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Salmonella enterica causes substantial morbidity and mortality in humans and animals.
Infection and intestinal colonization by S. enterica require virulence factors that mediate
bacterial binding and invasion of enterocytes and innate immune cells. Some S. enterica
colonization factors and their alleles are host restricted, suggesting a potential role in
regulation of host specificity. Recent data also suggest that colonization factors promote
horizontal gene transfer of antimicrobial resistance genes by increasing the local density of
Salmonella in colonized intestines. Although a profusion of genes are involved in Salmonella
pathogenesis, the relative importance of their allelic variation has only been studied
intensely in the type 1 fimbrial adhesin FimH. Although other Salmonella virulence factors
demonstrate allelic variation, their association with specific metadata (e.g., host species,
disease or carrier state, time and geographic place of isolation, antibiotic resistance profile,
etc.) remains to be interrogated. To date, genome-wide association studies (GWAS) in
bacteriology have been limited by the paucity of relevant metadata. In addition, due to the
many variables amid metadata categories, a very large number of strains must be assessed
to attain statistically significant results. However, targeted approaches in which genes of
interest (e.g., virulence factors) are specifically sequenced alleviates the time-consuming
and costly statistical GWAS analysis and increases statistical power, as larger numbers
of strains can be screened for non-synonymous single nucleotide polymorphisms (SNPs)
that are associated with available metadata. Congruence of specific allelic variants with
specific metadata from strains that have a relevant clinical and epidemiological history will
help to prioritize functional wet-lab and animal studies aimed at determining cause-effect
relationships. Such an approach should be applicable to other pathogens that are being
collected in well-curated repositories.
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ONE TO FIVE STAR HOTELS FOR Salmonella
Salmonella enterica infections result in substantial morbidity and
mortality worldwide, both in humans and livestock (Hirsh, 2004).
The immunopathology induced during the infectious process is
the result of both Salmonella virulence factors and host responses
(de Jong et al., 2012). Salmonellosis, when not self-limiting,
requires antimicrobial therapy, particularly for neonates and to
treat or prevent systemic infections. As such, the increasing preva-
lence of multidrug resistant S. enterica raises substantial concerns
regarding the efficacy of current therapy. Continuous surveillance
of reported Salmonella cases (Centers for Disease and Preven-
tion, 2013) indicates that Salmonella remains the most frequent
bacterial cause of foodborne disease in the US and suggests that
control programs aimed at reducing food contamination have
not succeeded for Salmonella. In this regard, the persistence of
S. enterica in the intestinal tract in a large number of food ani-
mals creates chronic or non-symptomatic carriers that continue
to shed bacteria in feces, thereby serving as a reservoir for future
spread by contaminated meat, milk, eggs, and agricultural prod-
ucts grown on land fertilized with Salmonella-containing manure.
The Salmonella reservoir is not only maintained by transmission

between animals, directly or indirectly through insect vectors
(Wales et al., 2010), but also by long-term environmental con-
taminations. Indeed, some Salmonella strains can survive for
days, weeks, or months in the environment, and can encamp
in soil, water, or on plants by making protective biofilms before
being re-ingested by animals or humans. Maintenance of the
environmental reservoir is enhanced by Salmonella’s aggressive
behavior toward competitors or predators such as fungi, ameba,
and helminthes, and possibly other bacteria (Aballay et al., 2000;
Wildschutte and Lawrence, 2007; Tampakakis et al., 2009; Pezoa
et al., 2013). Some Salmonella can even invade and hide inside cer-
tain plants, which if edible, add another source of transmission
to humans for this successful pathogen (Arthurson et al., 2011;
Golberg et al., 2011).

With the latest official publications on serological grouping
of Salmonella up to 2007, the number of different serovars
amounts to 2625 (Grimont and Weill, 2007; Guibourdenche
et al., 2010). Two species are recognized, bongori and enterica,
the latter species being divided in six named or numbered sub-
species (enterica or I, salamae or II, arizonae or IIIa, diarizonae
or IIIb, houtenae or IV, and indica or VI; V became S. bongori;
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Tindall et al., 2005). Many Salmonella strains survive and multiply
in a range of environments, but the most “luxurious” accom-
modations are warm and rich in food. For example, although
most S. enterica subspecies preferentially lodge in the intestines of
cold-blooded animals, S. enterica subsp. enterica (also designated
subsp. I) has “upgraded” to the bowels of some warm-blooded
animals, the optimal environment for bacterial multiplication and
transmission. Moreover, the maintained ability of S. enterica to
“camp” outside of the host in less opulent telluric biotopes further
improves its chances of transmission.

