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The primary aim of this study was to examine changes in functional brain network
organization from rest to the Iowa Gambling Task (IGT) using a graph-theoretical
approach. Although many functional neuroimaging studies have examined task-
based activations in complex-decision making tasks, changes in functional network
organization during this task remain unexplored. This study used a repeated-measures
approach to examine changes in functional network organization across multiple
sessions of resting-state and IGT scans. The results revealed that global network
organization shifted from a local, clustered organization at rest to a more global,
integrated organization during the IGT. In addition, network organization was stable
across sessions of rest and the IGT. Regional analyses of the Default Mode Network
(DMN) and Fronto-Parietal Network (FPN) revealed differential patterns of change
in regional network organization from rest to the IGT. The results of this study
reveal that global and regional network organization is significantly modulated across
states and fairly stable over time, and that network changes in the FPN are
particularly important in the decision-making processes necessary for successful IGT
performance.
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INTRODUCTION

The Iowa Gambling Task (IGT) is a popular paradigm used to assess real world decision-
making by clinicians and researchers (Bechara et al., 1994). In this task, individuals are
instructed to consecutively select cards from four decks (typically referred to as A, B, C, and
D). Each deck is associated with varying degrees of cash rewards and punishments after each
card selection. Decks A and B yield large cash rewards, but large penalties, resulting in a net
loss; decks C and D yield small cash rewards, but small penalties, resulting in a net gain.
Successful decision making is measured by the difference between the number of selections
from ‘‘advantageous’’ decks (C and D) and the number of selections from ‘‘disadvantageous’’
decks (A and B; Bechara et al., 1994). A variety of methods have been used to identify
the relevant brain areas associated with IGT performance. Early research on the neural
substrates of the IGT used primarily lesion studies (Bechara et al., 1994, 1998, 1999; Manes
et al., 2002). Later studies have used functional neuroimaging techniques, particularly PET
and fMRI, as a convergent methodology that allows for more precise measurements of the
brain areas contributing to the task, and without the disadvantages associated with lesion studies
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(Rogers et al., 1999; Bolla et al., 2003; Windmann et al., 2006).
The present study applies the more recent technique of network
analysis to explore functional network organization among the
brain areas that support performance on the IGT (Bullmore and
Sporns, 2009; Guye et al., 2010).

Graph-theoretical study of functional network organization
has been primarily applied to resting-state fMRI, but recently
has been extended to task-associated changes in network
organization (Bassett et al., 2011; Stevens et al., 2012; Cole et al.,
2013; Rzucidlo et al., 2013; Stanley et al., 2014). The present
study extends the graph-theoretical study of task-related changes
in network organization to the examination of decision-making
under uncertainty using the IGT. While there has been extensive
research on the neural activations associated with decision-
making behavior in the IGT, much less is known about the
functional integration that occurs between those brain areas
implicated in activation studies. The goal of this study was
to explore changes in the extent and nature of the functional
integration that occurs in the brain between rest and the
IGT.

Networks analyses of functional brain networks are typically
applied globally, meaning networks are described by metrics
(K, Eglob, Eloc, etc.) averaged across the entire network. At the
global level (i.e., whole-brain network), several studies have
found that there are functionally important changes in network
organization from rest to task-states (Rzucidlo et al., 2013;
Stanley et al., 2014, 2015; Wen et al., 2015). However, global
metrics may overlook significant regional changes in the network
(Moussa et al., 2011; Rzucidlo et al., 2013). Of additional interest
are changes in the spatial distribution of high degree nodes across
rest and IGT states, as well as changes in the network structure
of a priori defined networks of interest. Two major networks
of interest are the Default Mode Network (DMN) and Fronto-
Parietal Network (FPN). The DMN tends to be activated while
participants are at rest and correspondingly deactivated during
most task states, and is thought to correspond to internally-
oriented mentation (Raichle et al., 2001; Buckner et al., 2008).
The DMN is thought to consist of the vmPFC, inferior parietal
cortex (IPC), and precuneus/posterior cingulate cortex (Raichle
et al., 2001; Fox et al., 2005; Buckner et al., 2008). One such area,
the vmPFC, is consistently implicated in the decision-making
processes of the IGT (Bechara et al., 1994, 1999; Ernst et al.,
2002; Lin et al., 2008; Li et al., 2010). In addition, the IPC, an
area observed to be active during the IGT (Ernst et al., 2002;
Lin et al., 2008), is also a crucial component of the DMN. How
functional organization in the DMN is modulated from rest to
task-states is a question still under active investigation. Sustained
connectivity between areas of the DMNpersists from rest tomost
task states, including working memory, visual classification, and
semantic decision making; and has been shown to correlate with
behavioral outcomes (Fransson, 2006; Fransson and Marrelec,
2008; Harrison et al., 2008; Hasson et al., 2009; Gao et al., 2013;
DeSalvo et al., 2014). A more recent study (Rzucidlo et al.,
2013) examining functional network changes from rest to a
2-back working memory task, indicates that hub nodes in the
DMN (i.e., the precuneus) may change from rest to task states.
However, network analyses of DMN functional organization

