
REVIEW
published: 31 March 2015

doi: 10.3389/fncel.2015.00096

Molecular regulation of auditory hair
cell death and approaches to protect
sensory receptor cells and/or
stimulate repair following acoustic
trauma
Christine T. Dinh 1, Stefania Goncalves 1, Esperanza Bas 1, Thomas R. Van De Water 1 and
Azel Zine 2,3*

1 University of Miami Ear Institute, University of Miami Miller School of Medicine, Miami, FL, USA, 2 Integrative and Adaptive
Neurosciences, Aix-Marseille Université, CNRS, UMR 7260, Marseille, France, 3 Faculty of Pharmacy, Biophysics
Department, University of Montpellier, Montpellier, France

Edited by:
Allison B. Coffin,

Washington State University, USA

Reviewed by:
Richardson N. Leão,
Brain Institute, Brazil
Dale Warren Hailey,

University or Washington, USA

*Correspondence:
Azel Zine,

Integrative and Adaptive
Neurosciences, Aix-Marseille

Université, CNRS, UMR 7260, 3
Place Victor Hugo, 13331 Marseille

Cedex 03, France
azel.zine@univ-amu.fr

Received: 22 November 2014
Accepted: 03 March 2015
Published: 31 March 2015

Citation:
Dinh CT, Goncalves S, Bas E, Van De

Water TR and Zine A (2015)
Molecular regulation of auditory hair

cell death and approaches to protect
sensory receptor cells and/or

stimulate repair following acoustic
trauma.

Front. Cell. Neurosci. 9:96.
doi: 10.3389/fncel.2015.00096

Loss of auditory sensory hair cells (HCs) is the most common cause of hearing loss.
This review addresses the signaling pathways that are involved in the programmed and
necrotic cell death of auditory HCs that occur in response to ototoxic and traumatic
stressor events. The roles of inflammatory processes, oxidative stress, mitochondrial
damage, cell death receptors, members of the mitogen-activated protein kinase (MAPK)
signal pathway and pro- and anti-cell death members of the Bcl-2 family are explored.
The molecular interaction of these signal pathways that initiates the loss of auditory
HCs following acoustic trauma is covered and possible therapeutic interventions that
may protect these sensory HCs from loss via apoptotic or non-apoptotic cell death are
explored.
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Introduction

Auditory hair cells (HCs) are important for the conversion of acoustic sound energy into electrical
impulses that travel to the auditory centers of the brain for hearing. Sensorineural hearing loss
(SNHL) is a form of hearing impairment that occurs most commonly from damagedHCs within
the cochlea; it is a prevalent disability, affecting one in five people and more than 48 million
Americans (Lin et al., 2011). There are numerous causes of acquired SNHL. Some of these
etiologies include viral infections, platinum-based chemotherapeutic agents, aminoglycoside
antibiotics, acoustic trauma, labyrinthine concussion, cochlear hypoxia, radiation exposure,
cochlear implant electrode insertion trauma, and meningitis (Kuhn et al., 2011). Genetic
mutations can also cause structural or physiologic abnormalities within the cochlea and impair
cochlear homeostasis. These insults to the inner ear can promote cell death of auditory HCs and
hearing loss.

Several signaling cascades are activated following an insult to the cochlea; these pathways
can be pro-inflammatory, pro-death, and even pro-survival. The signaling cascades that occur
on a cellular and a molecular level are highly complex and in many ways entwine; there is
significant cross communication between pathways and it is the culmination of all of these
activities that tilt the pendulum of cell survival and cell death in one direction or the other.
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Although there has been great progress in understanding the
pathways of cell death in auditory HCs, several pro-death
concepts are still speculative and extrapolated from studies of
other cell types. As research in necrobiology of the inner ear
progresses, these pathways specific to auditory HC death will be
more stream-lined and refined. This review will discuss general
concepts and pathways in apoptosis and necrosis that contribute
to the understanding of key events in acoustic trauma. Several
drug therapies take advantage of key events that occur following
acoustic injury by targeting, promoting, or inhibiting different
pathways that favor cell survival.

Cell Death

Auditory HCs undergo cell death through apoptosis and
necrosis, in response to different insults to the inner ear.
Apoptosis is an organized form of programmed cell death that
is characterized by blebbing of the cell membrane, shrinkage
of the cell body, fragmentation of the nucleus, condensation
of the chromatin, and cleavage of chromosomal DNA. The
cell is then divided into numerous fragments called apoptotic
bodies that are disposed by phagocytosis (Figure 1). Particular
to HCs undergoing apoptotic cell death, mitochondria swell,
stereocilia are disrupted and lost, cuticular plates shrink,
and chromatin condensation occurs in the nucleus, prior to
disruption of junctional complexes and extrusion of auditory
HCs (Hirose et al., 2004). Necrosis, originally thought to be
an uncontrolled process, is another form of cell death that
appears to be highly regulated. During necrotic cell death, the
cell volume increases, the organelles swell, and the plasma
membrane ruptures. There is spillage of intracellular contents in
the extracellular space and postlytic DNA fragmentation occurs
(Figure 1). Necrosis of auditory HCs can occur in concert with
mechanisms of apoptosis. Most of the molecular and cellular
mechanisms responsible for apoptosis and necrosis in auditory
HCs originate in studies of other cell types. A review of general
concepts in apoptosis and necrosis and stress signaling is offered
below.

Apoptosis

Apoptosis can occur through two different signaling cascades,
called the intrinsic [mitochondrial death] and extrinsic [death
receptor, DR] pathways. These two particular pathways can
interweave and can promote synergism in cell death in many
contexts (Roy and Nicholson, 2000).

Intrinsic Pathway
In the intrinsic pathway, a stress signal initiates a disturbance
between the pro- and anti-apoptotic proteins of the Bcl-2 family
that promote supramolecular openings or activation of mega-
channels in the outer membrane of the mitochondria (Marzo
et al., 1998; Kuwana et al., 2002). In particular, Bcl-2-like protein
4 (Bax) activation is a key regulator of this phenomenon.
This results in the release of pro-death proteins from the
intermembrane space of the mitochondria into the cytosol.
These regulatory mitochondrial proteins that are liberated

into the cytoplasm can activate both caspase-dependent and
caspase-independent cell death pathways. These proteins include
cytochrome c (cyt c), endonuclease G (EndoG), apoptosis
inducing factor (AIF), second mitochondria-derived activator of
caspases/direct inhibitor of apoptosis protein binding protein
with low pI (Smac/DIABLO), and mammalian homolog of
bacterial high temperature requirement protein A2 (Omi/HtrA2;
Figure 2).