While many of the approximately 1,500 characterized serovars
of that subspecies seem to promiscuously colonize any mammal
or bird, others show adaptation to a subset of host species, or
may even be restricted to one host species. Salmonella serovar
variants with distinct host range are well documented in host
species-specific endemic or epidemic strains (Rabsch et al., 2002).
While comparative genomic studies of Salmonella strains high-
light evolutionary steps involving gene gain by horizontal gene
transfer (HGT), as well as recombination, mutations and gene loss
(Porwollik et al., 2002; Holt et al., 2009; den Bakker et al., 2011),
determining which genetic alterations directly participate in host
adaptation remains a barely started puzzle. It is clear, for example,
that bovines don’t offer “room and board” to the avian-restricted
S. enterica serovar Gallinarum or the human restricted S. enter-
ica serovar Typhi. However, both the bovine-adapted S. enterica
serovar Dublin as well as serovar Typhimurium, which has a broad
host range, can colonize cattle whose levels of immune compe-
tence and competing flora dictate the one to five star “quality”
rating of the host environment. Serovars such as serovar Dublin
that have a more defined host restriction are often more viru-
lent toward their hosts. For example, serovar Dublin causes a
potentially lethal systemic infection in its bovine host. However,
since not all serovar Dublin-infected hosts die, the high level of
multiplication and transmission in chronically ill hosts and/or
convalescent silent carriers appears to trump the occasional death
of individual hosts. In contrast, the ability of broad host range
serovars to subsist in any warm-blooded animal seems to com-
pensate for their less extensive host invasion, potentially explain-
ing why the broad host range serovar Typhimurium remains
a most isolated Salmonella serovar in veterinary and human
medicine.

Salmonella LIGAND ALLELES: THE DEVIL IS IN THE DETAILS
Current Salmonella genomic studies identify potential genetic evo-
lutionary adaptations using a variety of in silico approaches that
analyze genetic differences in collections of subspecies and serovars
(Soyer et al., 2009). A recent study compared tree-building meth-
ods to ascertain congruent results by integrating models of gene
gains and losses (Desai et al., 2013). Incremental information
was built with strain-specific lists of new or missing groups of
genes that might be involved in strain adaptation and virulence.
However, to date, such studies have mainly investigated differ-
ences between serovars. Strains within a serovar are typically more
related to each other, suggesting that genes responsible for the O
and H antigens of Salmonella, which determine serovar classifica-
tion, are latecomers in Salmonella’s evolutionary history. However,
it is sometimes unclear whether the strains studied within a serovar

are independent and not clonal, considering that many of the his-
tories and pathotypes (origin, host species, disease and pathology)
remain poorly defined. Thus, the observed lack of diversity within
a serovar might be partially biased by the collection of strains
studied.

Strain differences within the same serovar, particularly for those
of broad host range, have long been under-evaluated, as exempli-
fied by the increasing number of well-documented “exceptions”
that illustrate distinct lineages within such serovars (Sangal et al.,
2010; Lawson et al., 2011; Okoro et al., 2012; Gragg et al., 2013).
However, it is quite likely that the ability of Salmonella to colonize
and/or cause diseases in different hosts depends not only on the
presence of a collection of specific genes, but also on the allelic
variation within these genes. In surprising contrast to research
in both cancer and metabolic and inheritable diseases, where
mammalian single nucleotide polymorphisms (SNPs) are dis-
sected in great detail to determine potential causality (Frazer et al.,
2009), few investigators have assessed allele-mediated effects of
non-synonymous SNPs on bacterial proteins that mediate or par-
ticipate in host specificity and virulence (Hopkins and Threlfall,
2004). Notably, the few studies that have assessed allelic effects
of virulence factors in Salmonella pathogenesis revealed altered
virulence phenotypes (Wagner and Hensel, 2011; Thornbrough
and Worley, 2012). The potential role of non-synonymous SNPs
on host specificity is best exemplified with the orthologous fim-
brial adhesin FimH of the avian-specific serovars Gallinarum and
Pullorum which mediates significantly better bacterial binding to
chicken leukocytes than did serovar Typhimurium FimH alleles
(Guo et al., 2009). In contrast to the latter alleles, the avian-
specific FimH did not mediate bacterial binding to mammalian
cells. Even though the FimH of serovar Typhimurium mediates
specific binding to mannosylated residues on glycoproteins, as
expected of the adhesion of type 1 fimbriae in general, binding
to chicken leukocytes by fimbriated bacteria expressing the avian-
specific FimH was only minimally inhibited by mannose. Notably,
FimH of serovar Gallinarum and Typhimurium differ by only
5–6 amino acids, but one amino acid substitution was sufficient
to restore mannose-specific binding (Kisiela et al., 2005). More-
over, the mannose-inhibitable FimH of serovar Enteritidis which
has the latter amino acid substitution, decreased chick coloniza-
tion when studied in serovar Gallinarum (Kuzminska-Bajor et al.,
2012). Together, these data demonstrated that allelic variation of
the Salmonella FimH adhesin directs not only host-cell-specific
recognition, but also distinctive binding to mammalian or avian
receptors. Remarkably, the allele-specific binding profile parallels
the host specificity of the respective FimH-expressing pathogen,
highlighting its physiologic relevance.