during other complex tasks, such as the IGT, are yet to be
performed.

The FPN consists of the dorsolateral prefrontal cortex
(DLPFC), superior parietal cortex (SPC), ventral lateral
prefrontal cortex (VLPFC), and dorsal anterior cingulate
cortex (dACC; Damoiseaux et al., 2006; Dodds et al., 2010;
Power et al., 2011; Cole et al., 2013; Scolari et al., 2015). The FPN
is linked to a variety of cognitive control functions, including
attention, inhibition, working memory, and response control.
The cognitive processes involved in the IGT, such as response
control, judgments of probabilities, and the maintenance of
previous reward outcomes in short-term memory, all require the
operation of the FPN. The DLPFC, a crucial component of the
FPN, is an area consistently implicated in the decision-making
processes of the IGT (Ernst et al., 2002; Manes et al., 2002;
Li et al., 2010). In addition, activation in the ACC (primarily
the dorsal ACC) has been consistently observed during the
IGT (Ernst et al., 2002; Tanabe et al., 2007; Lin et al., 2008; Li
et al., 2010) Little research has been conducted to examine the
changes in functional network organization of the FPN across
states. Larson-Prior et al. (2009) found that the executive control
network (i.e., FPN) exhibited a decrease in correlation strength
from wake to light sleep. On the other hand, Sala-Llonch et al.
(2012) found that correlations within the FPN increased from
rest to a 3-back working memory task. Studies of changes
in functional network organization have found that the FPN
may be highly adaptable to changes in task demands found
that the FPN is highly adaptable to different task demands,
shifting its functional organization across task states (Cole et al.,
2013; Rzucidlo et al., 2013). However, network analysis of FPN
functional organization during a complex decision-making task,
with multiple cognitive control components, such as the IGT, is
yet to be performed.

One recent study did use a network analysis approach to
examine the consistency of communities of strongly correlated
brain regions during two sessions of the IGT for both young
and older adults (Moussa et al., 2011). Although not examining
differences in community structure across rest and the IGT,
they found that a net increase in connectivity in the vmPFC
between two sessions of the IGT was positively correlated with
a net positive change in the IGT performance between the two
sessions. Thus, connectivity changes across IGT tasks seem to be
functionally associated with performance in the task.

The present study extends the network analysis of the IGT to
the examination of connectivity changes across rest and the IGT
using a repeated-measures design with repeated observations of
both rest and IGT states for each participant. The repeated-
measures design of the study allows for the examination of
change/stability in network organization between rest and task
states, as well as the same state over several sessions. For the
present study, whole brain metrics (Eloc and Eglob) were used to
examine change/stability in overall network organization across
the entire brain. It was predicted that network organization
would shift from a more local, modular organization at rest to a
more global, integrated organization during the IGT. In addition,
between and within task changes in network organization within
areas of the DMN and FPN were further examined. Consistent
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with its central role in cognitive control during task states
(Cole and Schneider, 2007), FPN was predicted to increase in
functional significance, as measured by network metrics (K, Eloc,
Eglob), from rest to IGT. In order to establish the functional
significance of these network metrics for IGT performance,
performance on the IGTwas correlated with connectivity in areas
of the DMN and FPN.

