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The growing demands placed upon the field of computer vision have renewed the

focus on alternative visual scene representations and processing paradigms. Silicon

retinea provide an alternative means of imaging the visual environment, and produce

frame-free spatio-temporal data. This paper presents an investigation into event-based

digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina,

and the Synaptic Kernel Inverse Method (SKIM), a learning method based on principles

of dendritic computation. As this work represents the first large-scale and multi-class

classification task performed using the SKIM network, it explores different training

patterns and output determination methods necessary to extend the original SKIM

method to support multi-class problems. Making use of SKIM networks applied to

real-world datasets, implementing the largest hidden layer sizes and simultaneously

training the largest number of output neurons, the classification system achieved a

best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons.

These results represent the highest accuracies achieved against the dataset to date and

serve to validate the application of the SKIM method to event-based visual classification

tasks. Additionally, the study found that using a square pulse as the supervisory training

signal produced the highest accuracy for most output determination methods, but

the results also demonstrate that an exponential pattern is better suited to hardware

implementations as it makes use of the simplest output determination method based on

the maximum value.

Keywords: N-MNIST, object classification, OPIUM, SKIM, multi-class

1. INTRODUCTION

The need for visual sensing in commercial technologies has experienced a rapid increase, often
driven by the growing field of autonomous devices. In many cases, the growth and applicability of
such systems are restricted by the speed, latency, and power consumption of the current algorithms
and hardware used in computer vision. Autonomous systems represent one of the most challenging
tasks for a computer vision system with performance limited by strict power budgets and requiring
fast and accurate processing with a high cost of failure.

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00184
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00184&domain=pdf&date_stamp=2016-04-28
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:g.cohen@westernsydney.edu.au
mailto:a.vanschaik@uws.edu.au
http://dx.doi.org/10.3389/fnins.2016.00184
http://journal.frontiersin.org/article/10.3389/fnins.2016.00184/abstract
http://loop.frontiersin.org/people/70336/overview
http://loop.frontiersin.org/people/94312/overview
http://loop.frontiersin.org/people/32893/overview
http://loop.frontiersin.org/people/784/overview
http://loop.frontiersin.org/people/94237/overview
http://loop.frontiersin.org/people/12768/overview


Cohen et al. Neuromorphic Digit Classification with SKIM

Visual sensing is also an important task in the biological
realm, and is heavily relied upon by many different organisms.
Sighted animals use vision to effectively sense and react to the
surrounding environment, often with extreme restrictions placed
on latency, speed, and energy consumption. These biological
systems overcome many of the problems faced by conventional
computer vision, and do so in a manner that is many orders of
magnitude more efficient in terms of power consumption.

Although it is extremely difficult to model and reproduce
the methods used by biology in order to sense and process
visual information, there is merit in examining the overarching
mechanisms and paradigms used in biology to design systems
that are biology-inspired. This paper unites two such systems, a
biology-inspired silicon retina and a learning method based on
the notion of dendritic computation. The methods presented in
this work explores a new approach to visual sensing, specifically
for the purposes of classification. It is important to stress that
the systems presented in this paper are not biologically realistic,
but rather are inspired by biological approaches to sensing and
computation.

This paper begins by introducing a number of recent advances
in artificial visual sensing and computation, with a focus on
systems that make use of silicon retinas. This is followed by a
short description of the Synaptic Kernel Inverse Method (SKIM),
which forms the learning mechanism used in this work. This
is followed by a discussion of the classification methodology
and the means by which SKIM is extended to process visual
information. The results of the experiments are then presented
along with a discussion and conclusion.

1.1. Recent Advances
The recent advances made in artificial visual sensing have
occurred primarily in three areas. The first deals with the
process of capturing visual information from scenes in an
efficient manner using neuromorphic devices called silicon
retinae which preserve accurate timing of log-intensity changes
in the scene. This accurate timing has been shown to carry
additional information (Akolkar et al., 2015). Inspired by
their biological counterparts, these devices use analog circuits
at each photosensitive element to perform computation and
compression, and transmit this information in a spike-based
manner. A full treatment and in-depth review of these silicon
retinae can be found in Posch et al. (2014) and the device used in
this paper makes use of the Asynchronous Time-Based Imaging
Sensor (ATIS) described in Posch et al. (2011).