When released into the cytoplasm, cyt c binds with apoptotic
protease-activating factor-1 (Apaf-1) and recruits pro-caspase-
9 to form an apoptosome (Cain et al., 2000). This apoptosome
can induce caspase-3 dependent apoptosis (Bratton et al.,
2001). Subsequently, caspase-3 initiates apoptosis by promoting
DNA fragmentation through caspase-activated DNase (CAD),
chromatin condensation via apoptotic chromatin condensation
inducer in the nucleus (ACINUS), and acceleration of DNA
degradation through cleavage of cytosolic helicase with an
N-terminal caspase-recruitment domain (HELI-CARD; Liu
et al., 1997; Enari et al., 1998; Sahara et al., 1999; Kovacsovics
et al., 2002).

EndoG is a mitochondrion-specific nuclease that translocates
into the nucleus and works in concert with exonucleases and
DNAse I to ensure efficient nucleosomal fragmentation of DNA,
independent of caspase activation (Li et al., 2001; Widlak et al.,
2001). Similar to EndoG, AIF is also a caspase-independent
death effector; once released into the cytosol, AIF migrates
into the nucleus to stimulate chromatin condensation and large
scale DNA fragmentation (Lorenzo et al., 1999; Daugas et al.,
2000).

Smac and Omi/HtrA2 are similar because both promote
caspase-dependent apoptosis by binding and inhibiting X-linked
inhibitor of apoptosis protein (XIAP). XIAP is a cytosolic protein
that has three baculoviral inhibitory repeat (BIR) domains---BIR1
and BIR2 specifically bind and inhibit caspase-3 and -7, while
BIR3 is a specific inhibitor of caspase-9 (Deveraux et al.,
1999). Smac functions by neutralizing the caspase-inhibiting
properties of XIAP, thereby promoting caspase-3, -7, and -9
activations (Chai et al., 2000, 2001). Similar to Smac, Omi/HtrA2
competes with caspase -3, -7, and -9 for XIAP binding
and therefore promotes caspase-dependent cell death (Suzuki
et al., 2001; Hegde et al., 2002). However, Omi/HtrA2 is a
ubiquitously expressed mitochondrial serine protease that can
also promote apoptosis through caspase-independent activity
through alternate mechanisms that rely on its serine protease
properties (Li et al., 2002).

Extrinsic Death Pathway
The extrinsic cell death pathway is intricate and involves several
molecular interactions that occur in succession: (1) binding of a
death ligand to its complementary receptor; (2) recruitment of
adaptor molecules such as FAS-associated death domain protein
(FADD) and tumor necrosis factor receptor type 1-associated
death domain protein (TRADD); (3) binding, dimerizing, and
activation of initiator caspase-8 and -10; and (4) formation of
a death-inducing signaling complex (DISC; Itoh and Nagata,
1993; Tartaglia et al., 1993; Chinnaiyan et al., 1995; Hsu et al.,
1995; Nagata, 1999; Fischer et al., 2006). DISC is a multi-protein
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FIGURE 1 | Apoptotic and necrotic cell death. Apoptosis is an organized
form of programmed cell death that is characterized by shrinkage of the cell
body, blebbing of the cell membrane, chromatin condensation, fragmentation of
the nucleus, cleavage of chromosomal DNA, and division into numerous cell

fragments (apoptotic bodies).Necrosis occurs when the volume of the cell
increases, organelles swell, the plasma membrane ruptures, intracellular
contents spill into the extracellular matrix, and there is postlytic DNA
fragmentation.

complex that subsequently cleaves and promotes executioner
caspase-3 and -7 activities to promote programmed cell death
(Figure 2).

The most well recognized and studied death ligands include
TNFα and FasL or CD95L. Their complementary receptors
are TNFR1, also known as p55 or CD120a and Fas receptor
(FasR, also referred to as CD95 or apoptosis antigen 1,
APO-1), respectively (Itoh and Nagata, 1993; Tartaglia et al.,
1993). Other DRs that have been described include TNF-like
receptor apoptosis mediating protein (TRAMP, also called DR3,
APO-3), TNF-related apoptosis inducing ligand receptors-1
(TRAIL-R1 or DR4) and -2 (TRAIL-R2, also named DR5 and
APO-2), and DR6 (Bodmer et al., 1997; Guicciardi and Gores,
2009).

Initiators caspase-8 and caspase-10 can cleave and activate
effector caspase-3 to initiate programmed cell death (Ng et al.,
1999; Wang et al., 2001; Fischer et al., 2006). Caspase-8 can also
promote effector caspase-7 activity. In addition, both caspase-8
and caspase-10 can cleave Bcl-2 homology 3 interacting domain
death agonist (BID) into truncated BID (tBID) that triggers
mitochondrial cell death pathways mediated by Bax and Bcl-2
homologous antagonist killer (Bak) activation (Chandler et al.,
1998; Li et al., 1998; Luo et al., 1998; Korsmeyer et al., 2000;
Kandasamy et al., 2003; Milhas et al., 2005). Bax and Bak are pro-
death proteins that belong to the Bcl-2 family of proteins that can
stimulate mitochondrial release of pro-apoptotic proteins such
as cyt c and Smac. There are likely other levels of modulation

between the intrinsic and extrinsic pathways of apoptosis that
have not yet been discovered.

Necrosis

Mechanisms of regulated necrosis include necroptosis and MPT.
Parthanatos, ferroptosis and pyroptosis have also been described
as mechanisms of non-apoptotic cell death; however, they may
not represent distinct forms of necrosis (Galluzzi et al., 2012;
Vanden Berghe et al., 2014; Figure 2).