MATERIALS AND METHODS

Participants
Participants were recruited from the Wake Forest University
Introductory Psychology research participant pool and the
community. Participants from the research participant pool
received course credit, and community members of Winston-
Salem, North Carolina were given monetary compensation in
return for their participation. The study was approved by the
Institutional Review Board of Wake Forest School of Medicine.
Data was collected from nine young (7 Male, Mage = 19.9,
range: 19–23) healthy adults, not including one participant’s
data that was excluded due to excessive motion. Participants
were provided with a Safety Screening Form and Medical
History Questionnaire to complete prior to the experiment.
In addition, participants were screened for corrected visual
acuity, small to moderate hearing loss, and right-handedness
prior to the experiment. Participants were provided with an
additional Safety Screening Form upon the day of their fMRI
scan. Any participants who had implants, devices, or objects that
would interfere with the fMRI procedure were excluded from the
experiment.

Imaging Design
Scanner Experiment
Prior to the fMRI scan, participants viewed a description of
the experiment on a PowerPoint slideshow and participant
questions regarding the experiment were answered. Participants
were provided with fMRI compatible goggles, ear plugs, and
a hand-held button response box. An anatomical brain scan
was collected for each participant (5 min) at the beginning of
the scan. Subsequently, participants alternated between a resting
state during which they looked at a fixation cross without moving
(4 min), and the IGT (4 min). The participants completed four
resting blocks, four IGT blocks, and four spatial-orienting blocks
(scans not included in the analysis), always in the same order:
rest, IGT, spatial orienting. In addition, a perfusion sequence was
collected at the end of the experimental design, during which
participants rested quietly with their eyes closed for 5 min (this
scan was not included in the analyses). The total length of time
each participant was in the scanner was 58 min. Data from the
spatial orienting task and the perfusion task were not included in
the present set of analyses.

Materials
The resting-state condition consisted of the participant laying
quietly in the scanner and staring at a fixation cross. Participants
were instructed to stay awake and let their thoughts wander

during the duration of the scan. Because participants were
in the fMRI scanner while they were performing the IGT
task, a computerized version was used. In the computerized
task, participants indicated their card selection (decks were
represented on the monitor) by pressing one of four buttons
on a response box that indicated their answers while in the
scanner. For each trial, the participant was given 2 s to select
a card, and after each response, a screen appeared displaying
whether the response resulted in a win or loss, the win/loss
amount, and their total earning. At the beginning of the task,
participants started with $0 and were told that the game
consists of a long series of card selections from four decks
of cards (decks 1, 2, 3 and 4) displayed on the screen. After
selection of each card by pressing the corresponding button
on the button box, the participant received a certain amount
of money that varies with each deck. Selection from decks 1
and 3 yielded a reward of $150, while selection from decks 2
and 4 yielded a reward of $200. After selecting some cards,
the subjects may have incurred a penalty, and the penalty
amount varied with each deck. Penalty amounts were higher
in the high-paying decks (2 and 4), and lowest in the low-
paying decks (1 and 3). Because of the higher penalty cost of
the higher-paying decks, the long-term yield was a net gain
for the low-paying decks, and a net loss for the high-paying
decks. The decks also varied in the frequency of penalties.
Decks 1 and 2 have less frequent penalties, while decks 3 and
4 had more frequent penalties. Decks 2 and 4 are referred to
as ‘‘disadvantageous’’ because they incurred a net loss for the
participant, and Decks 1 and 3 are referred to as ‘‘advantageous’’
because they incurred a net gain for the participant. Displays
were presented and responses were recorded using Eprime 2.0
software.

MR Image Acquisition
All imaging was performed on a Siemens SKYRA 3T MRI
scanner using a GE eight channel neurovascular head coil.
The protocol parameters for the anatomical scan were the
following: phase/frequency = 256/256; 156 contiguous slices,
1.0 mm thick; in-plane resolution of 0.938 mm × 0.938 mm;
echo time (TE) = 4.74 ms; repetition time (TR) = 4.68 ms;
Inversion time (TI) = 600 ms. Whole-brain gradient echo echo-
planar imaging (EPI) was used to detect blood-oxygen-level-
dependence (BOLD) fMRI signal changes during each task.
The EPI contained the following parameters: 120 volumes with
35 contiguous slices per volume; slice thickness 4.0 mm; in-
plane resolution of 4 × 4 mm; TR/TE = 2000/25 ms. The
voxels of each anatomical image were identified by using the
Automatic Anatomical Labeling (AAL) atlas. All anatomical
and functional image processing was done using SPM 8,
Statistical Parametric Mapping (Friston et al., 1994). Further
processing for network statistics were completed usingMATLAB
scripts.

