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Glucose-regulated protein 170 (GRP170) is the largest member of glucose-regulated protein
family that resides in the endoplasmic reticulum (ER). As a component of the ER chaper-
one network, GRP170 assists in protein folding, assembly, and transportation of secretory
or transmembrane proteins. The well documented cytoprotective activity of intracellular
GRP170 due to its intrinsic chaperoning property has been shown to provide a survival
benefit in cancer cells during tumor progression or metastasis. Accumulating evidence
shows that extracellular GRP170 displays a superior capacity in delivering tumor antigens
to specialized antigen-presenting cells for cross-presentation, resulting in generation of an
anti-tumor immune response dependent on cytotoxic CD8+ T cells. This unique feature of
GRP170 provides a molecular basis for using GRP170 as an immunostimulatory adjuvant to
develop a recombinant vaccine for therapeutic immunization against cancers. This review
summarizes the latest findings in understanding the biological effects of GRP170 on cell
functions and tumor progression.The immunomodulating activities of GRP170 during inter-
actions with the innate and adaptive arms of the immune system as well as its therapeutic
applications in cancer immunotherapy will be discussed.

Keywords: endoplasmic reticulum, glucose-regulated protein 170, molecular chaperone, anti-tumor immunity,
cancer vaccine

INTRODUCTION
The endoplasmic reticulum (ER) is the key organelle that plays a
critical role in many cellular processes, including protein synthesis,
post-translational modification, and proper folding (1). Molecular
chaperones in the ER lumen, through non-covalent interactions
with their client proteins, catalyze or regulate protein folding, com-
plex formation, protein translocation, or degradation (2–6). The
physiological and pathological stress conditions that disturb the
highly oxidizing and calcium-rich ER environment can trigger
unfolded protein response (UPR) (7, 8). The UPR is a protein
quality control mechanism that aims to limit ER stress and restore
ER homeostasis, in part by inducing the elevation of ER chaper-
ones, which enhance the protein folding/refolding capacity of the
ER and target misfolded proteins to the ER-associated degradation
(ERAD) pathway for degradation (9, 10).

Glucose-regulated proteins (GRPs) are among the most abun-
dant and well-characterized ER chaperones (10). As stress-
inducible chaperones, GRPs were originally discovered in mam-
malian cells undergoing glucose deprivation (11–13). GRPs are
functionally and structurally related to the heat shock proteins

(HSPs) and belong to the HSP family (14–16). Unlike most of
the HSPs that reside mainly in the cytosol and the nucleus, the
GRPs are predominantly in the ER (15, 16). Major members of the
GRP family include GRP78/Bip, GRP94/Gp96, and GRP170 [also
known as oxygen-regulated protein (ORP) 150 and HYOU1] (15,
16). These GRPs are often induced by stressors that perturb the
ER functions, e.g., hypoxia, nutrient deprivation, reducing agents,
calcium depletion, low PH, hyper-proliferation, or viral infection
(16, 17). Due to their cytoprotective and pro-survival activities
(18–21), GRPs have been extensively studied in the context of
cancer development and progression, including cellular signaling,
proliferation, apoptosis, angiogenesis, metastasis, and resistance
to therapeutics (10, 15, 22, 23). To target the autonomous tumor-
promoting effect of intracellular GRPs, many approaches or agents
are being developed and tested for their anticancer efficacy in the
experimental models and in the clinic (15). Over the last two
decades, a wealth of studies has demonstrated novel aspects of GRP
functions, intracellularly or extracelluarly, in regulating innate
and adaptive immune responses during interactions with the host
immune system. This has provided new opportunities to develop
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immune-based strategies for cancer treatment (16, 24–26). As the
largest GRP and molecular chaperone in the ER, GRP170 has been
less studied compared to other members in the same class. In
this review, we highlight recent progress in chaperoning-based
diverse activity of GRP170, and discuss the potential applications
of exploiting the immunological features of this molecule to design
novel anticancer therapeutics.

Grp170 AND ITS CHAPERONING PROPERTY
Grp170 was initially found in the early 1980s during a study of GRP
induction by glucose starvation (13). More than 10 years later, we
cloned the cDNA of mammalian GRP170 from Chinese Hamster
Ovary cells (27). GRP170 has also been referred to as ORP 150 (28),
which indeed is the unglycosylated form of GRP170 (28). Sequence
analysis indicated that GRP170 represents a new stress protein
family that is distantly related to, but different from, both HSP70
and HSP110 families (27). The HSP70, HSP110, and GRP170 fam-
ilies have been classified into the “HSP70 Super-Family” (14, 29).
GRP170 consists of 999 amino acids, encoded by hypoxia up-
regulated 1 gene (Hyou1) that is located on the q arm of chromo-
some 11. Beside glucose starvation as a classical inducer of GRPs,
including GRP170, other stressors, such as hypoxia, ischemia,
perturbation of calcium homeostasis, proteasome inhibitors, and
non-steroidal anti-inflammatory drugs (e.g., celecoxib) are also
known to upregulate GRP170 expression (13, 30–36).