Salmonella’s SWAT TEAMS FOR HOST COLONIZATION
The ability of Salmonella to colonize its host(s) relies on sets of
molecules that allow it to bypass natural host defense mechanisms,
such as gastric acidity and gastrointestinal proteases and defensins,
as well as the aggressins of the intestinal microbiome. In addition,
Salmonella utilizes surface molecules, organelles, and machineries,
such as adhesins, flagella, and type 3 secretion systems (T3SS) to
actively make contact with host cells and deliver molecules that
initially improves host colonization, and later its transmission to
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new hosts. As such, allelic variation in any of these molecules could
influence host specificity and pathogenicity.

Flagella direct the Salmonella toward the surface of intestinal
epithelium by promoting bacterial movement across the mucus
layer (Figure 1, step 1). Flagella’s near-surface swimming prop-
erties optimize the encounter of bacterial adhesins with host
receptors (Humphries et al., 2001; Korhonen, 2007; Wagner and
Hensel, 2011; Misselwitz et al., 2012). Flagella have highly vari-
able alleles (which serve as the basis for H antigen serology
in Salmonella). While flagellar motility is clearly required for
intestinal colonization (Robertson et al., 2000), early studies sug-
gested that flagella act as adhesins (Allen-Vercoe and Woodward,

FIGURE 1 | Model of intestinal colonization by Salmonella. Most
Salmonella remain associated to specific anatomical segments of the
intestines using cyclical multiplication steps in the lumen and enterocytes,
using (1) near surface swimming, (2) adhesion (several adhesins), (3)
invasion with formation of SCV, (4.1) intravacuolar replication, (5) escape in
the cytoplasm, pyroptosis and return to the intestinal surface and lumen.
After intravacuolar replication, (4.2) Salmonella can also escape toward the
lamina propria, resulting in their potential uptake by dendritic cells and
macrophages. (6) Some Salmonella can be further transported to the
mesenteric lymph nodes which frequently contain further spreading.
Typically for host-restricted (e.g., serovar Typhi in humans) or host-adapted
strains (e.g., serovar Dublin in bovines), but also for Salmonella with broad
host range encountering stressed hosts or weakened host immune
responses, (7) Salmonella can cause bacteremia. When disseminating
Salmonella (whether or not host-adapted or restricted) can be somewhat
controlled by the host, they typically settle in the liver, gallbladder (for
mammals with this organ*), on calculi and in the biliary tract, where they
can replicate and be released in the bile to return to the intestines
(Oboegbulem and Muogbo, 1981; Cavallini et al., 1991; Wood et al., 1991;
Pellegrini-Masini et al., 2004; Akoachere et al., 2009; He et al., 2010).

1999) and flagella were reported to mediate bacterial binding
for biofilm formation on cholesterol-coated surfaces (Crawford
et al., 2010). Thus, in addition to providing antigenic variation to
allow Salmonella to escape a host’s immune system, variations in
Salmonella flagellin sequences may also influence the efficiency of
intestinal colonization.