There have also been a number of significant advances in the
design and development of large-scale biology-inspired spiking
neural hardware, which forms the second area of advancement.
These hardware devices compute in a power efficient manner
inspired by neurons in the brain and can be used to process the
captured visual signals from neuromorphic devices such as silicon
retinae. Prominent examples of these systems include SpiNNaker
(Painkras et al., 2013), Neurogrid (Benjamin et al., 2014), and the
TrueNorth processor from IBM (Merolla et al., 2014), which is
capable of implementing one million neurons and 256 million
synapses in real time and is reported to consumption of less than
100 mW.

Finally, the third area of advances concern the design
of Spiking Neural Network (SNN) algorithms, which make
use of the differing paradigm of hardware and sensors to
extract information and provide computation. Examples of these
systems include the SKIM presented in Tapson et al. (2013),
the HFIRST algorithm found in Orchard et al. (2015b), as well
as multi-layer deep learning approaches as explored in (Pérez-
Carrasco et al., 2013; O’Connor et al., 2013).

This paper presents an implementation of SKIM networks to
the event-based output of a silicon retinae in order to perform
a large-scale classification task. Such steps are critical in proving
the viability and efficacy of Spiking Neural Network algorithms.
Although the algorithm presented is a software simulation,
the design of the system in an event-based manner naturally
lends itself to implementation on the emerging spike-based
computational hardware.

1.2. Synaptic Kernel Inverse Method
The SKIM, proposed and outlined in Tapson et al. (2013),
is a neural synthesis technique which produces networks of
neurons and synapses that are capable of implementing arbitrary
functions on spike-based inputs. The network generally contains
a single input neuron for each input channel, and a single neuron
for each desired output channel. The conventional fan-out to
a higher dimensional space, present in most Linear Solutions
to Higher Dimensional Interlayer (LSHDI) network systems (as
introduced and described in Tapson et al., 2013) and usually
implemented through a hidden layer of neurons, is replaced with
multiple synaptic connections, which are shared between output
neurons.

SKIM differs from other LSHDI systems, such as the Extreme
Learning Machine (ELM), in that it is specifically designed to
learn spike-timing dependent signals. It therefore bears a closer
resemblance to synthesismethods such as theNeural Engineering
Framework (NEF), which is also capable of spike-based input-
output relationships (Eliasmith and Anderson, 2004). SKIM
differs from the NEF in that it does not rely on rate-encoded
signals, and rather relies on both the spatial and temporal
information in the incoming spike-trains.

SKIM is based on a biologically plausible network structure
modeled on the synaptic connections between neurons. An
overview of the SKIMnetwork is shown in Figure 1. In the SKIM,
input neurons are considered analogous to pre-synaptic neurons
and input event streams are projected to a layer of synapses
through a set of random weights. Each weight is representative
of a specific dendritic branch leading toward a synapse. These
synapses implement non-linear responses to the received current
from the pre-synaptic dendritic branches through the use of non-
linear kernels, such as exponentials or decaying-alpha functions.
It is these kernel functions that provide the SKIM with the ability
to respond to temporal information in the input as they convert
discrete incoming spikes into a continuous value.

The outputs of these synapses proceed down the post-synaptic
dendritic branches, which connect to the soma of the output
neurons. The dendritic branches sum the currents from the
synapses at the soma of the output neuron, causing it to fire if the
soma potential exceeds a specified threshold. It is the properties
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FIGURE 1 | Topology of the Synaptic Kernel Inverse Method (SKIM) as shown in Tapson et al. (2013). Each input layer neuron (left) will be an input from a

separate pixel. At initialization, the static random weights and synaptic kernels are randomly assigned and they remain fixed throughout the learning process. During

learning, the output weights in the linear part of the system are solved to minimize the error between the system output and the desired output.

of these post-synaptic dendritic branches which are analytically
calculated in the SKIMmethod as they are analogous to the linear
output weights in other similar systems.

The linear output weights are iteratively calculated using the
Online Pseudo-inverse Update Method (OPIUM; van Schaik and
Tapson, 2015), which allows for the iterative calculation of an
analytical solution for the weights.

1.3. Dataset
This work makes use of the N-MNIST spiking neuromorphic
dataset presented by Orchard et al. (2015a), which was created
specifically to provide a benchmark for neuromorphic vision
algorithms. Additionally, it serves to provide a spike-based
analog to the corresponding MNIST dataset, first presented by
LeCun et al. (1998), and which provides an important and well-
understood benchmark for the computer vision community.