Predicted secondary structural modeling indicated that the
overall organization of GRP170 is similar to that of HSP70 and
HSP110, but with very little similarity in C-terminal regions (14,
27, 29, 37). GRP170 also has a high degree of homology to GRP78,
the ER homolog of HSP70, as they all possess an N-terminal
nucleotide binding domain (NBD) followed by a β-sheet domain,
which acts as the substrate binding domain (SBD) and an α-
helical domain at the C terminus. The increased size of GRP170
is due to the insertion of an acidic loop in their β-sheet domain
and an extended C terminus following the α-helical domain (14,
38). It has long been known that GRP170 associates with the
other major GRPs (e.g., GRP78) in the ER and interacts with
immunoglobulin chains (39, 40), implicating its role in protein
folding or assembly in concert with other GRP or ER chaperones.
GRP170 was shown to be the most efficient ATP-binding protein
in microsomal extract, and was suggested to assist the transloca-
tion of polypeptides into the ER via the transporter associated
with antigen processing (TAP) (41, 42). The yeast counterpart
of GRP170 (Lhs1; lumenal HSP70) displayed similar activity in
transporting proteins into the ER (29, 43, 44). Biochemical studies
demonstrate that GRP170 is significantly more effective in block-
ing heat-induced protein aggregation than other stress proteins
or chaperones (37, 45–48), underscoring a superior chaperoning
capacity of this only ER member of the large HSP70 family.

Protein folding mediated by the GRP78-centered chaperon-
ing machinery in the ER is regulated by its bound nucleotide, i.e.,
cycling of ATP and ADP (49). ADP-bound GRP78 has a high affin-
ity for unfolded or incompletely folded proteins, while exchange
of ADP for ATP decreases the affinity of GRP78 for substrates
lead to release of folded protein substrate (49, 50). Surprisingly,
Grp170 was recently reported to function as a nucleotide exchange
factor (NEF) for GRP78 in the ER (50–52), which also raised the

question of GRP170 being an independent chaperone molecule.
A recent study confirmed that Grp170 can directly bind to a vari-
ety of incompletely folded protein substrates in vivo, although
the regulation of its substrate binding function is different than
for conventional HSP70 (53). GRP170 and GRP78 can associate
with similar molecular forms of two substrate proteins. However,
while GRP78 is released from unfolded substrates in the presence
of ATP, GRP170 remains bound (53), suggesting that binding of
same substrate to different GRPs may result in distinct fates for
their client proteins. These data further established the GRP170 as
a bona fide chaperone. More studies are necessary to address the
question as to why GRP170 in the ER possess the dual ability to
bind to substrates or client proteins and to have NEF activity (54).

ER STRESS AND GRP170-CONFERRED CYTOPROTECTION
In addition to playing important roles in protein modification and
folding, the ER as a major organelle also integrates and coordinates
cellular responses to a variety of stressors (55, 56). Disturbance of
the ER functions by inhibiting protein glycosylation or disrupt-
ing calcium homeostasis, oxidative stress, pathogen infection, can
result in the accumulation of unfolded or misfolded proteins in
the ER that will trigger the UPR. The induction of GRPs and ER-
resident chaperone molecules, including GRP170, often used as
an indicator of the UPR, can help overcome the excessive protein
loading and maintain or recover ER functions (7, 57).

There are three major signaling pathways involved in the canon-
ical UPR upon ER stress, which includes pancreatic ER kinase
(PERK), inositol-requiring transmembrane kinase/endonuclease-
1 (IRE-1), and activating transcription factor-6 (ATF6) (7, 58).
These ER stress sensors upon activation will initiate a cascade of
molecular events that help diminish the protein load by inhibiting
protein translation or by limiting the pool of mRNAs available
to enter the ER. They can concurrently engage a transcriptional
program to upregulate a number of genes, e.g., ER chaperones
including GRPs, X-box binding protein 1 (XBP-1), and ERAD
components, which are crucial for protein folding, amino acid
metabolism, and protein degradation (7, 59–61). Activated ATF6
transported to the nucleus induces the transcription of the GRPs
mRNA by binding to the ER stress response element (ERSE) in
their genes (58). Activated PERK phosphorylates eukaryotic initi-
ation factor 2α (eIF2α), resulting in translation of the ATF4, which
also binds to the ERSE sequence to increase the expression GRPs
(58). Both ATF6 and ATF4 have been reported to mediate the UPR-
dependent induction of GRP170 due to the existence of ERSE in
its gene (30, 31, 62, 63). The IRE1α induces the unconventional
splicing of XBP-1 mRNA and production of the longer isoform of
spliced XBP-1 (XBP-1s), which stimulates the transcription of ER
chaperone genes, including GRP170 (58, 64, 65).