Necroptosis
Receptor interacting protein kinases (RIPK) are important
regulators of cell survival and cell death. Necroptosis refers to
a RIPK3-dependent molecular cascade of events that promotes
regulated necrotic cell death (Galluzzi et al., 2012). Necroptosis
and apoptosis share similar upstream signaling elements and
regulator molecules such as Fas-associated death domain-
like interleukin-1β-converting enzyme-like inhibitory proteins
(FLIP) and cellular inhibitors of apoptosis proteins 1 and 2
(cIAP1 and cIAP2; McComb et al., 2012; Silke and Strasser,
2013). When caspase-8 is inhibited by genetic manipulation or
pharmacologic therapies, RIPK3 is recruited to RIPK1 to form
a necrosis-inducing complex (necrosome) that phosphorylates
pseudokinase mixed lineage kinase domain-like protein (MLKL)
and engages in downstream activities that lead to RIPK1/RIPK3
dependent necroptosis (He et al., 2009; Zhang et al., 2009;
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FIGURE 2 | Signaling in apoptosis and regulated necrosis. ROS can
promote lipid peroxidation of the phosopholipid membrane, proteolytic
degradation, and mitochondrial and cellular DNA damage that can propagate
the apoptotic effects of oxidative stress. Oxidative stress can activate
pro-apoptotic Bax protein that initiates damage to the outer mitochondrial
membrane (i.e., pore formation) that results in release of pro-death proteins
from the mitochondria into the cytosol that act in caspase-independent and
caspase-dependent mechanisms to induce chromatin condensation, DNA
fragmentation and intrinsic apoptotic cell death. Ligands such as Fas ligand
(FasL) and tumor necrosis factor alpha (TNFα) can promote extrinsic
programmed cell death through caspase-8 activation and downstream
caspase-3 activity, while also triggering intrinsic apoptosis through truncation
of Bid (tBid). Tumor necrosis factor receptor type 1 (TNFR1) signaling can
induce phosphorylation and activation of p38 and JNK that can lead to
Bax-mediated mitochondrial cell death and phosphorylation of transcription

factors that increase pro-death and reduce pro-survival gene expression.
Activation of TNFR1 can also initiate a RIPK1 and RIPK3-dependent form of
regulated necrosis (necroptosis) through regulation of PGAM5, ROS, and the
mitochondrial permeability transition (MPT). MPT-mediated regulated necrotic
cell death can be triggered following oxidative stress; downstream signaling
results in activation of cyclophilin D (CypD), increased permeability of the inner
mitochondrial membrane, and mitochondrial swelling and rupture that
promotes necrosis. Alterations in the transmembrane potential of the
mitochondria can also induce intrinsic cell death. Lastly, hyper-activation of
PARP1 from persistent DNA damage that can inhibit mitochondrial ATP
synthesis and promote mitochondrial release of AIF to initiate necrotic form of
cell death. AIF, in this situation, can promote both apoptosis and necrosis.
∆9m, mitochondrial membrane potential; Casp3, caspase-3; Casp8,
caspase-8; Casp9, caspase-9; MMP, mitochondrial membrane permeability;
MOMP, mitochondrial outer membrane permeability.

Vandenabeele et al., 2010). The events that occur downstream
to promote necroptosis are controversial, convoluted, and poorly
characterized, but may include production of mitochondrial
reactive oxygen species (ROS), activation of mitochondrial
phosphatase, i.e., PGAM5, and induction of MPT (Wang
et al., 2012a,b; Marshall and Baines, 2014). PGAM5 is a
mitochondrial protein phosphatase that can activate dynamin
related protein 1 (Drp1) and its GTPase activity, which can
stimulate fragmentation of mitochondria and execution of
necrosis (Wang et al., 2012a,b).

Mitochondrial Permeability Transition
The MPT refers to an abrupt increase in the permeability
of the inner mitochondrial membrane to small solutes that
lead to osmotic influx of water into the mitochondrial matrix,
mitochondrial swelling and rupture of the outer mitochondrial
membrane (Tsujimoto and Shimizu, 2007). Although it is
not well characterized, cyclophilin D (CypD; also known as
peptidylprolyl isomerase F) is believed to be crucial in the
formation of the permeability transition pore complex associated
with MPT-dependent necrosis (Li et al., 2004; Baines et al.,
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2005; Nakagawa et al., 2005). Interestingly, the shift in the
transmembrane potential in MPT can also initiate intrinsic
cell death by halting the bioenergetics and redox functions
of the mitochondria and initiating release of pro-apoptotic
mitochondrial proteins into the cytosol (Marchetti et al., 1996;
Scarlett and Murphy, 1997; Brenner and Grimm, 2006; Kroemer
et al., 2007).

Other Forms of Non-Apoptotic Cell Death
Parthanatos is a poly(ADP-ribose) polymerase 1 (PARP1)
dependent form of non-apoptotic death. PARP1 is recruited
to sites of DNA damage where it is able to catalyze ADP
ribosylation of various proteins and histones and generate
negative charges by overconsumption of nicotinamide adenine
dinucleotide (NAD) during the ADP ribosylation process.
Ultimately, other factors important for DNA repair are recruited.
However, when PARP1 becomes hyper-activated in situations
of persistent DNA damage, there is a depletion of NAD and
inhibition of mitochondrial ATP synthesis, which is essential
in ATP-dependent apoptosis pathways (Yu et al., 2006; Wang
et al., 2011). Overactivation of PARP-1 can lead to unregulated
synthesis of poly (ADP-ribose) (PAR) that can bind to and
initiate release of AIF into the cytoplasm. PARP-1 mediated
AIF expression can promote DNA condensation and widespread
cell death that is independent of caspases and distinct from
apoptosis (Andrabi et al., 2008). There is controversy whether
parthanatos represents a form of regulated necrosis or is a
distinct entity.

Ferroptosis refers to an iron-dependent form of non-
apoptotic cell death that is morphologically, biochemically, and
genetically different from both apoptosis and necrosis (Dixon
et al., 2012). Pyroptosis refers to caspase-1 dependent cell death
that exhibits a spectrum ofmorphotypes that range from necrosis
to purely apoptosis (Kepp et al., 2010). Caspase-1 is activated
through a supramolecular complex called a pyroptosome or
inflammasome and is thought to cause pore formation in the
plasma membrane that leads to osmotic cell lysis (necrosis) and
activation of caspase-7 (apoptosis) (Fink and Cookson, 2006;
Fernandes-Alnemri et al., 2007; Lamkanfi et al., 2008). The
elements behind regulated necrosis are still unclear; however,
research in this topic has become more and more prevalent
especially in the context of cancer research.