The conversion process involved the use of an ATIS camera
attached to a pan/tilt mount and positioned in front of an LCD
screen. The converted recordings for each image in the datasets
consists of the event-based output from the camera as the pan/tilt
mechanism through across three saccade-like motions described
in Orchard et al. (2015a). The output of each consists of a set of

events in the Address-Event Representation (AER), as described
in Boahen (2000).

The N-MNIST dataset contains 60,000 training digits and
10,000 testing digits with an approximately equal number of
samples of handwritten digits in the range of 0–9. Each image
consists of a single, centered digit on a white background, andwas
encoded to an event stream with a spatial resolution of 34 × 34
pixels. Although the original MNIST digits are 28 × 28 pixels in
size, in order to account for the saccade motion, a 34 × 34 pixel
resolution was required.

1.4. Contributions
The work presented in this paper makes a number of
contributions to event-based vision processing and the SKIM
algorithm. It demonstrates the efficacy and applicability of a
spike-based approach to classification using real-world event-
based data. Through the applications of the methods described
in this paper, this paper presents the highest accuracy achieved
on the N-MNIST dataset to date.

This work also extends the original SKIM algorithm to multi-
class problems, exploring the different methods of determining
the winning output class in such systems. Four different
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output determination methods are described and discussed.
Additionally, the work also explores various training patterns for
use in SKIM networks, and fully explores and characterizes the
resulting accuracy. Finally, these two aspects are combined to give
insight into the methods of applying algorithms such as SKIM to
event-based visual classification systems.

2. MATERIALS AND METHODS

Applying the SKIM algorithm to a classification task with
the scale of the N-MNIST dataset requires a number of
modifications to the underlying SKIM algorithm and a complete
software framework. The framework needs to manage the state,
implement the neural layers, collate the outputs and manage the
training and testing regime.

Prior works have explored the theoretical performance of
SKIM networks using pre-determined patterns with varying
levels of noise and jitter. The authors applied the technique to
the Mus Silica dataset in the original SKIM paper Tapson et al.
(2013) and then later applied the SKIM to a real-world separation
problem Tapson et al. (2015). Others have used the algorithm to
determine angle and direction in biological motion estimation,
and in gait detection Lee et al. (2014).

The application of SKIM to the N-MNIST dataset requires
networks with an order of magnitude more input neurons and
synapses than previous SKIM networks. In addition, the majority
of the applications to date have formulated their outputs as binary
classification tasks, whereas the N-MNIST is inherently a 10-class
problem.

The training methods used for the prior SKIM
implementations have, to date, created a single pattern consisting
of all the training data, accompanied by a supervisory learning
pattern of equal duration. The input pattern is a spatio-temporal
pattern representing spikes arriving at the input nodes of the
SKIM network, and the supervisory pattern contains the desired
output spikes from the output neurons.

When dealing with the N-MNIST dataset, the direct
application of the above method is not feasible due to the size
and number of the patterns. Instead, the SKIM implementation
used in this work trains each pattern in a stand-alone fashion,
preserving the random weights, the configuration of the hidden
layer nodes, the inverse correlation matrix and the linear output
weights between training sequences. This allows the network to
train on any number of training samples as it is no longer bound
by the available memory.

When training the SKIMnetworks with theN-MNIST dataset,
the digit sequences were extracted from the dataset in a random
order. The training order therefore contained a randomly
interleaved set of all output classes, and each sequence was only
used once for training. The random training order was preserved
when running multiple trials of the same network configuration.
A random testing order was also used in this work, although it is
not required as no updates to the network are performed.

The temporal resolution of each event in the N-MNIST
dataset is reduced from the order ofmicroseconds tomilliseconds
with minimal impact on number or nature of the events. This

is due to the slow movement of the camera relative to the rate
at which events are time-stepped. In addition, the camera biases
were not configured for high-speed acquisition but rather to
reduce noise and maximize the balance between ON and OFF
events. This is an important step as it allows the SKIM algorithm
to simulate millisecond time-steps, instead of microsecond ones,
which dramatically increases the speed of computation.

Each training and testing sequence in the dataset consists of
a stream of AER events and a label indicating the digit class
to which it belongs. The AER events generated from the ATIS
camera have the following form:

e = [x, y, t, p]T (1)

In the above equation, u = (x, y) denotes the spatial location of
the pixel generating the event, t contains the value of the internal
time-stamping counter on the ATIS camera at the moment at
which the camera circuitry receives the event from the physical
sensor and p ∈ [−1, 1] denotes the polarity, indicating whether
it was an ON event or an OFF event. The SKIM network cannot
operate on the event stream directly, and a conversion to a fully
specified spatio-temporal pattern in which rows ascribe input
channels and columns denote time-steps is necessary. We can
denote such a spatio-temporal pattern as I such that I(c, δt)
denotes the dendritic current on channel c at the time step
denoted by δt.