Salmonella encodes a large collection of adhesins, including
fimbrial organelles (Yue et al., 2012a), surface associated proteins
or surface-exposed domains of anchored outer membrane pro-
teins (OMPs; Wagner and Hensel, 2011), which can attach to
enterocytes (Figure 1, step 2), phagocytic cells (Figure 1, step
4.2), or gallbladder and biliary calculi (Figure 1, step 7; Reisner
et al., 2003; Ledeboer et al., 2006; Dwyer et al., 2011; Gonzalez-
Escobedo et al., 2011; Spurbeck et al., 2011; Wilksch et al., 2011).
A subset of the adhesive OMPs are autotransporter proteins with
surface-exposed adhesive N-terminal ends or passenger domain
that have the potential to influence host-specificity (Kingsley et al.,
2003, 2004; Morgan et al., 2004; Dorsey et al., 2005; Raghunathan
et al., 2011; Wagner and Hensel, 2011; Leyton et al., 2012). Other
OMPs have adhesive properties or significant sequence similarities
to known adhesins, some which promote epithelial cell invasion
by a zipper mechanism (Velge et al., 2012). Salmonella adhesins
secreted by type 1 secretion systems (T1SS, ABC transporters)
and anchored on the bacterial surface (Morgan et al., 2004; Latasa
et al., 2005; Gerlach et al., 2007; Wagner and Hensel, 2011) may
also participate in specific host colonization.

Salmonella optimizes transmission and intestinal colonization
by invading and replicating in enterocytes, a process that is
mediated by subversion of the enterocyte’s cytoskeletal machin-
ery and signal transduction systems by secreted/injected effector
proteins from the two T3SS (Stevens et al., 2009; Heffron et al.,
2011). For this, adhesion-mediated attachment stabilizes bac-
terial docking by the Salmonella-pathogenicity island 1 (SPI-1)
encoded T3SS, which then injects effector proteins into ente-
rocytes (Misselwitz et al., 2011) to trigger bacterial uptake by
macropinocytosis (Figure 1, step 3). Once inside the Salmonella-
containing vacuole (SCV), Salmonella deploys a second T3SS
encoded by SPI-2 to inject effector proteins that optimize con-
ditions for bacterial survival and replication (Figure 1, step 4.1;
Stevens et al., 2009; Heffron et al., 2011). Additional virulence fac-
tors subsequently allow hyper-replicating bacteria to escape the
SCV, thereby promoting a cytosolic inflammatory response that
results in pyroptotic cell death. Extracellular release of bacteria
from dying cells potentially contributes to colonization by allow-
ing invasion of new enterocytes (Figure 1, step 5; Knodler et al.,
2010). In addition, T3SS effectors direct the transport of SCVs
to the basolateral side of enterocytes, where released bacteria can
be taken up directly by lamina propria phagocytes (Muller et al.,
2012), including dendritic cells (DCs; Figure 1, step 4.2), a T3S-
regulated process (Swart and Hensel, 2012). Finally, effectors of
the two T3SS, but particularly of SPI-2 allow Salmonella to repli-
cate intracellularly or bypass phagocyte-mediated killing in the
lamina propria and to hitchhike inside DCs (Swart and Hensel,
2012) to seed mesenteric lymph nodes (Figure 1, step 6). SPI-
2 effectors also interfere with MHC-presentation and activation
of an immune response that would eliminate Salmonella. If not
contained, the bacteria that escape the lymph nodes promote a
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primary bacteremia that seeds the liver (Figure 1, step 7), to ini-
tiate a circular reinfection process by taking the biliary route to
return to the intestinal lumen. In addition to making biofilms on
gallbladder stones, Salmonella adheres to and invades gallblad-
der epithelial cells (and probably biliary tract epithelial cells) in a
SPI-1-dependent manner (Gonzalez-Escobedo and Gunn, 2013),
creating a constant or recurring seeding source for the intestines.
Some T3SS effectors might play several roles, such as the SPI-2
effector SseI/SrfH that was suggested to activate cell motility early
during intestinal infection, but also to mainly inhibit cell migra-
tion later during infection, after establishment of new reservoirs
in the mesenteric lymph nodes and liver (Worley et al., 2006;
McLaughlin et al., 2009). Thus, effector proteins of the two T3SS
promote various steps of intestinal, mesenteric, and hepatic sur-
vival and replication, some inducing anti-inflammatory responses,
creating stable seeding reservoirs that contribute to host’s per-
sistent colonization (Monack et al., 2004; Heffron et al., 2011;
Gopinath et al., 2012; Ruby et al., 2012).