Auditory Hair Cell Death

Depending on the cochlear insult, various elements of the
apoptotic and necrotic cell death pathway are activated (Op de
Beeck et al., 2011; Figure 1). In acoustic trauma, loss of auditory
HCs occur through direct mechanical injury and activation of
apoptosis and necrosis related pathways (Saunders et al., 1985;
Pirvola et al., 2000; Yang et al., 2004). Intense noise exposure can
displace the tympanic membrane, vibrate the ossicles, and create
large displacements of the basilar membrane that can sheer and
injure stereocilia, auditory HCs, and supporting cells of the organ
of Corti important for hearing. Downstream stress signaling
from acoustic trauma are activated, including expression of
free radicals and pro-inflammatory factors that trigger both

apoptotic and necrotic cell death (discussed in subsequent
sections). Following intense noise exposure Bax activation
promotes mitochondrial release of pro-apoptotic factors (i.e.,
cyt c, AIF, and EndoG), caspase-3 activation, and intrinsic cell
death (Nicotera et al., 2003; Yamashita et al., 2004a,b; Han et al.,
2006; Wang et al., 2007a,b). Acoustic trauma also stimulates
TNFR1 and Fas DR signaling that activates downstream pathway
leading to caspase-8 activity and extrinsic apoptotic cell death
(Nicotera et al., 2003; Fujioka et al., 2006; Jamesdaniel et al.,
2011). Although the molecular mechanisms are still unclear,
necrosis of outer HCs occur early following acoustic trauma and
persist weeks after acoustic trauma (Yang et al., 2004; Hu et al.,
2006). Lastly, intense noise exposure can also promote loss of
auditory HCs through HC extrusion (Cotanche et al., 1997).

Although there are several drugs that can injure auditory
HCs, the most commonly encountered ototoxic drugs are
aminoglycosides and cisplatin. In brief, aminoglycoside
antibiotics, such as gentamicin, amikacin, kanamycin, and
neomycin, can initiate apoptotic cell death in auditory HCs and
vestibular HCs. In particular, the outer HCs of the basal turn
are the most vulnerable to aminoglycoside ototoxicity. The most
predominant form of cell death is apoptosis, however necrotic
features are also seen following exposure to aminoglycosides
(Jiang et al., 2006). Aminoglycosides can induce mitochondrial
apoptotic cell death and DNA fragmentation through oxidative
stress, Bax activation, mitochondrial release of cyt c and caspase-
3 activity (Mangiardi et al., 2004; Matsui et al., 2004; Coffin et al.,
2013). Evidence for the role of caspase-8 and extrinsic apoptosis
is aminoglycoside ototoxicity is not strong (Tabuchi et al., 2007;
Ding et al., 2010).

Cisplatin is a platinum-based chemotherapeutic drug used
to treat cancer and can promote ototoxicity, nephrotoxicity, and
even neurotoxicity. Cisplatin predominantly affects the outer
HCs of the basal turn of the cochlea; spiral ganglion neurons
are affected by this drug. Similar to aminoglycosides, cisplatin
stimulates free radical production in the cochlea that leads to Bax
activation, mitochondrial release of cyt c, caspase activation, and
intrinsic apoptotic cell death (Rybak et al., 2007). Unfortunately,
regulated necrosis and potential pathways associated with this
form of cell death are still unclear in the field of cell biology. The
contribution of pathways described in regulated necrosis is still
speculative in cochlear injury. Progress in necrobiology research
can improve our understanding of necrosis in auditory HCs.

Stress Signaling in Auditory Hair Cell Death

There are several signaling pathways that are involved in
apoptosis and necrosis of auditory HCs, including (1) expression
of extracellular pro-inflammatory cytokines such as tumor
necrosis factor alpha (TNFα) and recruited of neutrophils and
macrophages to the cochlea; and (2) generation of oxidative
stress in the form of ROS and reactive nitrogen species (RNS)
such as superoxide (O.−

2 ), peroxynitrite (ONOO−), and hydroxyl
(OH·) radicals (Figure 2). These stress signals can activate
intrinsic and extrinsic apoptotic cell death of auditory HCs as
well as initiate molecular mechanisms for necrosis. Although
signaling mechanisms discussed are extrapolated from studies
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investigating the effects of various cochlear insults on apoptosis
and necrosis in auditory HCs and studies of other cell types,
many of these pathways are relevant and expressed following
acoustic trauma. Studies pertaining to stress signaling in the
cochlea are bolded in subsequent sections.

Inflammatory Cytokines and Chemokines
Several cytokines and chemokines are upregulated in the cochlea
following an inner ear insult. TNFα is one of the most well
studied and possibly most important cytokines as it possesses
pro-inflammatory properties and can also initiated cell death
of auditory HCs. TNFα is expressed within the cochlea during
acoustic trauma, cisplatin ototoxicity, aminoglycoside exposure,
electrode insertion trauma, autoimmune inner ear disease, as well
as various other traumas to the inner ear (Ichimiya et al., 2000;
Satoh et al., 2002, 2003; Aminpour et al., 2005; Zou et al., 2005;
Fujioka et al., 2006; VanWijk et al., 2006; So et al., 2007; Bas et al.,
2009, 2012a,b).

Following a cochlear insult, the stria vascularis and spiral
ligament express and release TNFα, which promotes leukocyte
migration through the spiral modiolar vein and tributaries
(Keithley et al., 2008). TNFα also stimulates expression of
other cytokines, chemokines, and adhesion molecules such as
interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-
1 (MCP-1), macrophage inflammatory protein-2 (MIP-2),
soluble intercellular adhesion molecule-1 (siCAM-1), vascular
cell adhesion molecule-1 (VCAM-1), intercellular adhesion
molecule-1 (ICAM-1), and vascular endothelial growth factor
(VEGF; Yoshida et al., 1999; Ichimiya et al., 2000, 2003;
Maeda et al., 2005). These inflammatory mediators can
promote migration and adhesion of inflammatory cells such as
neutrophils, monocytes, macrophages, lymphocytes, eosinophils,
basophils, and even natural killer cells. (Taub et al., 1995; Proost
et al., 1996; Mutsaers et al., 1997; Deshmane et al., 2009).
These inflammatory cells are themselves a major source of
cytokines and chemokines, creating a positive feedback loop that
propagates and intensifies the inflammatory process.