The spatial information contained in u = (x, y)T is inherently
lost when applied to the SKIM network as the synaptic non-
linearity discards the spatial location of channels. Therefore, any
transformation that consistently maps R

2 → R is a suitable
candidate for the conversion of spatial locations to input channels
for SKIM. This only hold true if there is no interaction between
input channels. Operations such as spatial down-sampling can
invalidate this condition depending on the implementation.
When down-sampling spatially, the order of channels becomes
significant as it dictates to which pixel (and then subsequent
channel) the information from a region of pixels aggregates. All
the experiments performed on the N-MNIST dataset made use of
the simple mapping operation shown in Equation (2).

c = ⌊
34× y

β
⌋ + ⌊

x

β
⌋ (2)

In the above equation, the constant value β represents the spatial
down-sampling factor applied to the pattern and ⌊n⌋ operation
represents the floor function applied to n. The down-sampling
factor operates on both the x and the y coordinates, effectively
reducing the number of channels by a factor of β2. As no
down-sampling was used in this work, β = 1 for all experiments.

The value of 34 derives from the pixel dimensions of the
N-MNIST digits, as opposed to the 28 × 28 pixel images
from the original MNIST dataset. Down-sampling the temporal
information is far simpler as t is a monotonically increasing
single-valued variable, requiring only a division and flooring
operation to quantize it into the appropriate time step as shown
in Equation (3). This equation is used to reduce the resolution
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from microseconds to milliseconds.

δt = ⌊
t

α
⌋ (3)

Given the temporal reduction from microseconds to
milliseconds, α = 1000 for the purposes of the networks
presented in this work. Therefore, for each incoming event e,
the effect on the spatio-temporal input pattern for SKIM is as
follows:

I(c, δt) → I(c, δt)+ p (4)

The above operation demonstrates that the effects of multiple
events accumulate when mapped to the same channel and
time-step, and that their polarity dictates the nature of their
contribution. It is also important to remember that the
value of t is always monotonically increasing, allowing the
iterative construction of the spatio-temporal pattern, and allows
processing to begin for a time step once the time value for the
next event exceeds it.

The output of a SKIM network is a continuous value for
each output class representing the soma potential at the output
neuron. In the original SKIM implementation by Tapson et al.
(2013), the application of a fixed threshold converted the
continuous value into a binary spike, allowing the creation of
an output spatio-temporal pattern. The nature of this output
spatio-temporal pattern retains the same temporal resolution,
namely the same number of equally sized time-steps, with the
rows changed to represent the output of each output neuron.

As the training update in a SKIM network requires a measure
of error between the network output and the desired output, it
follows that the format for the learning sequence must adhere to
the same format as the network output. We can therefore define
the output patternO such thatO(n, δt) represents the real-valued
potential at output neuron n at time δt. Therefore, for every δt,
the input pattern I contains the instantaneous input values for
all c channels, and the training pattern O contains all the desired
output values for each output neuron n.

The analysis of the N-MNIST dataset presented in Orchard
et al. (2015a) shows that a pattern length of 315 ms is sufficient
to encode every pattern in both the training and testing set.
Appending an additional 45 ms onto the pattern allows the last
events to have an effect on the learning system, resulting in a total
pattern length of 360 ms. It is within this additional 45 ms that
both the training and recall occur.

2.1. Training Patterns
In theory, a SKIM network should require only an output spike
as a supervisory training pattern. In reality, a single spike (i.e., a
pulse with a duration of a single time step) does not produce an
error signal with enough magnitude or duration to allow rapid
learning. It is possible to train with a short duration pulse, but it
requires multiple presentations of each digit and does not reliably
converge. In place of a single spike, using a training pattern of
a longer duration produces a better result without the need for
multiple presentations of the training sequence. Having a pattern
that spans multiple time-steps also allows the use of different
training patterns, which can have a significant impact on both the
training itself and the most appropriate method of determining
the output class.

