
for TMS.

For the readers that are not familiar with non-invasive brain
stimulation, we must highlight the safety of these techniques
when standard parameters are used. For tDCS, extensive data
suggest that this is a safe procedure that involves mild and
transient adverse effects (Nitsche et al., 2008; Brunoni et al.,
2012). In a systematic review of tDCS studies, Brunoni et al.
(2012) found that 56% of the investigations mentioned adverse
effects but these were limited to itching or tingling under the
electrodes, headache, and discomfort. These adverse effects were
also present in participants receiving sham tDCS, thus suggesting
that the major cause of side effects may not be the current itself.
Recent studies showed that tDCS does not induce elevations
of a neuronal damage marker (neuron-specific enolase) and no
edemas in humans and no maladaptive functional or structural
changes were observed in evaluations using EEG and fMRI
(Nitsche et al., 2004, 2008; Iyer et al., 2005). It is still not clear
if repeated tDCS sessions during weeks and months can lead
to undesirable side effects and more research on that matter is
advised.

Although in some cases TMS might be associated with more
severe adverse effects than tDCS, generally its adverse effects are
mild and transient and the technique is considered safe when
standard parameters are employed (e.g., Rossi et al., 2009). In
general terms TMS protocols may be divided between the ones
that use isolated single pulses of stimulation, the ones that use
paired pulses separated by very brief intervals and the ones that
use repetitive pulses at one specific temporal frequency that
might range from a few seconds to minutes. Amongst these,
repetitive TMS protocols are the ones with more long lasting
effects and more significant therapeutic potential. It is also the
stimulation modality that is associated with more significant
adverse effects, and this is why many guidelines suggest it should
be delivered in hospital facilities (Lefaucheur et al., 2014).

The ease of use, portability and minimal adverse effects
associated with tDCS might be considered one of its advantages
over TMS. In fact, in the field of pain treatment research,
a systematic review by Zaghi et al. (2009) concluded that
when compared to other neuromodulatory techniques (such
as repetitive TMS or EDCS), tDCS is the most cost-effective
treatment for central pain (considering treatments shorter than
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5 years). Nonetheless, each technique has its strengths and
possible drawbacks. This must be considered carefully when
planning each investigation. The functional and spatial focality
of the two techniques is frequently a matter of debate, and in
many cases there is no easy answer for which technique to
employ. In fact, more research comparing these techniques is also
advised.

Lastly, as the clinical conditions reviewed here are more
frequently diagnosed first in children and adolescents, a brief
mention to possible peculiar effects of non-invasive brain
stimulation in the developing brain must be made. Until
recently there were only few works on the effects of tDCS
and TMS in children and adolescents. This was probably
determined at least in part by ethical concerns, given the
fact that the developing brain could be affected in non-
intuitive ways by these interventions. Recent advances in
our understanding of mechanisms of action and outcomes
of non-invasive brain stimulation techniques, paired with a
few successful investigations in children are changing this
scenario.

A recent review of TMS studies in children has suggested
that this intervention is well tolerated and promising (Frye
et al., 2008). Nonetheless the authors have suggested that specific
guidelines need to be created for children. The same is true
for tDCS. Some recent works have suggested that tDCS might
be effective and well tolerated in children (Minhas et al., 2012;
Andrade et al., 2014), but more investigations of this subject
are still lacking. It is also important to note that in many cases,
a rationale that was proven to be successful for stimulation in
adults might not turn out to have the same outcomes in the
developing brain and more research in this population is still
needed.

Conclusions and Future Directions

This article presents evidence that neuromodulation techniques
may become important interventional tools in social deficits.
Research focused on the understanding of the mechanisms of

action of these techniques as well as on ways to direct their
effects to enhance social cognition deficits will open new avenues
in what we are calling Social Plasticity. As shown, there are
few studies directly evaluating the effects of tDCS and TMS in
populations such as autism, schizophrenia and WS. As regards
to the social cognition deficits, these techniques are still in
their infancy. With that, a research agenda in this area is
indispensable. As central aspects, it is necessary to standardize
procedures like the use of common assessment tools. It is also
necessary to initially investigate the short-term effects of these
techniques (for example, single session stimulation) and then
move forward with investigations on the lasting effects of these
tools. This care is critical considering the potential that these
techniques have in the promotion of brain plasticity. Another
key aspect relates to the large heterogeneity of the manifested
symptoms. Taking autism as an example, the great diversity of
manifestations within the spectrum makes you take precautions
in the translation of knowledge from one study to another. Based
on the studies of cognitive neuroscience, it is clear that non-
invasive neuromodulation techniques are already part of the
toolkit box of both research and rehabilitation domains. With
the first evidences presented in this review, it is flagrant the need
to insert these techniques in the social neuroscientist arsenal
particularly focused on rehabilitation and promotion of social
plasticity.
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