SNPs SNAPSHOT: Salmonella ET AL.
As discussed earlier for the type 1 fimbrial adhesin FimH, type
3 effector proteins of Salmonella harbor non-synonymous SNPs
that have the capacity to modulate the infectious process. For
example, the Gifsy-2 phage srfH/sseI gene encodes two pro-
tein alleles that differentially influence the motility of intestinal
CD18-expressing phagocytes upon ingestion of S. enterica serovar
Typhimurium (Thornbrough and Worley, 2012). Migration is
stimulated by the SrfH/SseI allele with a glycine at position
103, allowing it to bind to TRIP6 to promote mobility. The
same effector protein with an aspartic acid at position 103 does
not interact with TRIP6, and thus does not induce phago-
cyte migration. Interestingly, the glycine-bearing allele is found
in specific Typhimurium strains that are more invasive, cause
more severe diseases or associate with outbreaks. Allelic vari-
ations among effectors of Salmonella T3SS include the SopE
Cdc42 RhoGTPase (Hopkins and Threlfall, 2004; Schlumberger
and Hardt, 2005). Although existing alleles were not directly
compared functionally, a substitution of residue 198, which is
variable in different serovars, affects the catalytic activity of the
enzyme.

In addition to the above-mentioned virulence factors of
Salmonella, this bacterium has evolved sophisticated subsistence
factors or metabolic pathways to survive and multiply during
host colonization (Deatherage Kaiser et al., 2013; Steeb et al.,
2013). Multi-omic data by Deatherage Kaiser et al. revealed that
Salmonella induces an inflammatory response that alters the
intestinal microbiota, thereby increasing the availability of var-
ious metabolites, including fucose, that accumulate following
depletion of commensal bacteria. Moreover, Salmonella responds
to this shift in metabolites by upregulating expression of fucose
utilizing proteins. Similarly, combining proteomics, microbial
genetics, competitive infections, and computational approaches
Steeb et al. identified at least 31 host nutrients that increased in
infected tissues and demonstrated that Salmonella adjusted its
catabolic pathways to utilize new host nutrients. Elegant exper-
iments also demonstrated how Salmonella takes advantage of its
induced inflammatory environment to out-compete the intestinal

microbiota with specialized respiratory pathways (Winter et al.,
2010; Rivera-Chavez et al., 2013).

An important caveat concerning most of the information on
Salmonella virulence and infection is that it is based on in vitro
studies, carried out with a restricted number of Salmonella strains,
and primarily assessed in mouse models of infection, with a
limited amount of data gathered in farm animals, particularly
cattle and chicken. We predict that host-dependent colonization
is not only modulated by specific adhesin alleles (Guo et al., 2009;
Kuzminska-Bajor et al., 2012), but also by non-synonymous SNPs
in additional virulence factors, such as the T3SS effectors (Schlum-
berger et al., 2003; Hopkins and Threlfall, 2004; Raffatellu et al.,
2005; Thornbrough and Worley, 2012). It is also likely that numer-
ous additional Salmonella protein alleles will be identified in the
near future as virulence factors senso lato, including proteins of
metabolic pathways that have evolved to take advantage of unique
host species properties.

Because of its importance if the fields of immunology and vac-
cinology, allelic variation of antigenic microbial proteins has been
studied for years. The vertebrate’s immune system exerts a power-
ful selection on such antigens, forcing an accelerated evolutionary
route for the bacteria that use these virulence tools to breach
immune recognition. In contrast, allelic variation in non-antigenic
virulence genes has received less attention, possibly due to the
uniqueness and complexity of genotype-phenotype links for each
factor. However, differential interaction of allelic variants with
host molecules has been reported for a variety of bacteria, sup-
porting the global relevance of this pathoadaptive mechanism. For
example, only SpeB (streptococcal pyrogenic exotoxin B) variants
that harbor an integrin-binding motif (Stockbauer et al., 1999)
mediate cell rounding and detachment from culture substrates. In
addition, a specific amino acid polymorphism in the CagL pro-
tein of Helicobacter pylori correlates significantly with a higher
risk for gastric cancer and severe corpus gastritis (Yeh et al., 2011)
and OmpA allelic variants of Bacteroides vulgatus isolates from
ulcerative colitis patients mediate better bacterial adhesion to a
human colon cancer cell line than do those isolated from patients
with colon cancer (Sato et al., 2010). Finally, allelic polymorphism
between the YopJ/YopP type 3 effector proteins of the mammalian
virulent Yersinia species differentially affects secretion and toxicity
levels in a mouse model (Brodsky and Medzhitov, 2008). Similarly,
strains of P. syringae can express three YopJ/YopP homologous
proteins with various alleles that induce host-adapted hypersen-
sitive responses in different plants. Thus, whereas allelic variation
of YopJ/YopP in Yersinia modulates the type of pathology in one
host, allelic variation in the corresponding proteins of the plant
pathogen Pseudomonas syringae elicit host-specific spreading of
infections (Ma et al., 2006).