Several lines of evidences support a cytoprotective role of
intracellular GRP170 in response to ER stress. GRP170 can limit
oxidized low density lipoprotein (ox-LDL)-induced ER stress and
prevent subsequent cell apoptosis (66, 67). GRP170 executes this
protective activity by maintaining calcium homeostasis and block-
ing calcium signaling through IP3 channels (67). Cytoprotection
conferred by induction of GRP170 has also been shown in cellu-
lar responses to other ER stressors, e.g., proteasome inhibitors
that cause excessive protein accumulation (30, 68), hypoxia,
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ischemia-reperfusion (69–72), and glutamate-induced cytotoxi-
city (73). However, the conventional UPR signaling is not the only
molecular mechanism involved in the induction of GRP170. In
a high fat diet-fed mouse model, AMP-activated protein kinase
(AMPK) was reported to mediate the elevation of GRP170, which
ameliorated hepatic ER stress and lipotoxic death. Forkhead box
O1 (FOXO1), which can directly bind to the promoter region of
GRP170 gene, was identified as the critical transcription factor
mediating the AMPK-enhanced GRP170 expression at both the
mRNA and protein levels in hepatocytes (74). However, an animal
study of COX-2 inhibitor (i.e., parecoxib)-mediated neuroprotec-
tion from cerebral ischemic reperfusion injury showed that the
elevation of GRP170 was observed in the presence of suppression
of FOXO1 activation (75). GRP170 was found to directly bind
to ER stress sensors, such as PERK, ATF6, and IRE1α in vascular
cells (66) or PERK and eIF2α in hepatocytes (74), which suggests
that the ER-resident GRP170 may be able to retain those ER stres-
sors inside of ER and maintain them in an inactive state, thereby
preventing the activation of ER stress.

GRP170 IN CANCER DEVELOPMENT AND PROGRESSION
Tumor development is associated with cell hyper-proliferation,
protein overexpression, and emergence and accumulation of
mutated or misfolded oncogenic proteins, which often induce
overexpression of GRPs and other ER chaperone molecules in
cancer cells (10, 15, 76). Elevation of chaperone molecules may
be required for the maintenance of the functions of those pro-
teins essential for tumorigenesis or invasion. The deprivation
of glucose and hypoxic condition in the tumor microenviron-
ment, caused by poor vascularization in most of the neoplastic
tumors, can act as ER stressors that activate the UPR in cancer
cells to promote their survival (77–79). It has been well docu-
mented that many ER chaperones, including GRP78, GRP94, and
calreticulin (CRT), are capable of protecting cancer cells against
ER stress-induced cell death (76, 80–84). Upregulation of GRP78
(85–88) and GRP94 (89–91), likely due to the adaptive UPR in
cancer cells, have also been associated with the poor survival
or recurrence in cancer patients as well as tumor resistance to
radiotherapy.

The levels of GRP170 were also shown to correlate with can-
cer invasiveness and GRP170 was suggested to be a potential
prognostic factor in human breast cancer (92). In addition to
altered expression of GRP170 in the different stage of breast can-
cer, the upregulation of GRP170 correlated with tumor lymph
node invasion and decreased expression of estrogen receptor (93),
implicating its potential involvement in cancer metastasis. Beside
cytoprotection or resistance to cell death conferred by GRP170,
other activities of GRP170 during tumor progression have been
elucidated. Angiogenesis, formation of new capillaries from pre-
existing vessels, is an important process in tumor growth and
metastasis. GRP170 was shown to be required for the angiogenesis
of C6 glioma tumors by facilitating the processing and secre-
tion of vascular endothelial growth factor (VEGF), a major pro-
angiogenic factor (94). Similarly, suppression of GRP170 using an
antisense approach reduced the tumorigenicity of human prostate
cancer cells through blocking of secretion of matured VEGF (95).
GRP170 in bladder cancer cells was also found to chaperone matrix

metalloproteinase-2 (MMP-2) for secretion, thereby promoting
tumor invasion (96). While additional studies are needed to better
understand the precise contribution of GRP170 in tumorigenesis,
the chaperoning property appears to be a main underlying mech-
anism involved in its pro-tumor activity (Figure 1). Interestingly,
it was recently found that ER-stressed tumors could propagate
the stress signals to the neighboring cells (e.g., macrophages)
via secretion of soluble mediators, which lead to an amplified
inflammatory response that facilitates tumor progression (10, 97).
It is not clear as to whether GRPs or ER chaperones in can-
cer cells contribute to this pro-inflammatory and pro-tumoral
effect.

CANCER IMMUNOGENICITY ALTERED BY
COMPARTMENTALIZATION OF GRP170
Glucose-regulated proteins or ER chaperones are initially con-
sidered to be exclusively intracellular proteins that only released
into extracellular environment upon cell injury (98). GRP170,
like other GRPs, resides normally in the lumen of ER due to
an ER-retention signal, KNDEL, at its carboxyl terminus. How-
ever, it is now apparent that ER chaperones can be present on the
plasma membrane or actively secreted into the extracellular envi-
ronment (10, 99–101). The differential localizations of GRPs could
potentially have distinct impact on cellular activities and the host
response. The cell surface GRP78 acts as a multifunctional receptor
that promotes cancer cell survival and proliferation by activat-
ing ERK and AKT (102, 103), PI3k (104), or NF-κB and AKT
(105). In contrast, tumor cells forced to secrete GRP78 resulted
in a tumor-reactive immune response and tumor rejection (106).
Another ER chaperone CRT was recently reported to transloca-
tion to the tumor cell surface upon exposure to chemotherapeutic
agents or ionizing irradiation (107, 108). The surface CRT serves
as an “eat me” signal that triggers increased phagocytosis of dying
tumor cells, cross-presentation of tumor antigens, and consequent
anti-tumor immune response (109).