Figure 2 shows three different training patterns that produce
good results with the SKIM network. The flat output pattern is
the logical extension of the single output spike, but has two sharp
discontinuities on each end. The Gaussian pattern represents the
opposite approach, and exhibits a smooth (although discretized)
curve which peaks during the middle of the output pattern.
The exponential pattern represents the combination of the two
approaches, and maintains the initial discontinuity but gradually
decreases so as to exhibit a smooth return to zero.

To evaluate the performance of these training patterns,
full tests against the N-MNIST datasets were performed. Each
network contained 1000 hidden layer neurons, and made use
of the full training set. Sixty trials of each experiment were
performed, with only the random weights varying between trials,
and the average error rate and standard deviation reported.

2.2. Output Determination Methods
All prior work with the SKIM algorithm was always limited
to training a single output neuron and employed a threshold
to generate output spikes from the soma potential of output
neurons. If trained with the same random weights and
hidden layer configuration, it is possible to independently
train and then combine multiple output neurons (and
their associated thresholds) to implement a multi-class
classifier. As the outputs are already spikes, it is possible
to use existing spike-based techniques such as first-to-spike
and a winner-take-all approaches to selecting an output
class. Unfortunately, due to the need for fine-tuning and
determining thresholds this approach does not scale well
when dealing with datasets such as N-MNIST, and there exists

FIGURE 2 | Diagram showing different training patterns used to train the SKIM network.
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a need for a more robust and automated means of output
determination.

In practize, multi-class problems constructed from
independently trained output neurons suffer from the need
for individual and specific thresholds for each output class, or
the use of a global threshold which is often sub-optimal, as the
ranges and characteristics of the output neurons may differ.
This introduces additional parameters into the classification
methodology, which is difficult to empirically determine given
the size of the datasets and the time required to train on them.

In response to this issue, the approaches detailed in this
section all serve to remove the need for fixed thresholds,
and replace them with a comparison between output neurons
directly. For this approach to work, the outputs must therefore
be relative in magnitude, which requires the simultaneous
training of all the output classes. Although the OPIUM method
underpinning SKIM does include a normalization step, the range
of the linear weights can vary from class to class when training
individually, and prevents the direct comparison of output class
values. When training all outputs simultaneously with SKIM
(underpinned with OPIUM), the normalization applies to all
output weights, keeping them relative in magnitude to one
another.

This paper proposes and investigates four approaches to
determining the output in a multi-class problem using SKIM,
primarily applied to the N-MNIST dataset and also applicable
to the multi-class classification problems in the N-Caltech101
dataset introduced inOrchard et al. (2015a). Eachmethod utilizes
the real-valued output from each of the output neurons during
the section of the pattern in which the supervisory learning

signal is expected to be present, avoiding the need for explicit
thresholding.

Figure 3 demonstrates the four methods used. The first
approach is the Max Method, and simply takes the output class
that achieves the maximum value during the output period.
This maximum in the SKIM output does not necessary have to
correspond with the intended location of the maximum in the
training signal, but simply represents themaximumof any output
class during the output phase. The second approach calculates
the area under each curve, and selects the output class with the
highest overall area. This is analogous to integrating the incoming
values, and picking the highest value. It is important to note that
the output can be either positive or negative, and any areas arising
from portions of the curves below zero are negative in value and
require subtracting from the total positive area.

The third and fourth methods exploit knowledge about the
training pattern, and attempt to weight the outputs accordingly
before applying the same techniques used in the first two
methods. This has no effect when using a square training
pulse, but has a significant effect when using a Gaussian or
exponential training sequence (as the flat pattern results in
a uniform pattern as shown in Figure 2). The third method
weights the outputs proportionally to the training pattern,
and then finds the maximum value. This method, dubbed
the Weighted Max method, places emphasis on the portions
of the output range where a high value is expected. The
fourth method, referred to as the Weighted Area method,
weights the output values using the input pattern and then
calculates the areas under the curve and selects the highest
output.

FIGURE 3 | Diagram showing the four output determination methods evaluated for use in multi-class SKIM problems. (A) An example SKIM network with

two simultaneously trained output neurons coding for two classes; (A,B). (B) Example outputs from the two output neurons during the period in which the training

pattern occurs. In this example, the training utilized is the Gaussian training pattern shown in (C). Diagrams showing the manner of calculating the four output

selection methods are presented in (D), and include a label showing the theoretical winning class in each case. Note that for the Weighted Sum and Weighted Area

methods, the training pattern is also shown.