FROM GENOMICS TO GWAS: THE IMPORTANCE OF BEING
EARNEST WITH METADATA
Technological improvements have reduced the cost of next gen-
eration sequencing, allowing for increasingly larger-scale inves-
tigations based on tens to hundreds of Salmonella strains. This
trove of new information has allowed extensive studies on the
adaptive history of pathogens. In addition to information on gene
acquisition, inactivation, or loss, comparative genomics highlights
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non-synonymous mutations that may alter function. Unfortu-
nately, the number of mutations is usually too high to make
firm conclusions. In contrast, genome-wide association studies
(GWAS) that focus on Salmonella strains for which there is host
and clinical information would help to better limit the number
of genes likely involved in strain-specific phenotypes. Currently,
GWAS are mainly used to identify disease-associated sequences
within human genomes. Specifically, whole genomes of healthy
and affected individuals are sequenced and compared for intra-
and inter-genic SNPs that are associated with a specific disease
to suggest a potential cause and effect relationship. Discovered
associations are expected to support the development of new diag-
nostic, therapeutic, and preventive tools. Some studies focus on
genomic regions already suspected to contribute to disease pro-
gression to identify a limited number of associated SNPs. Notably,
GWAS have successfully identified several disease-specific SNPs
(Stranger et al., 2011).

Analogous to studies on human genomes, GWAS can be applied
to bacterial genomes. Assuming one has the needed metadata to
separate groups of strains in an epidemiologically, clinically, or
biologically relevant manner, GWAS should be able to charac-
terize specific SNPs in strain variants that are associated with
restriction to a particular host species or strain pathotype in-
between and inside serovars. Moreover, by carrying out GWAS
on strains with detailed host metadata, strains restricted to the
same host could be directly compared, thereby reducing the con-
founding effects of differential host innate immune and adaptive
defense responses on virulence. In addition to host specific asso-
ciations, SNPs associated with ethnicity or breed, age, and sex
are some additional factors that could be evaluated by GWAS.
More complicated studies can compare additional groups or vari-
ables, however, statistical methods for GWAS can be plagued
by having more variables than samples, the so called “curse of
dimensionality” (Kelemen et al., 2009). Increasing the number
of strains with useful metadata should improve the reliability
of the conclusions, but large-scale investigations of hundreds of
Salmonella genomes still remain a challenging undertaking, con-
sidering the high cost and time-consuming analysis. A palliative
plan is to restrict GWAS to genes of interest, namely genes already
known to play a role in virulence or multiplication (e.g., through
special metabolic pathways) in at least one host species. Sev-
eral technologies for targeted sequencing have been developed
in recent years, and are based on DNA enrichment methods
such as capture by hybridization or microfluidic PCR (Meyer
et al., 2008). Incorporating sample barcoding to the latter method
recently allowed us to use massive parallel sequencing for assess-
ing allelic variation in known and predicted fimbrial adhesins
of S. enterica serovar Newport (Yue et al., 2012b). Despite only
targeting 8 adhesin genes from 48 independent strains, we iden-
tified 5–85 SNPs per gene, with 6–12 different alleles per gene.
Phylogenic trees clearly separated each of five adhesins into two
groups, which overlapped significantly. Most importantly, the two
groups clearly differentiated strains of bovine and non-bovine ori-
gin. Even though these preliminary results utilized a relatively
small number of isolates, the data were highly promising and
clearly supported the idea that adhesin alleles contribute to host
specificity.