We have performed studies to determine the impact of extra-
cellular secretion of GRP170 on tumorigenicity. In this regard,
murine B16 melanoma cells (47), TRAMP-C2 prostate cancer
cells (110), or CT26 colorectal cancer cells (111) were forced to
express a secretable form of GRP170, in which its ER-retention
sequence “KNDEL” has been depleted. We found that these can-
cer cells secreting GRP170 did not differ from their mock-treated
controls in cell proliferation in vitro. However, the tumor growth
was markedly suppressed in vivo, which was dependent on the
presence of cytotoxic CD8+ T lymphocytes (CTLs) and/or nat-
ural killer (NK) cells. This secretory GRP170 not only acted as
a “danger” signal stimulating specialized antigen-presenting cells
(APCs), such as dendritic cells (DCs), but also delivered tumor-
derived antigens via its intrinsic chaperoning activity for priming
antigen-specific CTLs (47). Using mass spectrometry analysis,
we demonstrated that this secreted GRP170 was associated with
tumor protein antigens (111), which is consistent with the intra-
cellular chaperoning function of GRPs or ER chaperones that are
essential for the activity of oncoproteins in cancer cells.

The studies of cell surface GRP94 (112) or GRP94 secreted from
tumor cells (113–115) support our findings by demonstrating that
the exposure of GRP94 to the immune system represents a highly

www.frontiersin.org January 2015 | Volume 4 | Article 377 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang et al. GRP170 and anti-tumor immunity

FIGURE 1 |The role of intracellular GRP170 in tumor development.
ER-resident GRP170 together with other GRPs (e.g., GRP78) or chaperone
molecules participate in post-translational modification and protein folding or
transportation. Under stress conditions (e.g., ER stress), GRP170 exhibits
cytoprotective activity by preventing protein aggregation or help protein repair

and maintaining calcium homeostasis in the ER. GRP170 can directly bind to
and possibly keep the ER stress sensors (e.g., PERK, ATF6, and IRE1α) in
quiescent inactivate state to limit ER stress. The pro-survival effect of
intracellular GRP170 and chaperoning of oncogenic or tumor-promoting
factors (e.g., VEGF) may contribute to tumor progression and invasion.

immunogenic signal capable of inducing a potent anti-tumor
immune response. Further support came from a study showing
that enforced cell surface expression of GRP94 in a transgenic
mouse conferred hyper-responsiveness to LPS and induced lupus-
like autoimmune syndrome (116, 117). Thus, GRP170 or other ER
chaperones may display dual biological or immunological activi-
ties during tumor progression or in response to therapeutic treat-
ments, which depends on individual GRPs as well as their cellular
compartmentalization. Intracellular or ER-resident GRPs play a
general protective role that promotes the survival of cancer cells
in stress or lethal conditions. However, the membrane-bound or
extracellular GRPs could alter the immunogenicity of cancer cells
and facilitate the immune recognition as well as immune-mediated
destruction of cancers (10, 15, 16, 118–120). Manipulating cellu-
lar compartmentalization of GRP170 may be used to induce or
restore protective anti-tumor immunity for cancer eradication.
Genetically modified cancer cells with a capacity to produce secre-
tory GRP170 have been successfully tested as a cell-based vaccine
to generate a therapeutic anti-tumor response to the established
tumors in mice (47, 110). We also demonstrated that intratumoral
delivery of secretory GRP170 via an adenovirus promoted the
anti-tumor efficacy of melanoma differentiation-associated gene-
7 (mda-7), a cancer-specific therapeutic cytokine, by mounting
systemic anti-tumor immunity that controls treated as well as
distant untreated tumor lesions (121).

GRP170 AS AN IMMUNE ADJUVANT OF CANCER VACCINE
Glucose-regulated protein preparations or ER chaperones-derived
from tumors are believed to carry individually distinct array of
tumor antigens, which can be utilized to provoke a tumor-specific
immune response in cancer vaccination or immunotherapy (25,
122–128). Our early studies showed that animals immunized with
GRP170 purified from various murine tumors (e.g., colon tumor,
melanoma, and fibrosarcoma) developed a robust anti-tumor
immune response (126, 129). Tumor-derived GRP170, when com-
pared to other chaperones, displayed a higher anti-tumor potency
(129), which, we believe, is attributed to its superior protein or
antigen-holding capacity (48). The substantially increased size of
GRP170 due to the extension of its C-terminal domain could
be a factor, which enables it to bind to and chaperone protein
clients or antigens more efficiently (14, 16). Indeed, two indepen-
dent regions in GRP170, i.e., the classical peptide-binding β-sheet
domain and the C-terminal α-helix domain, have been identified
that can execute chaperoning activities (37).

To overcome the hurdle of preparing autologous GRP vac-
cines for clinical use, which can be limited by a requirement of
patient specimen and laborious procedures of vaccine produc-
tion (130, 131), we have developed a recombinant chaperoning
technology that exploits the exceptional antigen-holding capac-
ity of GRP170 (132). The reconstituted chaperone complex of
GRP170 and melanoma-associated antigen gp100 has been used
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as a targeted vaccine to generate a strong anti-tumor immune
response to aggressive, poorly immunogenic B16 melanoma in
mice (132). Similar observations have been made in other vacci-
nation studies that employed GRP170 to target different tumor
antigens (133, 134). This recombinant vaccine approach has sev-
eral advantages over autologous vaccines. The GRP170-antigen
complex vaccine can be prepared in large quantities for use off-the-
shelf. A large reservoir of antigenic epitopes in a protein antigen
can stimulate polyepitope-directed T cells and potentially enhance
the strength of the anti-tumor effect. Our recent comparison study
of GRP170-protein antigen complex vs. GRP170-peptide antigen
in the setting of therapeutic immunization against cancer strongly
supports the idea of including protein antigen in this vaccine regi-
men (48). Use of defined antigenic target should also facilitate the
monitoring of antigen-specific immune responses in the clinic.
Additionally, the highly efficient antigen-holding property will
permit the development of a multivalent vaccine against different
antigenic targets (48).