Functional Image Pre-processing
The first 10 volumes of the functional images were discarded
prior to preprocessing. The remaining functional images were
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realigned to the first image volume using ‘‘rigid body’’ transforms
to remove head motion. Next, the EPI image for each participant
was co-registered to the structural image. The structural
image was normalized to the standard stereotactic Montreal
Neurological Institute (MNI) space, and warping parameters.
The images were not smoothed to avoid spurious increases in
local connectivity (Hayasaka and Laurienti, 2010). Functional
volumes with excessive motion were removed according to
procedures described in Power et al. (2012). The time courses
were extracted for each gray matter voxel based on the
AAL atlas and band-pass filtered to remove signals outside
the range of 0.009–0.08 Hz (Tzourio-Mazoyer et al., 2002).
White matter, cerebrospinal fluid and motion parameters were
regressed from the time series to remove spurious signals
associated with physiological noise such as heart beat and
respirations and motion. In addition, regression of the global
signal was performed because it has been shown to reduce bias
in network. parameters (Hayasaka, 2013) and enhances signal-
to-noise separation (Shirer et al., 2015).

Network Construction and Analysis
Pre-processed functional data were masked such that only gray
matter voxels were included. This was achieved by first summing
the gray mater, white matter and cerebrospinal segment maps
to generate a binary whole-brain mask. This mask was then
intersected with gray matter areas specified by the AAL atlas.
Then the white matter segment was subtracted (thresholded at
99%) to remove subject-specific white matter edges that may
coincide with the AAL gray matter atlas.

The gray matter voxels were then used in the construction of
the network for each participant. Networks are represented as
graphs consisting of nodes and edges. Each voxel represents a
node, and a network is constructed through a correlation matrix
containing Pearson correlation coefficients between each voxel’s
time series. The correlations matrices were thresholded using
the following equation: N = KS, where S is the equivalent of

the shortest path length in a random network, N = number
of nodes, and K = degree. The correlation coefficient that
satisfied N = KS was used as a lower bound when creating
binary adjacency matrices (Hayasaka and Laurienti, 2010). This
thresholding procedure ensures that the connection densities are
consistent across conditions and individual subjects in the event
that there is a change in the number of network nodes. For
networks with the same number of nodes, this is the equivalent
of fixing the average K across networks (Simpson et al., 2013a).
Network properties were measured at all thresholds in order to
determine whether those properties are independent of threshold
effects. Those coefficients in the correlation matrix above the
threshold received a 1 (i.e., representing an edge between those
voxel pairs), and those coefficients below received a 0 (i.e., no
connection). The threshold S = 2.5 (from the equation above)
was used for this article. This threshold was chosen based on
previous research showing that networks thresholded with an S
greater than 3 tend to fragment (Hayasaka and Laurienti, 2010).
A network was created for each block (Rest 1, IGT 1, Rest 2, IGT
2, etc.), resulting in 12 networks for each participant and 108
networks overall (N = 9).

Creation of DMN and FPN Masks
Masks for areas of the FPN and DMN were created using
WFU-pick atlas software (Maldjian et al., 2003; Figure 1).
Ten millimeter spheres were placed in areas of the AAL atlas
corresponding to important regions of the DMN and FPN (Fox
et al., 2005; Buckner et al., 2008; Vincent et al., 2008; Yeo
et al., 2011) For the FPN, the regions of interest (ROIs) were
generated using a 10 mm sphere placed at ±40, 48, −5 for
the right and left ventrolateral prefrontal cortex (lateral inferior
frontal gyrus); ±43, 22, 34 for the right and left dorsolateral
prefrontal cortex (lateral middle frontal gyrus); 37, −61, 48 for
right SPC (dorsal posterior parietal cortex) and −32, −61, 48
for left SPC; −2, 35, 43 for the dACC/dorsomedial prefrontal
cortex. For the DMN, the ROIs were generated using a 10 mm

FIGURE 1 | Masks of the default mode network (DMN) and fronto-parietal network (FPN). Regions of interest (ROIs) for the DMN (in red) and FPN (in blue)
used for regional analyses. The network metric values within these regions of the DMN and FPN were averaged to generate mean values for the entire DMN and
FPN, respectively.
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sphere placed at ±55, −57, 25 for the left and right IPC; 0,
57, −10 for the vmPFC; 0, −51, 31 for the precuneus/PCC.
For FPN and DMN comparisons, all the individual ROI’s were
merged within each network, resulting in a single mask for both
the FPN and DMN. The networks masks were used to extract
the network metric of interest from each voxel in the mask. The
values were then averaged to generate a mean value for each
network.