In particular, expression of TNFα can promote neutrophil
migration, adhesion, and generation of superoxide free radicals
in the cochlea (Tsujimoto et al., 1986; Figari et al., 1987).
Neutrophils, one type of polymorphonuclear white blood cell,
are among the first immune cells to arrive in response to
inflammation. They relesase a number of pro-inflammatory
cytokines that stimulate migration of other immune cells, such as
monocytes (Mutsaers et al., 1997). In response to local cytokines,
monocytes will differentiate into M1 and M2 macrophages.
M1 macrophages are primarily involved in clearance of injured
cells; they can secrete inflammatory factors, stimulate inducible
nitrous oxide synthetase (iNOS) activity, and generate oxidative
stress in the form of ROS and RNS that can diffuse into
surrounding tissue. M2 macrophages are known to release
several growth factors from the transforming growth factor-beta
(TGF-β) family of proteins, which are important for initiation
of a fibroproliferative response, wound healing, and tissue repair
(Mahdavian Delavary et al., 2011).

Not only is TNFα a leukocyte attractant; extracellular TNFα
can bind to tumor necrosis factor receptor 1 (TNFR1) on the

cell surface of auditory HCs and initiate a signaling cascade
that can lead to cell death (Dinh et al., 2008a,b, 2011, 2013;
Haake et al., 2009; Figure 2). Adaptor protein TRADD, receptor
interacting protein (RIP), and FADD are recruited along with
caspase-8 to form a DISC that cleaves and activates caspase-
3 and -7 and triggers extrinsic apoptosis. TNFα-mediated Bax
activation and intrinsic programmed cell death also occurs, likely
through truncation of Bid.

The binding of TNFα to TNFR1 can also promote formation
of another signaling complex consisting of TNFR1, TRADD,
RIP, and TNF receptor-associated factor 2 (TRAF2) that
promotes mitogen-activated protein kinase (MAPK) and nuclear
factor kappa B (NFkB) signaling (Shen and Pervaiz, 2006).
NFkB is a transcription factor that can mediate cellular
inflammation, proliferation, and apoptosis. When activated,
NFkB can translocate into the nucleus of an affected cell and
activate transcription of several genes that are pro-inflammatory,
pro-survival and pro-death, depending on the cell type (Pahl,
1999). TNFα initiates NFkB signaling in an attempt to block cell
death by up regulation of pro-survival genes Bcl-2 and Bcl-xL in
auditory HCs (Haake et al., 2009; Dinh et al., 2011).

High levels of IL-1beta (β) have also been detected in OC and
cochlea following various inner ear challenges such as exposure
to gentamicin, electrode insertion trauma, and autoimmune
responses mediated by inner ear tissues (Pathak et al., 2011;
Bas et al., 2012a,b). This cytokine can promote formation
of a pyroptosome or inflammasome that mediates caspase-
1 dependent cell death via pyroptosis (Brough and Rothwell,
2007). As discussed earlier, caspase-1 activation can promote
apoptosis by inducing caspase-7 activity or necrosis through
pore formation in the cell membrane and cell lysis through
an osmotic imbalance (Fink and Cookson, 2006; Fernandes-
Alnemri et al., 2007; Lamkanfi et al., 2008). In summary, TNFα
expression in the cochlea can promote a robust inflammatory
response and activation of downstream pro-apoptotic cell
signaling that can promote cell death of auditory HCs. Blocking
TNFα expression and associated signaling cascades may mitigate
the inflammatory and pro-death responses in the cochlea.
In particular, glucocorticoids have been shown to reduce
inflammatory cell trafficking as well as inhibit TNFα-mediated
downstream pathways of cell death (Dinh et al., 2008a,b; Haake
et al., 2009). Steroids can also activate NFkB signaling that
promotes cell survival pathways following TNFα-induced death
of auditory HCs (Dinh et al., 2011). Inhibition of Bax expression
by short interfering RNA can also abrogate TNFα-mediated HC
loss (Dinh et al., 2013).

MAPK Signaling
In response to TNFα, auditory HCs can initiate MAPK signaling
pathways. There are several distinct groups of MAPKs; however,
the most extensively studied MAPKs are extracellular signal-
regulated kinases (ERK) 1 and 2 (ERK1/2), c-Jun N-terminal
kinases (JNK 1, 2, and 3), and p38 kinases (Roux and Blenis,
2004). Growth factors are the primary initiators of ERK1/2
activation, while JNK and p38 activities are stimulated by a
number of physical and chemical stressors such as oxidative
stress, UV irradiation, hypoxia, and various inflammatory
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FIGURE 3 | MAPK Signaling. There are three tiers of protein kinases that
comprise each family of MAPKs: (1) MAPK; (2) MAPK kinase (MAPKK); and
(3) MAPKK kinase (MAPKKK). Following a specific stimulus, MAPKKK
phosphorylates and activates MAPKK, which then phosphorylates and
activates MAPK to then phosphorylate target substrates that can regulate
cellular proliferation, survival, inflammation, and cell death. The three main
classes of MAPK include ERK1/2, JNK1/2/3, and p38. Oxidative stress and
cytokines such as TNFα can trigger JNK and p38 to phosphorylate
downstream transcription factors that initiate pro-death and pro-inflammatory
signaling and gene transcription.

cytokines including TNFα (Chen et al., 2001; Kyriakis and
Avruch, 2001). There are three tiers of protein kinases that
comprise each family of MAPKs: (1) MAPK; (2) MAPK kinase
(MAPKK); and (3) MAPKK kinase (MAPKKK; Figure 3).
MAPKKK phosphorylates and activates MAPKK, which then
phosphorylates and activatesMAPK to then phosphorylate target
substrates (Keshet and Seger, 2010).