EXTRACELLULAR GRP170 AND ANTIGEN
CROSS-PRESENTATION
Dendritic cells are one of most efficient APCs for processing and
presenting antigens to T lymphocytes. Cross-priming of the CD8+

T cells by DCs plays a crucial role in the induction of antivi-
ral and anti-tumor immune responses. The cross-presentation
efficacy of DCs is determined by many factors, including their
ability to capture antigens, the route of antigen uptake and traf-
ficking, antigen stability, and the pathways by which processed
antigen is loaded on the MHC class I molecules. Generally, two
models have been proposed for antigen cross-presentation, i.e.,
the vacuolar pathway and the cytosolic pathway (135, 136). In
the vacuolar pathway, internalized antigens remain in endolyso-
somal/phagosomal compartments, where they are degraded and
loaded onto the recycling MHC class I molecules (137–139). In
the cytosolic pathway, the endocytosed antigens are transported
from endosomes or phagosomes into the cytosol for proteasome-
dependent degradation, followed by peptide import and loading
onto MHC class I molecules in the ER (140–143).

The choice of adjuvant is critical in the success of antigen-
targeted, protein-based cancer vaccines because soluble protein
antigens are typically poorly cross-presented by DCs. One of major
tenets in the vaccine activity of GRPs and other chaperone mol-
ecules, including GRP170, is their high efficiency to introduce
antigens into the endogenous antigen-processing pathway of APCs
for cross-presentation and activation of CTLs (48, 132, 144–147).
The interaction of intracellular GRP170 with TAP in the early
studies suggested that endogenous GRP170 may assist with ER
translocation of peptides (41, 42). Two scavenger receptors, SR-
A and SREC-I, have been identified to contribute to the binding
of GRP170 on APCs (148). However, the mechanism of cross-
presentation enhanced by exogenously delivered GRP170 in the
context of tumor vaccination is poorly defined.

Using a clinically relevant melanoma antigen gp100 carried
by GRP170, we recently investigated the trafficking pathways of
GRP170–gp100 complex in DCs. Surprisingly, we found that the
GRP170 directed and enhanced gp100 efficiently to access the ER
after their internalization. GRP170-facilitated gp100 processing

and presentation was dependent on the ERAD machinery involv-
ing Sec61, which was shown to target gp100 for ubiquitina-
tion and degradation in the cytosol by the proteasome system
and subsequent integration into the conventional MHC class I
restricted antigen-processing pathway (149). Our data indicated
that GRP170 can help the associated protein antigen escape from
lysosomal degradation and shuttle the antigen into the ER com-
partment from the early endosomal compartment. Internalized
GRP170 might be directly involved in the ERAD following vaccine
uptake, because GRP170 in the complex enhanced the interac-
tion of gp100 with several ERAD molecules (e.g., Sec61α, VCP/97,
CHIP, and GRP78). We speculate that gp100 protein that is par-
tially unfolded during the vaccine preparation and chaperoned by
GRP170 serves as an ERAD target once accessing the ER. Since
endogenous GRP170 also binds to Sec61α, it is likely that internal-
ized GRP170 could become a part of the ER chaperone network
and collaborate with other GRPs to guide retrotranslocation of
gp100. The GRP170/Lhs in yeast was recently reported to facilitate
the ERAD of the epithelial sodium channel by preferentially tar-
geting the unglycosylated form of the protein, which relied on its
holding function not NEF activity (150). In our studies, the tran-
sient co-localization of ER markers with early endosome marker
suggested an interesting possibility of formation of ER/endosome
fusion structure after vaccine captured by DCs, which may explain
the route of the ER access of GRP170–gp100 complex from the
extracellular environment. Intriguingly, the GRP170-peptide anti-
gen complex was recently found to be transported into early and
recycling endosome compartments, where antigen was processed
(151). It appears that the distinct trafficking patterns are caused by
the size or nature of the antigens (protein vs. peptide) chaperoned
by GRP170 in vaccines.

ER-associated degradation is an essential protein quality con-
trol mechanism in the ER that retrotranslocates unfolded or
misfolded proteins to cytosol for degradation in response to ER
stress (152, 153). ERAD involving Sec61 and chaperone mole-
cules have been implicated in the cytosolic pathway of antigen
cross-presentation (137,154). Several lines of evidence suggest that
the ERAD components are present on or can be recruited to the
endosome/phagosome in APCs to facilitate cytosolic translocation
of antigen (155–158). However, ER access and ERAD-mediated
processing of GRP170–antigen complex in the setting of thera-
peutic vaccination warrant more studies, which will result in a
better understanding of the action of this molecular adjuvant and
the optimization of GRP170-based targeted cancer vaccination
strategies.