DMN and FPN Correlations with IGT
Performance
To establish the functional significance of connectivity metrics
within the DMN and FPN, a linear mixed-model predicting IGT
performance (i.e., advantageous minus disadvantageous decks)
was conducted with subject modeled as a random effect, and
the network metrics (K, Eglob, Eloc) from each network (DMN
or FPN) modeled as simultaneous covariates (fixed-effects).
In addition, to account for correlated errors associated with
each individual a first order autoregressive or AR(1) covariance
structure was specified to model correlations between previous
time points.

Network Metrics
Below is a brief definition of the network metrics calculated for
each network (for detailed information on these and additional
metrics see Bullmore and Sporns, 2009; Telesford et al., 2011):

Degree (K)—the number of edges (i.e., connections) of a
node.

Global Efficiency (Eglob): is the inverse of characteristic path
length, which is a measure of the average number of minimum
connections that should be passed to join any two nodes in a
network (Latora and Marchiori, 2001). It is a scaled measure
that ranges from 0 to 1, with a value of 1 signifying maximum
distributed processing.

Local Efficiency (Eloc): is the inverse of the characteristic
path length connecting all neighbors of that node (Latora and
Marchiori, 2001). It is a scaled measure ranging from 0 to 1, with
a value of 1 signifying a node with solely local connections.

Degree Centrality Maps
To further explore differences in network organization between
rest and task states, differences in the spatial distribution of
hub nodes between rest and IGT networks were assessed. The
‘‘hubness’’ of a node was calculated using degree centrality
(i.e., simply the number of connections for each node). Hubs
for each network were identified as those nodes that were
included in the top 20% degree distribution of that network.
In order to test the differences between the spatial distribution
of hub nodes between rest and task states a recently developed
permutation testing framework for comparing differences in
network organizations between groups was used (Simpson
et al., 2013b). We briefly describe the approach here. The
Jaccard index (JI) was used to quantify similarity of the spatial
pattern of degree hubs. This comparisons was made between
all networks across participants and tasks. This yielded a
similarity matrix. Then the average similarity within task

was divided by between task to generate a comparison
statistic (analogous to an ANOVA). To determine if there
was a difference between the tasks the permutation procedure
was used. The task labels were permuted and the statistic
was computed again for the permuted sample. This was
repeated 512 times to build a null distribution. We then
compared our true value to the null distribution to determine
significance.

RESULTS

Behavioral Performance
Figure 2 illustrates that, on average, participants made more
selections from the good decks (1 and 3) compared to
the bad decks (2 and 4) in all four blocks of the IGT
(M1 ± SE = 9.56 ± 5.44, M2 ± SE = 18.78 ± 8.15,
M3 ± SE = 16.11 ± 7.94, M4 ± SE = 21.67 ± 11.45). As
can be seen in the standard error bars of the chart, variability
in performance among the participants was high. A one-
way repeated-measures ANOVA was conducted to test for
differences in advantageous vs. disadvantageous card selections
among the four blocks of the IGT. The results indicated
there were no significant difference among the four blocks
of the IGT (F(3,24) = 1.094, p = 0.371). While there was
no statistically significant learning effect, the prevalence of
net-positive advantageous selections indicates participants were
engaged in the task.

Whole-Brain Network Metrics
For each participant, whole-brain network metrics were
generated for mean Eglob and Eloc for each IGT and rest
session (differences in K were not examined due to the fact
that K is controlled at the whole-brain level; see ‘‘Materials
and Methods’’ Section). 2 (condition) × 4 (session) repeated
measures ANOVAs (one for both Eloc and Eglob) were used to
determine whether any of these metrics varied significantly

FIGURE 2 | Iowa Gambling Task (IGT) block performance. Net-positive
advantageous selections across all four blocks of the IGT (error bars represent
standard error).
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across the four rest and four IGT sessions, as well as whether they
varied between the conditions.

Across sessions, none of the metrics exhibited significant
differences (Eloc: F(3,24) = 1.154, p = 0.348, η2 = 0.126; Eglob:
F(3,24) = 1.593, p= 0.217, η2 = 0.166). These results suggest that
overall network organization across sessions from the same task
(both rest and IGT) remained consistent.