While ERK1/2 signaling has been implicated in cell
proliferation and survival, TNFα activation of JNK and p38
signaling cascades promotes downstream events associated with
cell death (Wajant et al., 2003). P38 is a mediator of apoptosis and
it does so through several transcriptional and posttranscriptional
molecular mechanisms. P38 activation can promote Bax mRNA
and protein expression while phosphorylating and deactivating
pro-survival Bcl-2 protein, thereby stimulating Bax-mediated
mitochondrial apoptosis and cyt c release (Porras et al., 2004;
Capano and Crompton, 2006; Markou et al., 2009; Owens
et al., 2009). Pro-death factors such as Bcl-2-like protein 11
(Bim, a pro-apoptotic regulator), FasL, and FasR have also been
positively regulated following p38 MAPK activation to stress
stimuli (Hsu et al., 1999; Stephanou et al., 2001; Porras et al.,
2004; Cai et al., 2006). Through inhibition of cellular FLIP
(c-FLIP) in the DISC of the extrinsic apoptotic pathway, p38 may
also trigger Fas-mediated caspase-8 dependent programmed cell
death (Tourian et al., 2004). There is some evidence that p38 may
also promote apoptosis by blocking ERK1/2 signaling cascades
associated with cell survival (Porras et al., 2004). Blocking p38
MAPK activity has been associated with protection against

noise trauma, aminoglycoside, cisplatin, radiation and TNFα-
induced ototoxicity (Wei et al., 2005; Tabuchi et al., 2010; Bas
et al., 2012a,b; Park et al., 2012; Wang et al., 2012a,b; Maeda
et al., 2013; Kim et al., 2014; Kurioka et al., 2014; Shin et al.,
2014).

JNK has three isoforms: JNK1, JNK2, and JNK3. JNK1
and JNK2 are expressed ubiquitously while JNK3 is primarily
localized to cardiac and neuronal tissues. In response to an
extracellular stimulus, JNK signaling can promote apoptosis
through two distinct mechanisms: one targeting the nucleus and
the other targeting the mitochondria. JNK can translocate to the
nucleus and phosphorylate c-Jun and other transcription factors
such as p53, subsequently promoting expression of pro-apoptotic
genes (such as TNFα, FasL, Bak, Bim, and Bax) and blocking
transcription of anti-apoptotic genes (such as Bcl-2) (Faris et al.,
1998; Budhram-Mahadeo et al., 1999; Eichhorst et al., 2000; Fan
et al., 2001; Whitfield et al., 2001; Liu and Lin, 2005; Oleinik
et al., 2007; Dhanasekaran and Reddy, 2008; Amaral et al., 2010).
The JNK-mediated upregulation of pro-inflammatory and pro-
apoptotic proteins and downregulation of pro-survival proteins
can provide the necessary substrates for fueling pro-death cellular
events.

In addition, activated JNK can phosphorylate a number
of proteins that are intimately involved in mitochondrial cell
death. By phosphorylating the pro-death proteins Bim and Bad,
activated JNK can neutralize Bcl-2 and Bcl-xL protein inhibition
while promoting Bax activation of intrinsic apoptotic cell death
(Ottilie et al., 1997; Puthalakath et al., 1999; Donovan et al.,
2002; Lei et al., 2002; Lei and Davis, 2003; Wang et al., 2007a,b).
Furthermore, phosphorylated JNK can indirectly trigger pro-
apoptotic Bax-mediated mitochondrial death signaling through
truncation of Bid. The constellation of these events results
in release of cyt c, Smac, and other mitochondrial pro-death
proteins into the cytoplasm that promote caspase-dependent
and -independent mechanisms of programmed cell death
(Tournier et al., 2000; Madesh et al., 2002; Deng et al., 2003;
Dhanasekaran and Reddy, 2008).

Although JNK activity is primarily linked to apoptotic cell
death, prolonged JNK activation is thought to divert TNFα-
induced cell death from apoptosis to necrosis. Elevated levels of
ROS can promote prolonged JNK activation, while prolonged
JNK signaling can lead to increased mitochondrial production
of ROS, creating a positive feedback loop that favors TNFα-
induced necrotic cell death (Sakon et al., 2003;Wajant et al., 2003;
Ventura et al., 2004).

Similar to p38, JNK signaling is implicated in noise,
aminoglycoside, cisplatin, radiation and TNFα-initiated loss of
auditory HCs and with a resultant hearing loss. The insertion
of an electrode array of a cochlea implant into the cochlea
also exhibits effects of JNK and downstream molecular events.
Direct inhibition of JNK by either CEP-1347 or D-JNKI-1
(aka AM-111) have demonstrated protection against HC and
hearing losses following aminoglycoside, acoustic, and electrode
insertion injury to the cochlea (Ylikoski et al., 2002; Wang et al.,
2003, 2007a,b; Eshraghi et al., 2006, 2010; Jiang et al., 2006;
Suckfuell et al., 2007). Indirect modulation of JNK activity by
various drug therapies have been associated with HC and hearing
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protection (Nakamagoe et al., 2010; Pyun et al., 2011; Shin et al.,
2014).

Oxidative Stress
ROS are free radicals containing oxygen. They are very reactive
and in high amounts can damage cells. Extracellular ROS
can be generated by activated phagocytes such as neutrophils,
monocytes, andmacrophages, and play a vital role in host defense
against pathogens (Evans and Halliwell, 1999). Intracellular ROS
are primarily produced by the cell’s mitochondria (Turrens,
2003). Oxygen-derived free radicals can induce apoptosis and
necrosis by peroxidation of a cell’s phospholipid membranes,
proteolytic degradation, and DNA damage in mitochondria and
in the nucleus (Beckman and Ames, 1997; Kohen and Nyska,
2002).

Oxygen (O2) contains two unpaired electrons. Superoxide
anion (O−

2 ·) is the product of one electron reduction of O2 and
is the precursor for several ROS. O−

2 · can react with nitric oxide
and produce RNS, such as peroxynitrite, that are also detrimental
to cell viability (Beckman and Koppenol, 1996).

The main enzymatic source of O−

2 · is NAD phosphate
(NADPH) oxidases, which are located on the cellular membrane
of phagocytes. NADPH oxidases can transfer electrons from
NADPH to O2 to produce O−

2 · (Dworakowski et al., 2006).
The mitochondrial electron transport chain (ETC) is the
predominant non-enzymatic supplier of O−

2 ·. The ETC involves
several redox enzymes that act in sequence to couple electron
transfer to proton translocation across the mitochondrial
membrane, creating a transmembrane electrochemical proton
gradient. This gradient is crucial for driving ATP synthesis and
cellular events that depend on ATP as an energy source. The ETC
can leak electrons to O2, partially reducing this molecule to O−

2 ·

(Turrens, 2003). Overproduction of ROS can promote cell death
following various stress signals.