EXTRACELLULAR GRP170 AS AN ALARMIN AND INNATE
IMMUNITY
Upon release from injured or stressed cells, certain chaperone
molecules, including GRPs, are suggested to serve as alarmins or
damage-associated molecular patterns to alert the host immune
systems of cell or tissue stress and trauma (159, 160). It has
been well established that GRP170-dependent tumor immuniza-
tion offers effective treatment of malignancies in the experimental
models. The acquired immunity enhanced by GRP170 through
shuttling and presenting tumor antigens for T cell cross-priming
is an essential component of this process. The previous studies
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showed that GRP170 bound to DCs in a receptor-mediated
fashion (i.e., scavenger receptors SR-A and SREC-I) (148) and
GRP170 by itself could modestly induce DCs to upregulate MHC
class II and co-stimulatory molecules (e.g., CD86) (120). Bind-
ing of GRP170 to DCs also stimulated them to produce pro-
inflammatory cytokines (120). Although this stimulatory effect
appears to be modest, it distinguishes GRP170 or other GRPs from
other conventional adjuvants in vaccine design and formulation.

Vaccine adjuvants can be functionally divided into two major
groups, toll-like receptor (TLR)-dependent and TLR-independent
adjuvants (161, 162). TLR-dependent adjuvants, such as the Bacil-
lus Calmette–Guerin (BCG) that is recognized by TLR2 and TLR4,
act directly on DCs and promote their maturation and migration
to the T cell area of the lymph node (161, 162). TLR-independent
adjuvants, e.g., alum, increase antigen availability at injection site
by adsorption and entrapment of antigens (163, 164). GRP170
along with other chaperone molecules, as self-proteins of mam-
malian origin, may be considered as the third functional group of
adjuvants, because they increase the immunogenicity of antigens
via preferentially delivering antigen cargos to DCs and enhancing
antigen cross-presentation by DCs (120, 132, 148, 149, 165).

In addition to chaperoning intracellular antigenic polypep-
tides, GRP170 can efficiently bind to foreign pathogen-associated
molecular patterns (PAMPs) in the extracellular environment and
enhance the host response to pathogens. We recently showed that
GRP170 interacts with microbial DNA, e.g., CpG oligodeoxynu-
cleotides (CpG-ODN), a ligand for TLR9 (166). Chaperoning
of CpG-ODN by extracellular GRP170 resulted in markedly
increased internalization of CpG-ODN by macrophages. The
internalized GRP170 was seen to directly associate with endo-
somal TLR9, suggesting that GRP170 chaperoning may enhance
the sensing of CpG-ODN by its receptor (i.e., TLR9). As a result,
complexing of CpG-ODN with GRP170 leads to enhanced acti-
vation of the MyD88-dependent signaling cascade and produc-
tion of pro-inflammatory cytokines for pathogen clearance (166).
Indeed, GRP170-amplified innate immune response protected
mice from challenge with Listeria monocytogenes (166). These
results revealed a previously unrecognized attribute of GRP170
as a superior DNA-binding chaperone. More importantly, the
interaction of an evolutionarily conserved chaperone molecule
with PAMPs in the extracellular milieu may play a critical role in
the host response to pathogen. Interestingly, other than internal-
ized GRP170, TLR9 was associated with major endogenous GRPs,
including GRP170, GRP94, and GRP78 (166), suggesting that the
outside-in GRP170 may function in concert with intracellular
chaperone networks in modifying TLR9 signaling. This result,
together with a recent work showing a critical requirement of the
chaperoning of TLR9 by intracellular GRP94 for TLR9 functions
(167), offers new insight into the dynamics of ancient chaperoning
functions inside and outside the cell. Given that CpG-ODN can
be used as an immunostimulatory adjuvant in cancer vaccination
(168), the unique characteristics of GRP170 in amplifying CpG-
ODN-induced immune activation provide a scientific rationale
for including the CpG-ODN as a component in the recombinant
GRP170 vaccine regimen for cancer immunotherapy.

Among all the biological and immunological activities of extra-
cellular GRP170, e.g., enhanced endocytosis of protein antigen

or CpG-ODN, increased ER access of protein antigen, increased
association with TLR9, all these processes seem to intimately
involve the intrinsic chaperoning property of GRP170. During
investigation of vaccine potential of various deletion mutant of
GRP170 (37), we found that only chaperoning competent mutants
exhibited APC binding activities and could deliver tumor antigen
(e.g., gp100) for inducing an antigen-specific anti-tumor immu-
nity (132). Interestingly, two of chaperoning competent GRP170
mutants, although both contained no overlapping sequences,
could still bind to APCs in a receptor-mediated fashion and
stimulate tumor-inhibiting CTL response. Together, these find-
ings support the notion that the ancient chaperoning prop-
erty is the key denominator underlying the diverse biological
and immunological effects of GRP170 and possibly those other
immunostimulatory GRPs (Figure 2).