There were significant main effects of task for both metrics.
Consistent with our hypotheses, the results indicated that local
efficiency (Eloc) decreased from rest (M ± SE = 0.52 ± 0.005)
to IGT (M ± SE = 0.502 ± 0.004) states, F(1,8) = 9.12,
p = 0.017, η2 = 0.533. However, although a decrease from
rest to IGT was observed across thresholds, the significance of
this decrease was not found to be independent of threshold
effects, thus, these results should be interpreted with caution
(p = 0.017, p = 0.063 and p = 0.122 for S = 250, 300,
350, respectively). Also consistent with our hypotheses, global
efficiency (Eglob) increased from rest (M ± SE = 0.189 ± 0.005)
to IGT (M ± SE = 0.213 ± 0.009) F(1,8) = 7.45, p = 0.026,
η2 = 0.482. There was no significant interaction between task
and session for either metric.

Location of Central Nodes in Rest and IGT
States
We also examined the spatial distribution of hubs, or nodes
with the highest degree (i.e., connections) in both rest and
IGT states. For both rest and IGT conditions, the spatial
consistency of the top 20% degree nodes across all rest and IGT
networks were calculated. Figures 3, 4 display the consistency
of top 20% degree nodes across rest and IGT states on the
given 20% threshold, respectively. Results of the permutation
test revealed that there was a significant shift in key nodes
between rest and IGT networks (p < 0.0002). Examination of
the degree consistency images revealed where in the brain these
important shifts occurred. For example, high consistency in
the DMN was present across both images, particularly in the
ventromedial prefrontal cortex. However, there was considerably

higher consistency in the posterior component of the DMN
(Precuneus/PCC) during rest compared to IGT. In addition,
the network hubs that were consistently located in the visual
cortex during rest were no longer consistent during the IGT.
Examination of the IGT images revealed that there was an
increase in the hub consistency among areas of the FPN
from rest to IGT, particularly in the SPC and VLPFC. In
addition, there was a significant increase in hub consistency
in the superior medial prefrontal cortex and dorsal ACC from
rest to IGT.

FPN and DMN Comparison
To examine regional changes in functional organization in
the DMN and FPN between rest and the IGT, a repeated
measures 2 (task) × 4 (session) ANOVAs were conducted for
degree (K), local efficiency (Eloc), and global efficiency (Eglob;
Figure 5) using data from each region. For all tests, there was
no significant effect of session, or an interaction between task
and session. For the DMN, there was a non-significant decrease
in K from rest (M ± SE = 124.7 ± 10.317) to IGT (M ± SE
= 103.21 ± 11.576) F(1,8) = 4.529, p = 0.066, η2 = 0.361; Eloc
significantly decreased from rest (M ± SE = 0.650 ± 0.009)
to IGT (M ± SE = 0.61 ± 0.011), F(1,8) = 40.452, p < 0.001,
η2 = 0.835; and there was a non significant increase in Eglob from
rest (M± SE= 0.218± 0.004) to IGT (M± SE= 0.232± 0.007),
F(1,8) = 4.224, p= 0.074, η2 = 0.346.

Consistent with our hypotheses of increased functional
significance of FPN from rest to the IGT, K significantly
increased from rest (M ± SE = 83.139 ± 6.185) to IGT
(M ± SE = 110.058 ± 6.935) F(1,8) = 19.019, p = 0.002, η2 =
0.704; Eloc did not show a significant difference between rest
(M ± SE = 0.611 ± 0.01) to IGT (M ± SE = 0.611 ± 0.006)
F(1,8) = 0.001, p = 0.975, η2 < 0.001; and Eglob significantly
increased from rest (M ± SE = 0.209 ± 0.004) to IGT
(M ± SE = 0.236 ± 0.008) F(1,8) = 12.198, p = 0.008,
η2 = 0.604. In order to determine whether these changes were
representative of all ROIs within the DMN or FPN, all of the
above analyses were repeated for each individual ROI. All results