Classically, ROS is not associated with the DR (death
receptor)-mediated apoptosis; however there is some recent
evidence that oxidative stress can turn on extrinsic cell
death signaling. This again demonstrates the many levels of
communication that occur both upstream and downstream in
events of programmed cell death. ROS can activate apoptosis
signal-regulating kinase-1 (ASK-1), which is a MAPKKK that
can phosphorylate and activate mediators of the JNK and p38
pathways of extrinsic programmed cell death (Nagai et al.,
2007). ROS may also promote JNK-mediated extrinsic apoptosis
through oxidation and inhibition of MAPK phosphatases that
normally suppress JNK activity (Kamata et al., 2005).

Intrinsic cell death can also be affected by oxidative stress.
High levels of ROS can initiate nuclear accumulation of FOXO3
(O subclass of the forkhead family of transcription factors) that
can trigger up regulation of genes important for cell death
such as Bim and Bcl-6 (Hagenbuchner et al., 2012; Sinha
et al., 2013). FOXO3 can promote Bim translocation to the
mitochondria and knockdown of anti-apoptotic protein Bcl-
xL, which can modulate Bax-mediated mitochondrial cell death
(Sedlak et al., 1995; Khawaja et al., 2008). It is hypothesized
that FOXO3 can regulate the expression and activation of
various pro-apoptotic and pro-survival proteins of the Bcl-2

family that can lead to mitochondrial stress, transient opening
of the MPT pore, collapse of the mitochondrial membrane
potential, release of mitochondrial pro-death proteins into the
cytoplasm, and transient increases in ROS from the ETC. This
downstream mitochondrial production of ROS can promote a
positive feedback loop that converges into apoptosis (Sinha et al.,
2013). In this positive response, overproduction of ROS can
then promote more oxidation of lipids, proteins, and nucleic
acids, disruption of mitochondrial integrity and induction of
apoptosis and possibly necrosis. In addition, these free radicals
can also oxidize cardiolipin, which results in tBID binding of the
voltage-dependent anion channel (VDAC) of the MPT pore and
downstream events associated with intrinsic apoptosis (Kagan
et al., 2005).

Cochlear tissues produce high levels of ROS in response to
a variety of challenges, such as gentamicin, radiation, cisplatin,
electrode insertion trauma, and noise exposure (Henderson
et al., 2006; Rybak et al., 2007; Choung et al., 2009; Low et al.,
2009; Bas et al., 2012a,b). Cells can counteract the effects of
oxidative stress through an antioxidant defense system that
comprises free radical scavengers and antioxidant enzymes
such as reduced glutathione (GSH), superoxide dismutases, and
catalase. Insufficient levels of antioxidants such as GSH and
vitamins A, C, and E are also associated with oxidative stress. It is
the imbalance produced by ROS and antioxidant activity that can
help determine the fate of an affected cell. Antioxidants and free-
radical scavengers that have demonstrated protection against
cochlear injury include iron chelators, manipulation of dietary
glutathione, D-Methionine, lipoic acid, N-acetylcysteine, alpha-
tocopherol, and m40403 (a superoxide dismutase mimetic),
resveratrol, nitro-L-arginine methyl ester (L-NAME) and
co-enzyme (Evans and Halliwell, 1999; Ohlemiller et al., 1999,
2000; Huang et al., 2000; Teranishi et al., 2001; Seidman et al.,
2003; Nicotera et al., 2004; Samson et al., 2008; Fetoni et al.,
2009; Rewerska et al., 2013). Dexamethasone is a synthetic steroid
that has demonstrated beneficial effects against several inner ear
disorders; dexamethasone can block the expression of ROS as
well as reduce the extracellular inflammatory response and block
extrinsic cell death signaling through activation of NFkB (Bas
et al., 2012a).

Acoustic Trauma and Auditory HC Death

Although a number of stressors can initiate pro-inflammatory
and pro-cell death signaling within the cochlea, the most studied
insult to the inner ear is acoustic trauma. Acoustic trauma
initiates a sequence of events within the cochlea that can
culminate in apoptosis and regulated necrosis of auditory HCs
(Figure 4).

Loud noise exposures produce large displacements of the
tympanic membrane and propagate waves of mechanical energy
into the inner ear. These intense pulses can produce rapid
displacement of cochlear fluid within the inner ear, causing
shearing force damage to the OC and basilar membrane, injuring
auditory HCs, and altering the endocochlear potential (EP).
Acoustic trauma can also initiate inflammation and edema of
the stria vascularis and compromise the blood supply to the
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FIGURE 4 | Cell death signaling following acoustic trauma. Acoustic
trauma can promote edema of the stria vascularis, resulting in cochlear
hypoxia, formation of ROS, and oxidative stress. Noise trauma can also
stimulate the spiral ligament to express cytokines (such as TNFα and IL-1β)
and chemokines that initiate migration of leukocytes to the cochlea;
leukocytes will then release a number of other pro-inflammatory factors and
free radicals that propagate the inflammatory process. Oxidative stress and
pro-inflammatory cytokines can travel to the inner hair cells (IHC) and outer
hair cells (OHCs) of the organ of Corti and induce intrinsic and extrinsic

apoptotic signaling cascades. Prolonged activation of JNK and induction of
RIPK1/3 activity can promote necrotic cell death. Glucocorticoids have
demonstrated protection against acoustic trauma, in part by reducing
leukocyte migration, decreasing expression of pro-inflammatory factors,
and activating NFκB inhibition of JNK signaling. Antioxidants and free
radical scavengers can neutralize ROS and downstream effects of oxidative
stress. Inhibitors of JNK can also mitigate noise-induced loss of auditory
HCs by preventing downstream signaling cascades that lead to apoptosis
and necrosis.

cochlea (Smith et al., 1985). Since there is minimal redundancy
in cochlear blood flow, even transient reductions in cochlear
blood flow can result in hypoxia and injury to auditory HCs.
Injuries to the stria vascularis and spiral ligament occur following
noise trauma, damaging type II and type IV fibrocytes that are
important for maintenance of theEP) and lead to permanent
hearing loss (Hirose and Liberman, 2003).