ARMING GRP170 WITH A PATHOGEN-DERIVED “DANGER”
SIGNAL FOR IMPROVED ANTI-TUMOR POTENCY
Coupling antigen and an immunostimulating “danger” signal into
the same vaccine delivery cargo is crucial for optimal antigen
cross-presentation by DCs and priming of antigen-reactive T cells
(169, 170). While certain chaperone molecules in the extracellular
environment, including GRP170, possess direct immunostimula-
tory activity during interaction with APCs, they do not activate
an innate immune response as efficiently or robustly as PAMPs,
which strongly promote a vaccine response (171, 172). The mod-
est innate-stimulating effect of GRP170 may not be sufficient to
fully activate antigen-exposed APCs in vivo. We hypothesized that
incorporating a pathogen-derived“danger”signal into the GRP170
backbone would enhance its immunostimulatory potency in ther-
apeutic immunization against cancer. To test this concept, we engi-
neered a chimeric chaperone, termed Flagrp170, by fusing GRP170
with the defined NF-κB-activating domain of Flagellin (173).

Flagellin is the principal substituent of bacterial flagella and the
ligand for TLR5 (174–176). Since the NF-κB pathways in DCs are
essential for its optimal functions (169, 177–179), this chimeric
chaperone possesses two distinct features that are required for
efficient cancer vaccine therapy: enhancing the cross-presentation
of tumor antigens in the chaperone complex cargo and concur-
rently provoking the functional activation of DCs via engaging the
NF-κB signaling (173). As expected, Flagrp170 strongly activated
DCs, indicated by elevation of co-stimulatory molecules, such
as CD40 and CD86, as well as production of pro-inflammatory
and Th1-polarizing cytokine IL-12. Since only a small portion of
Flagellin was present in the construct, it was surprising that Fla-
grp170 exhibited a similar effect as Flagellin in stimulating NF-κB
and MAPK signaling, as well as phenotypic activation of DCs.
This might be due to the ability of GRP170 to amplify the innate
immune response, as we observed in the study of GRP170 interac-
tion with CpG-ODN (166). Moreover, Flagrp170 was much more
efficacious than Flagellin in promoting antigen cross-presentation,
which can be explained by the superior intrinsic property of
GRP170 in antigen shuttling and T cell cross-priming (149).

Intratumoral delivery of Flagrp170 using an adenovirus
induced a superior anti-tumor response against treated B16
melanoma and distant lung metastases compared with unmodified
GRP170 or Flagellin treatment (173), which indicates systemic
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FIGURE 2 | Chaperoning-based immunological effects of extracellular
GRP170 in cancer therapy. GRP170 isolated or released from cancer cells
due to stress or injury is believed to chaperone tumor antigens. These
tumor-derived GRP170-antigen complexes in the extracellular environment or
reconstituted recombinant GRP170-antigen complex vaccine can be captured
preferentially by specialized antigen-presenting cells (APCs) through the
surface receptors (e.g., scavenger receptors, SRs). The GRP170 can direct the
chaperone complexes to the endoplasmic reticulum (ER) and facilitate their

interaction with the components of ER-associated degradation (ERAD)
machinery (e.g., Sec61α). The antigen target will then be retrotranslocated to
the cytosol for ubiquitination and proteasome-mediated processing. The
generated antigenic peptides are transported by TAP and loaded on the MHC
class I molecules. The MHC I-peptide cargo will traffick to the cell surface and
prime CD8+ T cells. Activation and expansion of antigen-specific CD8+ T cells
leads to eradication of antigen-positive tumor cells by releasing cytotoxic
molecules (e.g., IFN-γ, granzyme B).

mobilization of tumor-reactive immune effector cells. Flagrp170
treatment was shown to drive Th1 polarization of the tumor
microenvironment, characterized by high levels of IL-12 and IFN-
γ, as well as tumor-infiltrating CD8+ and NK cells (173). Mech-
anistic studies showed that depletion of CD11c+ cells or lack of
CD8α+ DCs attenuated the anti-tumor response generated by Fla-
grp170 therapy, suggesting that Flagrp170-enhanced activation of
tumor-specific CTLs depends on these DCs for efficient antigen
cross-presentation (173). Interestingly, Flagrp170 selectively acti-
vated the NF-κB signaling pathway in DCs, not in tumor cells,
which suggests that Flagrp170 represents an ideal agent that may
be exploited to condition the immunosuppressive tumor environ-
ment and to break immune tolerance established during tumor
development or progression.

CONCLUSION
Glucose-regulated protein 170, as one of the largest GRPs and
chaperone molecules in the ER, can protect cells during ER stress-
triggered UPR and in other stressful and lethal conditions. The
cytoprotective activity of GRP170 is also reflected in its elevation
in certain cancer cells and resultant resistance of tumor cells to