Frontiers in Neuroscience | www.frontiersin.org 6 April 2016 | Volume 10 | Article 184

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Cohen et al. Neuromorphic Digit Classification with SKIM

3. RESULTS

The results for this paper are divided among four sections. The
first section presents the classification results achieved when
applying the SKIM learning method to the N-MNIST dataset.
These results serve as benchmark results for SKIM networks
of varying sized hidden layer networks and achieve the highest
reported accuracy to date.

The second section presents the results of a statistical
investigation into the normality of the distribution of results
for a SKIM network. The outcome of this section is important
as it provides a robust underpinning for the results presented
in the next two sections, which explore the effects of the
training patterns and output determination methods presented
in Sections 2.1 and 2.2.

3.1. Classification Results
As N-MNIST is a new dataset, the results presented in this
paper serve to supplement the initial classification benchmarks
presented in Orchard et al. (2015a). The statistical classifiers
presented in that work attempted to set a theoretical lower
bound on performance, and these measures are important
to understanding the nature of the classification problem
but additional value is also gained from applying existing
and state-of-the-art spike-based classification techniques to the
classification problem.

The comparison results presented in this paper represent a
detailed application of the SKIM classification network to this
dataset, and present the highest classification accuracy achieved
on the N-MNIST dataset to date.

Figure 4 presents a plot of classification accuracy (in terms
of percentage of digits correctly identified) as a function of the
number of training samples presented. Each curve represents
the results of a network with a different hidden layer size tested
against the test dataset at regular intervals during the training
process. The final accuracies obtained for these networks are
presented in Table 1.

The testing phase occurred separately from the learning
process, and the results were never included in the training or
in any update mechanism. The plot displays only the first 10,000
samples as the network performance stabilizes and remains
constant after that point. Both training and testing orders were
always random.

It is interesting to note that a network trained with only 10
output neurons achieves a performance of ∼26.36% at 10,000
samples, which is almost exactly the performance of 26.52%
yielded by the statistical classifier trained on the number of
events presented in Orchard et al. (2015a). This suggests that the
network requires only 10 output neurons to learn and respond to
the event counts.

The figure also demonstrates the quick convergence of the
network, with the accuracy stabilizing within 2000 samples
in almost every case, and often much earlier. There were no
problems resulting from over-fitting, and the accuracy remained
constant through the full 60,0000 training presentations. This is
significant, given the iterative nature of the training process and
proves the viability of using the system in an online manner.

FIGURE 4 | Training accuracy over the first 10,000 presented samples

for N-MNIST using SKIM for increasing numbers of hidden layer

neurons. Each configuration of hidden layer neurons was trained sequentially

through a randomly shuffled training sequence, and tested against the testing

dataset at increments of 1000 hidden layer neurons. Each test was performed

independently of the training, and no learning took place during the testing

phase. Also shown on the graph are the accuracies due to chance, which is

10% for the 10-class classification task. The final results shown on the right

represent the full training accuracy tested against the full 10,000 training

samples whilst intermediate points on the curve were calculated over a

randomly drawn subset of 2000 testing samples.

TABLE 1 | Accuracy for the N-MNIST dataset after 10,000 and 60,000

training samples for different hidden layer sizes.

Hidden layer size 10,000 samples (%) 60,000 samples (%)

10 26.36 26.42

100 65.92 65.79

200 69.62 70.11

300 73.70 74.07

500 76.73 76.36

1000 81.03 81.51

1500 82.10 82.31

2000 83.44 83.96

Table 2 provides the results of fully trained SKIM networks
with increasingly large number of hidden layer neurons.
Whereas, the 2000 neuron network achieved an accuracy of
83.96% after training on the complete set, the network with
10,000 neurons achieved an overall accuracy of 92.87%. Due
to the size and computational time required to simulate these
networks, only one trial of each experiment could be performed.

3.2. Error Analysis of the SKIM Network
As the networks used in this work make use of either random
weights or random training orders, it is important to conduct
multiple trials of each experiment to fully characterize the
networks and their performance. The results for classification
tasks are often provided as either a mean accuracy, or a mean
accuracy and standard deviation, and is a common practize
within the machine learning community.
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TABLE 2 | Results for classification of N-MNIST with larger hidden layer sizes.

Hidden Layer Size

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

81.51% 83.96% 85.6% 85.1% 86.6% 86.3% 88.6% 90.22% 91.56% 92.87%

This table shows results for SKIM networks with large numbers of hidden layer neurons and trained on the full 60,000 training samples. Due to the time taken to train these large

networks, only a single trial of each was performed.