FIGURE 3 | Rest—Spatial Consistency of hub areas. Average degree across all participants and sessions at rest, with areas of the DMN circled in yellow. Areas
of the DMN, inferior parietal cortex (IPC; axial slice 4—lateral), Precuneus/PCC (axial slice 4—medial), and medial (ventral and dorsal) prefrontal cortex (axial slice 2)
exhibit a high degree of connectivity. In addition, there is high degree of connectivity in the visual cortex.
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FIGURE 4 | IGT—Spatial Consistency of hub areas. Average degree across all participants and sessions during IGT state, with areas of the FPN highlighted
yellow. Examination of the both Rest and IGT consistency images reveal important shifts in the consistency of hub nodes. In particular, areas of the FPN, Dorsal
anterior cingulate cortex (dACC; sagittal slice) ventral lateral prefrontal cortex (VLPFC; axial slice 1), dorsolateral prefrontal cortex (DLPFC; axial slice 4), and superior
parietal cortex (SPC; axial slice 5) exhibit a higher degree of connectivity during IGT. Interestingly, the medial prefrontal cortex (ventral and dorsal) exhibits high
consistency of hub nodes in both the IGT and rest.

revealed significant or non significant changes within each ROI
in the same direction as the overall network (see Supplementary
Tables A,B).

To test differences in network organization between the two
networks, FPN and DMN, a repeated measures 2 (network) × 4
(session) ANOVA was conducted to test for any significant
differences in network metrics (K, Eglob, Eloc) between the FPN
and DMN during rest and the IGT. For all tests, there was no
effect of session, or an interaction between sub-network and
session. During rest, K was significantly higher in the DMN
compared to the FPN, F(1,8) = 11.091, p = 0.01, η2 = 0.581.

During the IGT, there was no significant difference in K
between the DMN and FPN, F(1,8) = 0.172, p = 0.689, η2 =
0.021. During rest, Eloc was significantly higher in the DMN
compared to the FPN, F = 38.951, p < 0.001, η2 = 0.830.
During the IGT, there was no significant difference in Eloc
between the FPN and DMN, F = 0.016, p < 0.902, η2 =
0.002. During rest, Eglob was significantly higher in the DMN
compared to the FPN, F(1,8) = 17.521, p = 0.003, η2 = 0.687.
During the IGT, there was no significant difference in Eglob
between the FPN and the DMN, F(1,8) = 0.245, p = 0.634,
η2 = 0.03.

FIGURE 5 | FPN and DMN comparison. Comparison of K, Eloc, and Eglob between the DMN and FPN across rest and IGT. Metric values for the DMN are displayed
in red and the FPN in blue. The DMN and FPN display differing patterns of change for K and Eloc. In particular, a significant increase in K in the FPN and a significant
decrease in Eloc in the DMN from rest to IGT. In addition, the differences in DMN and FPN in K, Eloc, and Eglob during rest drop to non-significance during the IGT.
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TABLE 1 | Results of linear mixed-model.

Network B SE Sig.

DMN
K 0.056 0.066 0.408
Eloc −70.352 99.743 0.489
Eglob 152.077 144.697 0.304

FPN
K 0.078 0.102 0.453
Eloc −266.822 151.174 0.091
Eglob −82.3 142.146 0.569

Estimated parameters (B) and standard errors (SE) from linear-mixed model

predicting IGT performance from network metrics of the DMN and FPN. The results

revealed that no metrics in the DMN or FPN were significantly associated with IGT

performance.

Correlations With IGT Performance
In order to determine the functional significance of network
organization in the DMN and FPN during the IGT, a linear
mixed-model was used to predict IGT performance from the
observed network metrics of the two networks (Table 1). The
results revealed that no metrics in the FPN or DMN were found
to be significant predictors of IGT performance.

DISCUSSION

The first goal of this study was to examine global changes in
network organization between rest and a complex decision-
making task (i.e., IGT), and across sessions of the same task.
There were significant changes in global network organization
between rest and the IGT, as measured by Eloc and Eglob.
Consistent with hypotheses, network organization, on average,
shifted from a more clustered, locally-ordered topology, with
efficient local information transfer during rest, to a more
diffuse, globally-ordered topology, with efficient information
transfer across the entire network during the IGT. However,
as noted above, the statistical significance of the decrease in
local efficiency from rest to IGT was not found to be entirely
independent of threshold effects, so the local efficiency results
should be interpreted with some caution. Given the complexity
of the IGT, and the large number of coordinated processes
needed to perform the task successfully, a shift from a more
modular organization to a more integrated organization would
be expected. A similar shift to a more globally integrated
organization was observed from rest to a working-memory
task (Rzucidlo et al., 2013). Thus, the shift from a local to
distributed organizationmay be representative of a variety of task
states.