It is safe to assume that multiple mutations in a variety of genes
participate in the slow and progressive course of host adaptation.
In addition to binding to intestinal host receptors, Salmonella has
evolved to colonize its diverse hosts through a tailored army of
virulence factors that mediate tissue invasion and subvert host
immune defense mechanisms to improve short to long-term mul-
tiplication and transmission. Identification of such factors in
bacterial pathogenesis studies are traditionally based on molecular
Koch’s postulates that either interrogate one candidate at a time or
assess libraries of random mutants of one prototypic bacterium
in an animal model. However, despite the frequent insufficiency
of metadata, candidate virulence genes that encode variable alleles
in Salmonella strains for which genomic data are available can be
detected by comparative in silico analysis. As described above, tar-
geted sequencing of these genes, focusing particularly on the ones
predicted or found experimentally to play a role in various steps of
Salmonella-host interactions, can then be applied to strain collec-
tions that have relevant metadata to identify statistically significant
associations. The detection of such associations will help to limit
the number of confirmatory “wet lab” and animal experiments
required to demonstrate the role of allelic variants in specific host
colonization.

HOARDING ANTIMICROBIAL RESISTANCE BY STICKING
AROUND
Although Salmonella-induced gastroenteritis is typically self-
limiting, antibiotherapy is generally indicated for salmonellosis
in patients or animals of young age or at risk for septicemia.
As many farm animals are asymptomatic carriers of Salmonella,
farm animals given antibiotics either routinely as food additives
or therapeutically likely contribute to the alarming increase in
multiple drug-resistant (MDR) Salmonella (McDermott, 2006).
The corresponding uncontrolled access to and self-prescription of
oral antibiotics in the human population of developing countries
and the frequently inappropriate use of antibiotics in developed
countries amplify the problem. Antibiotic resistance genes in
enteric bacteria, including Salmonella, are frequently located on
mobile DNA elements such as transposons, integrons, integra-
tive conjugative, or mobilizable elements (including conjugative
transposons) and plasmids (Vo et al., 2007; Welch et al., 2007; Su
et al., 2008; Ajiboye et al., 2009; Fricke et al., 2009; Lindsey et al.,
2009; Call et al., 2010; Douard et al., 2010; Johnson et al., 2010;
Wozniak and Waldor, 2010). HGT of these mobile DNA elements
occurs in the wet and warm environment of the intestines (Nijsten
et al., 1995; Lester et al., 2004; Rowe-Magnus and Mazel, 2006;
Schjorring et al., 2008; Trobos et al., 2009; Faure et al., 2010), where
antibiotics have been speculated to select for successful MDR gene
dissemination (Beaber et al., 2004; Hastings et al., 2004). Host-
specific bacterial adhesion and local invasion of the intestinal
mucosa (Figure 2A) result in a local inflammatory response that
can profit HGT events (Stecher et al., 2012). Moreover cyclical
colonization of the intestines (Figure 1) that leads to intestinal
persistence (Figure 2B), likely creates optimal conditions and
timespans for HGT events (Figure 2C), thereby increasing the
antibiotic resistance gene pool (further stabilized by clonal expan-
sion and selection if antibiotics are administered). Consistent
with this notion, specific colonization of the ileum can increase
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FIGURE 2 | Model of intestinal surface colonization and HGT. (A) The
success story of Salmonella evolution and adaptation to a multitude of
environments and hosts is illustrated by showing how diverse the
intestinal tract anatomies of just a few warm blooded animals are when
comparing chicken, bovine, equine swine, and human. In addition to the
distinct anatomies, histological, immunological, and microbiota
particularities further participate to create unique compartments in which
varieties of Salmonella developed ways to live and multiply, with a simple
escape route for future settlements. (B) S. enterica expressing specific
allelic adhesins for the cognate host intestinal receptors and cellular
targets initiate successful colonization. Other strains lacking such ligands

will not be retained as well in the host. A resulting gastroenteritis and/or
persistence will result in the multiplication and possible long-term
excretion of such Salmonella strains (not shown). (C) Intestinal
colonization mediated by specific allelic adhesins of Salmonella (red ovals)
optimizes contact (event numbers and time span) with a constant flow of
new bacteria (blue ovals), some carrying antimicrobial resistance genes on
conjugative or mobilizable elements (small circles in ovals), resulting in
increased HGT efficiency and antibiotic-resistant S. enterica colonizing
carrier hosts. With time, excretion of antibiotic-resistant S. enterica will be
excreted in greater numbers than antibiotic-susceptible S. enterica (not
shown).