FIGURE 5 | Histograms of the distribution of errors and their Cumulative Distribution Functions (CDF) for the Gaussian and Exponential training

patterns. The results were calculated over 51 independent trials of each network. A comparison to the CDF of a Standard Normal distribution is included, and the

p-value for a one-sample Kolmogorov-Smirnov test provided, demonstrating that both distributions are normally distributed.

However, results presented in such a manner only fully
characterize the error distribution when the errors are normally
distributed, and this is often an implied assumption when stating
results in such a fashion. This section explores and characterizes
the nature of the errors arising from a typical SKIM experiment,
and attempts to validate this assumption for a typical SKIM
network. All statistics reported use either the standard t-test or
the paired t-test as appropriate.

The network chosen to characterize was the SKIM
implementation with 1000 hidden layer neurons. This same
configuration was also used to explore the effects of training
patterns and output determination methods as this network
represents a good balance between accuracy and training time,
making it well suited to experiments that require multiple trials.

Testing included the two variations of this network, making
use of the Gaussian and Exponential training patterns. The
characterization involved 51 full tests with all 60,000 training
samples on each network, with only the random weight matrix
and training order varying from trial to trial.

The networks with the Gaussian and Exponential patterns
received the same random weights for each trial, and the Area
method of the output determination methods run on the same
network output.

Figure 5 shows the distribution of accuracies for the
Exponential andGaussian patterns for the 51 trials. A one-sample
Kolmogorov-Smirnov test was used to test the normality of the
distributions (Frank and Massey, 2011), and the null hypothesis
was retained for both the Gaussian pattern (p = 0.9347) and the
Exponential pattern (p = 0.9991).

Furthermore, applying the Lilliefor’s composite goodness-of-
fit test of composite normality (Lilliefors, 1967) (which itself
is a specialized version of the Kolmogorov-Smirnov test) also
retained the null hypothesis that the data are normally distributed
(p > 0.5) for both patterns.

These results show that the output errors are normally
distributed, and therefore are sufficiently represented by the
mean and standard deviation of the accuracies or error rates.

3.3. Effect of Training Pattern on SKIM
Networks
Figure 6 shows a comparison of the four output methods over 61
trials of a SKIM network consisting of 1000 hidden layer neurons
and trained using a Gaussian training pattern with a µ of 10 and
a σ of 5. The network structure and training order remained
constant between each trial, with only the random input layer
weights differing from trail to trial. Each output determination
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method ran on the same output for each trial, and calculated
classification accuracy in terms of percentage of digits correctly
identified.

It is immediately and apparently clear from the figure that
the Area method produces the best result overall (p < 0.01).
The performance of the other two methods did not show any
statistically dominance at the 5% significance level.

The superior performance of the Area Method over the
Weighted Area method is an interesting result, and shows that
the learning mechanism makes use of the whole training pattern,
and not simply the maximum value. As this method consistently
produces the best results, all experiments henceforth report this
result unless otherwise specified.

3.4. Effect of Output Determination Method
The same random weights and hidden layer alpha functions were
maintained across all trials, with only the training pattern varied
across the tests. The classifiers all achieved accuracies consistent

FIGURE 6 | Comparison of the effects of the four different output

determination methods on classification accuracy with a Gaussian

training pattern. The figure shows the distribution of classification accuracies

over 61 trials of a SKIM network with 1000 hidden layer neurons. Each

network made use of the same random training order and hidden layer

configuration, with only the random weights varying from trial to trial. The

network made use of a Gaussian training pattern and uses the four different

classification methods shown in Figure 3.

with the results expected for a network with 1000 hidden layer
neurons. The experiments and tests (along with all others in this
section) make use of an output pattern of 10 time-steps in length.

Figure 7 shows the results of the training the three training
patterns for the four output determination methods. The graph
shows the mean error rate across all sixty trials for each training
pattern. These results indicate that the Flat training pattern
produces the best results in every case except for the Max
determination method, and that the Gaussian method produces
the worst result in every case.

Table 3 shows the mean accuracy and standard deviation
resulting from the trials over sixty independent tests for all
three training patterns. A difference was not observed in the
performance of the area method under different training patterns
(p = 0.091), but the performance of the Max method greatly
improved (p < 0.01). The standard deviation in the results did
not vary between the two output determination methods, and
remained consistent.