In agreement with findings from other studies (Fransson,
2006; Harrison et al., 2008; Buckner et al., 2009; Rzucidlo
et al., 2013), network organization stayed consistent in
certain respects, especially for network metrics (at the whole-
brain and region level) across sessions of the same task.
Surprisingly, consistency was even found across sessions on
the IGT, despite the significant learning component of the
task. However, this study did not find significant differences
in behavioral performance across four sessions of the IGT,

inconsistent with previous studies (Bechara et al., 1994; Ernst
et al., 2002; Lawrence et al., 2009). In fact, net positive
advantageous selections were seen across all sessions, suggesting
that participants on average were able to develop advantageous
strategies in the first session. The number of selections in
each block was large (n = 60), giving participants ample time
to learn (unconsciously or consciously) at least some reward
contingencies before the end of the first block. In fact, one
study suggests that 30 card selections may be enough trials for
participants to develop some kind of understanding of the reward
contingencies associated with each deck (Maia and McClelland,
2004).

In addition, regional changes were examined in two
prominent resting state networks, the FPN and the DMN.
Examination of the spatial consistency of the top 20% degree
nodes revealed important shifts in degree hubs from rest to
IGT, contrary to some previous studies of network changes from
rest to task states (Harrison et al., 2008; Buckner et al., 2009).
Examination of network metric changes across rest and the IGT
revealed important functional changes in network organization
between the two states. For example, the DMN decreased in
average degree from rest to IGT, while the FPN increased in
average degree from rest to IGT. In addition, local efficiency
decreased from rest to IGT in the DMN, and global efficiency
increased from rest to IGT in the FPN. These results seem to
suggest an increased functional role of the FPN in response to
the task demands associated with the IGT, with a corresponding
decrease in the overall and local connectivity of the DMN.
Interestingly, a comparison of network metrics between the two
networks revealed a functional dominance of DMN compared
to the FPN during rest, but no such dominance during the IGT.
This is consistent with previous findings (Cole et al., 2010, 2013)
that the FPN is an especially important hub network in the
integration of important information from all other networks.
These findings suggest that the FPN may act as a flexible hub
of the brain, integrating information from various networks,
particularly during task states.

Together, these results suggest that the network organization
of the brain changes in important ways in response to task
demands. In terms of overall network organization, the brain
shifts to a more globally, distributed processing network in
response to the task demands of the IGT. This change co-occurs
with, and may be facilitated by a shift in hub structure from
DMN areas to FPN areas. In addition, the examination of
the relative differences in network metrics between the DMN
and FPN during rest and the IGT revealed that the increased
cognitive demands of the IGT were associated with an increase
and decrease in efficiency and connectivity in the FPN and
the DMN, respectively. Thus, these results suggest that network
organization changes in the FPN may be of central importance
in the cognitive processes associated with the IGT. However,
no significant association was observed between any of the
network metrics in the DMN and FPN during the IGT, and
net advantageous selections in the IGT. We believe the size of
the sample (n = 9) may be the reason for the non-significant
associations between the metrics of the FPN and DMN, but
future studies are needed for any further conclusions.
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CONCLUSION

The primary goal of this study was to apply network-based
analysis to the study of task-related changes in network
organization, particularly the study of a complex decision-
making task, the IGT. The results of this study suggest that
network topology, in agreement with more recent research on
task-related changes in network organization, is significantly
changed between various cognitive states. This was found to
be the case not only at the whole-brain level, but in particular
sub-networks of interest, specifically the FPN and the DMN.
In addition, hub nodes were found to shift across the two states,
with greater average degree in the DMN compared to the FPN
during the resting state, but no difference in degree between
the two networks during the IGT. Local and global efficiency
followed the same trend, confirming the FPN’s role as a flexible
network hub coordinating processes across networks during task
states.

The results of this study are obviously limited by the small
sample size (n = 9). However, the repeated measures design of
this study (4 sessions for each task) allows for unique insight
into the network stability/changes between and within states.
The results of this study suggest that the network analysis of
repeated-measure fMRI designs may be fruitfully applied in
other task settings. It is hoped that the present study encourages

more research on task-related changes in functional network
organization and demonstrates the utility of network-based
analyses of functional neuroimaging data.
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