Acoustic trauma can lead to ROS release by the marginal cells
of the stria vascularis as a result of reductions in cochlear blood
flow and cochlear hypoxia (Yamane et al., 1995; Ohlemiller et al.,
1999). It is controversial how hypoxia results in oxidative stress;
however, it may be related to an increase in oxygen demand
by auditory HCs followed by increased aerobic respiration by
mitochondria to produce ATP and production of free radical
byproducts via the ETC (Yamane et al., 1995; Taylor, 2008). The
lateral wall structures of the cochlea also express cytokines (such
as TNFα and IL-1β) and chemokines following acoustic trauma,
which stimulate migration of leukocytes into the cochlea via the
spiral modiolar vein (Keithley et al., 2008). These inflammatory
cells will in turn release more cytokines and chemokines as well
as produce ROS and RNS that will propagate the inflammatory
process in the inner ear.

When TNFα binds to its complementary receptor TNFR1,
TRADD and FADD are recruited along with caspase-8. Caspase-
8 can activate executioner caspase-3 to promote extrinsic cell
death through DNA fragmentation and chromatin condensation
via CAD, ACINUS, and HELI-CARD or it can cleave BID into
tBID, which can activate Bax-mediated intrinsic, mitochondrial
cell death (Liu et al., 1997; Enari et al., 1998; Li et al., 1998;
Kovacsovics et al., 2002; Nicotera et al., 2003; Wang et al.,
2003; Murai et al., 2008; Jamesdaniel et al., 2011; Infante et al.,
2012). Furthermore, loud noise exposure can upregulate TNFα-
mediated p38 and JNK signaling in the sensory epithelium of
the inner ear that promotes transcription of pro-death genes
and Bax-mediated mitochondrial release of apoptotic proteins
such as cyt c (Wang et al., 2007a,b; Dinh et al., 2008a,b;
Infante et al., 2012; Jamesdaniel et al., 2011). Fas-mediated
apoptosis also occurs following acoustic trauma (Jamesdaniel
et al., 2011).

Oxidative stress from noise exposure can also initiate intrinsic
apoptotic cell death in auditory HCs, resulting in mitochondrial
release of cyt c into the cytoplasm, generation of apoptosomes,
and activation of caspase-3 dependent cell death. AIF and EndoG
are also released into the cytosol, translocate into the nucleus, and

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 March 2015 | Volume 9 | Article 96

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Dinh et al. Hair cell death and protection/repair in the cochlea

can initiate chromatin condensation and DNA fragmentation of
auditory HCs (Nicotera et al., 2003; Yamashita et al., 2004a,b;
Han et al., 2006; Henderson et al., 2006).

In addition to apoptosis, acoustic trauma can result in
regulated necrosis through RIPK3/RIPK1 activation in rats, that
was reversed with necrosis inhibitor necrostatin-1 (Zheng et al.,
2014).

Acoustic trauma can also promote swelling and rupture of
dendritic terminals of cochlear nerve afferent fibers (Spoendlin,
1971). Intense noise exposure can trigger inner HCs to release
significant amounts of glutamate into the synapses with type
I fibers of the cochlear nerve. The glutamate overwhelms the
postsynaptic glutamate receptors and results in ion influx into
dendritic terminals of the cochlear nerve that leads to loss of
auditory nerve fibers (Pujol et al., 1990; Kujawa and Liberman,
2009).

Furthermore, intense noise exposure can increase
intracellular calcium in auditory HCs and activate calcium-
dependent calpains---cysteine proteases that promote proteolysis
and breakdown of cytoskeletal and membrane proteins, kinases,
phosphatases, and transcription factors (Wang et al., 1999).
Subsequently, calpain cleaves and activates calcineurin that
promotes Bad-mediated mitochondrial release of apoptotic
factors that lead to intrinsic cell death (Le Prell et al., 2007).

Otoprotective drugs can target different levels in apoptosis
and necrosis signaling pathways following acoustic trauma
(Figure 4). Glucocorticoids can reduce extracellular
inflammatory cell trafficking, reduce the level of TNFα
expression in spiral ligament fibrocytes, and bind to its
glucocorticoid receptors in auditory HCs to activate pro-survival
NFkB signaling and inhibit JNK signaling. Additionally, they can
reduce oxidative stress, and regulate pro-death and pro-survival
gene transcription (Maeda et al., 2005; Tahera et al., 2006; Dinh
et al., 2008a,b, 2011; Bas et al., 2012b). Regulation of MAPK

signaling can also protect against noise-induced hearing loss
by reducing p38 and JNK MAPKs (Tabuchi et al., 2010). In
particular, direct and indirect inhibitors of JNK can block JNK
phosphorylation of c-Jun and p53 and suppress downstream
activation of intrinsic and extrinsic forms of apoptosis and
potentially necrosis following acoustic trauma (Sakon et al.,
2003; Wang et al., 2003, 2007a,b; Ventura et al., 2004; Coleman
et al., 2007; Suckfuell et al., 2007). Lastly, antioxidants and
free-radical scavengers can neutralize ROS that is responsible for
lipid peroxidation of cell membranes, protein degradation, DNA
injury and other mechanisms related to oxidative stress induced
apoptosis and necrosis of noise-injured auditory HCs (Seidman
et al., 2003; Nicotera et al., 2004; Nordang and Anniko, 2005;
Samson et al., 2008; Fetoni et al., 2009; Rewerska et al., 2013).

Conclusion

Numerous diverse insults to the inner ear can cause auditory
HC damage and hearing loss. The evolutionarily conserved
apoptotic and necrotic cell death signaling that occurs in auditory
HCs is shared among many ototoxic and traumatic stressor
events. The most well studied molecular mechanisms behind
cell death in auditory HCs involve TNFα signaling, JNK and
p38 activation and the effect of high levels of oxidative stress.
Although their effects on intrinsic and extrinsic pathways of
apoptosis have been studied extensively, there are likely many
levels of cross communication between signaling cascades that
are still undiscovered. Research in this area is becoming more
prevalent, as well as research into mechanisms of regulated
necrosis in auditory HCs. A number of otoprotective drug
therapies target different levels along this pro-inflammatory pro-
death signaling cascade to block downstream events that lead
to cell death and promote auditory HC viability and hearing
protection.
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