Further investigation into these results shows that the initial
discontinuity present in the flat and exponential patterns is
the primary source of the performance improvement. The
discontinuity produces a large and sudden spike in the error
signal for the update stage. The Gaussian method produces a
smooth error signal without any discontinuities, which has the
effect of smoothing away the maximum peak. For this reason,
the Max method is least effective when used with the Gaussian
pattern.

Figure 7 also demonstrates an important link between
training pattern and output determination method, and suggests
that the choice of training pattern determines the optimal output
determination method. The results show that the Area method is
the best choice when using a Gaussian training pattern, and the
Maxmethod produces the best results when using an exponential
training pattern. This makes sense when considering that the
area under the Gaussian training pattern is larger, and thereby
increases the total area under the output curve during recall. In
a similar fashion, the sharp discontinuity, and resulting spike in
the error signal, creates a more pronounced maximum value at
the onset of the output pattern.

The flat output pattern benefits from the same effects
from the sharp initial discontinuity, and also from the sharp

FIGURE 7 | Classification error when using different training patterns and output determination methods.
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TABLE 3 | Mean accuracies and standard deviation for the comparison between the Exponential, Flat, and Gaussian training patterns.

Gaussian pattern Exponential pattern Flat pattern

Area (%) Max (%) Area (%) Max (%) Area (%) Max (%)

Mean 80.62 79.32 81.82 82.73 83.28 82.04

STD 0.42 0.49 0.45 0.40 0.45 0.51

Max 81.42 80.33 82.62 83.67 84.17 83.16

Min 79.41 77.88 81.12 81.82 82.36 81.06

This table presents a comparison of the different training patterns under both the Area and Max output determination methods.

TABLE 4 | Recommended output determination methods for different

training patterns.

Training pattern Recommended output method

Gaussian pattern Area method

Exponential pattern Max method

Flat pattern Area or max method

negative error in the training signal resulting from the second
discontinuity.

4. DISCUSSION

This paper explores the use of the SKIM and OPIUM learning
methods applied to event-based vision systems and large
datasets and specifically in the realm of digit classification
using an event-based camera. This work makes use of SKIM
networks applied to the largest datasets to date, implementing
the largest hidden layer sizes and simultaneously training
the largest number of output neurons. The success of the
classifiers built using these SKIM networks validates both the
underlying SKIM algorithm and its applicability to event-
based tasks such as the digit classification task presented in
this work.

The classifiers presented in this work also achieve the highest
accuracy on the N-MNIST dataset to date with an online training
algorithm, and serves to further justify the use of SKIM as a
means for learning in event-based systems.

This paper also explores the use of different training patterns
and output determination methods on the N-MNIST dataset,
and provides an analysis of the results, with Table 4 presenting
a summary of the recommended output determination methods
for the training patterns introduced in this work.

One significant finding arising from the comparison of
training patterns and output determination methods is that the
Max method produces the best results when trained with an
exponential pattern. This is important as the Max method is
perhaps the simplest way of determining outputs in a system as
it requires only a comparison operation. This is an important
consideration as reductions in the complexity of the processing
at the output neurons can greatly simplify implementation costs
and reduce power consumption.

The SKIM algorithm itself poses certain challenges to a
direct hardware implementation. The nature of the continuous

elements and the transfer functions lend themselves to an analog
implementation, and these results serve to prove the viability of
such an approach. A mixed-signal implementation of the SKIM
algorithm should produce a power-efficient and fully spike-based
system, but requires that factors such as the size of the hidden
layer and the nature of the transfer functions be fixed at design
time.

This research serves to provide the first steps in validating
the SKIM algorithm for real-world spike-based tasks, to provide
insight into the performance of varying network sizes, and to
demonstrate the scalability of the SKIM algorithm to real-world
tasks.

Implementing the SKIM network using digital circuitry adds
additional complications as the outputs from the hidden layer
neurons require simulating regardless of the input activity. The
finding that the Exponential pattern produces the best results
for the Max Method is of particular significance as the Max
Method of output determination offers the simplest and most
direct hardware implementation.

Furthermore, the fact that the Exponential pattern starts at a
maximum and then decays to zero opens up interesting methods
for analytically calculating and comparing the outputs if the
output weights are restricted to positive values only

It is also possible to implement the SKIM algorithm on
existing large-scale neuromorphic hardware, such as SpiNNaker,
leveraging the existing routing and processing infrastructure to
implement the connectivity and transfer functions. In such a
system, the internal timing limits dictate the maximum rate that
the hidden layer nodes can produce values, thereby placing limits
on the time resolution of the input spike patterns.
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