the rate of intra-intestinal conjugation (Garcia-Quintanilla et al.,
2008). Notably, HGT is increased at high bacterial density such
as in biofilms (Licht et al., 1999; Roberts et al., 2001), the gen-
eration of which is influenced by adhesins (Reisner et al., 2003;
Ledeboer et al., 2006; Dwyer et al., 2011; Spurbeck et al., 2011;
Wilksch et al., 2011). In addition, HGT of antibiotic resistance
genes can increase expression of some adhesins (Sahly et al., 2008),
suggesting a positive feedback mechanism between intestinal col-
onization and HGT. Interestingly, the enhanced colonization or
enteritis by Salmonella in swine or calves, respectively (Bearson
et al., 2010; Pullinger et al., 2010; Verbrugghe et al., 2012) that
occurs in response to host stress (transport, feed withdrawal) is
associated with enhanced intestinal CF expression and increased
conjugative transfer of antibiotic-resistance plasmids (Peterson
et al., 2011), further supporting a link between adhesins and HGT.
As the repertoire and alleles of Salmonella colonization factors
influence cell binding and invasion of specific hosts, one predicts
that they will have a direct impact on both intestinal colonization
efficiencies and the stability and rate of conjugation.

We recently tested this prediction by investigating the associ-
ation of fimbrial adhesin alleles with antimicrobial resistance for
eight adhesin genes from 48 strains of S. enterica serovar New-
port (Yue et al., 2012b). Phylogenic trees clearly separated each
of five adhesins into two separate groups. The allelic adhesin
groups correlated significantly with strains that did or did not
show antimicrobial resistance. A corresponding association was
found with the presence or absence of mobile DNA elements car-
rying antibiotic resistance genes such as plasmids or integrons.
These findings further supported the notion that some Salmonella

adhesin alleles might participate in the persistent colonization of
specific hosts and optimize the opportunity for bacterial encoun-
ters and HGT in intestines, resulting in the accumulation of
antimicrobial resistance genes in such strains. Consistent with
this, a new study just determined that the resistance genes of
S. enterica serovar Typhimurium DT104 were largely maintained
within animal and human populations separately (Mather et al.,
2013), potentially suggesting limitations in successful transmis-
sion between host species. This novel concept deserves further
investigations to confirm its biological relevance by in vitro and in
vivo experiments.

A PROMISING FUTURE, “NOW THIS IS NOT THE END, THIS IS
NOT EVEN THE BEGINNING OF THE END, BUT IT IS PERHAPS
THE END OF THE BEGINNING” (Churchill, 1943)
Future work aimed at assessing the relative importance of allelic
variation in pathogenic bacteria will clearly benefit from the
investigation of strains that have a complete clinical and epidemi-
ological history. Whereas full sequencing will best serve GWAS
when relevant strain metadata are available, targeted sequencing
of genes of interest might be more productive by (1) permitting
analysis of more strains at the same cost, (2) improving statistical
power, and (3) simplifying the bioinformatics and statistical anal-
ysis. This latter approach best suits pathogens for which there are
already long lists of predicted or known proteins that act as viru-
lence factors in vitro or in animal models. Notably, the recent use of
genomics and metabolomics have also renewed interest in bacterial
metabolism by highlighting the importance of specific metabolic
pathways to the intestinal, the extra-intestinal and particularly
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the intra-cellular lifestyle of Salmonella (Dandekar et al., 2012).
Studies that characterized non-synonymous SNPs in metabolic
enzyme genes (Allard et al., 2013), or identified distinct invasive
Salmonella subpopulations characterized by allelic enzyme profiles
(Saeed et al., 2006) strongly suggest that allelic proteins involved
in Salmonella metabolism deserve further investigation. Similarly,
allelic and phenotypic properties can be identified in regulatory
proteins that participate directly or indirectly in virulence (Chen
et al., 2012). Finally, while SNPs in open reading frames clearly
controls the expression of allelic proteins, SNPs in cis-regulatory
regions that act as operators may elicit differential recognition by
downstream virulence effectors. For example, SNPs in the oper-
ator region of the srfN gene of Salmonella created a binding site
for the SPI-2 regulator SsrB and a corresponding fitness gain in an
oral murine model of infection (Osborne et al., 2009).

To summarize, the identification of biological consequences
for allelic variants have reached the critical threshold required to
stimulate more systematic investigations on well-curated strain
collections, which can now exploit recently developed tools and
technologies, such as GWAS and targeted sequencing.
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