the induction of cell death, which supports a potential tumor-
promoting role of GRP170 during cancer progression. While the
intracellular chaperoning and NEF functions of GRP170 remain
to be further defined, accumulating evidence has highlighted an
immunoregulatory effect of GRP170 in the extracellular envi-
ronment, indicated by its superior capacity in holding protein
tumor antigens, facilitating antigen cross-presentation, enhanc-
ing T cell priming, and amplifying an innate immune response.
These unique features have been exploited to develop GRP170
chaperone complex vaccine directed against defined antigenic tar-
get in cancers. The successful results derived from preclinical
models have led to an ongoing phase I clinical trial of test-
ing recombinant chaperone vaccine in melanoma patients. While
this vaccine approach holds promise, more studies are needed
to better understand the adjuvant action of GRP170 in thera-
peutic immunization. Studies are also needed with regard to the
contributions of other DC subsets in GRP170-enhanced antigen
cross-presentation, such as lymphoid organ resident CD8α+ DCs
and dermal migratory CD103+ DCs (180–183). Recently, the role
of the IRE1α–XBP-1 pathway has been extended beyond UPR
and was shown to be required for the differentiation of effector
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CD8+ T cells and development or function of DCs (184–186). It
is of interest to explore the potential involvement of GRP170 and
other GRPs in this context because both intracellular and extra-
cellular GRPs are likely to actively participate in these processes
given their documented roles in antigen transportation, process-
ing, and presentation. Integrating a NF-κB-stimulating “danger”
signal into the GRP170-based delivery cargo strongly enhances its
immunostimulatory and anti-tumor efficacy, which warrants the
future studies of Flagrp170 as a novel immunomodulating agent
either alone or combined with conventional treatment modalities
(chemotherapy and radiotherapy) to restore anti-tumor immu-
nity in the tumor site to achieve in situ vaccination. It is also
conceivable that this engineered GRP170 molecule can be used
to design the new generation of targeted chaperone vaccine to
deliver tumor protein antigens for the treatment of metastatic
malignancies.

ACKNOWLEDGMENTS
The present study was supported in part by National Insti-
tutes of Health (NIH) Grants CA175033, CA154708, CA099326,
Department of Defense (DOD) W81XWH-11-1-0481, and NCI
Cancer Center Support Grant to VCU Massey Cancer Center
P30CA16059. Xiang-Yang Wang is the Harrison Endowed Scholar
in Cancer Research.

REFERENCES
1. Chen S, Novick P, Ferro-Novick S. ER structure and function. Curr Opin Cell

Biol (2013) 25(4):428–33. doi:10.1016/j.ceb.2013.02.006
2. Araki K, Nagata K. Protein folding and quality control in the ER. Cold Spring

Harb Perspect Biol (2011) 3(11):a007526. doi:10.1101/cshperspect.a007526
3. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P. Endoplasmic

reticulum stress sensing in the unfolded protein response. Cold Spring Harb
Perspect Biol (2013) 5(3):a013169. doi:10.1101/cshperspect.a013169

4. Gidalevitz T, Stevens F, Argon Y. Orchestration of secretory protein folding by
ER chaperones. Biochim Biophys Acta (2013) 1833(11):2410–24. doi:10.1016/
j.bbamcr.2013.03.007

5. Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding
and proteostasis. Nature (2011) 475(7356):324–32. doi:10.1038/nature10317

6. Smith MH, Ploegh HL, Weissman JS. Road to ruin: targeting proteins for
degradation in the endoplasmic reticulum. Science (2011) 334(6059):1086–90.
doi:10.1126/science.1209235

7. Ron D,Walter P. Signal integration in the endoplasmic reticulum unfolded pro-
tein response. Nat Rev Mol Cell Biol (2007) 8(7):519–29. doi:10.1038/nrm2199

8. Li X, Zhang K, Li Z. Unfolded protein response in cancer: the physician’s per-
spective. J Hematol Oncol (2011) 4:8. doi:10.1186/1756-8722-4-8

9. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell
Biol (2004) 14(1):20–8. doi:10.1016/j.tcb.2003.11.001

10. Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and
unfolded protein response in tumorigenesis and anticancer therapies. Onco-
gene (2013) 32(7):805–18. doi:10.1038/onc.2012.130

11. Lee AS. The accumulation of three specific proteins related to glucose-regulated
proteins in a temperature-sensitive hamster mutant cell line K12. J Cell Physiol
(1981) 106(1):119–25. doi:10.1002/jcp.1041060113

12. Lee AS, Delegeane A, Scharff D. Highly conserved glucose-regulated protein
in hamster and chicken cells: preliminary characterization of its cDNA clone.
Proc Natl Acad Sci U S A (1981) 78(8):4922–5. doi:10.1073/pnas.78.8.4922

13. Sciandra JJ, Subjeck JR. The effects of glucose on protein synthesis and
thermosensitivity in Chinese hamster ovary cells. J Biol Chem (1983)
258(20):12091–3.

14. Easton DP, KanekoY, Subjeck JR. The hsp110 and Grp1 70 stress proteins: newly
recognized relatives of the Hsp70s. Cell Stress Chaperones (2000) 5(4):276–90.
doi:10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO;2

15. Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and ther-
apeutic potential. Nat Rev Cancer (2014) 14(4):263–76. doi:10.1038/nrc3701

16. Wang XY, Subjeck JR. High molecular weight stress proteins: identification,
cloning and utilisation in cancer immunotherapy. Int J Hyperthermia (2013)
29(5):364–75. doi:10.3109/02656736.2013.803607

17. Lee AS. The glucose-regulated proteins: stress induction and clinical applica-
tions. Trends Biochem Sci (2001) 26(8):504–10. doi:10.1016/S0968-0004(01)
01908-9

18. Wang M, Ye R, Barron E, Baumeister P, Mao C, Luo S, et al. Essential role of the
unfolded protein response regulator GRP78/BiP in protection from neuronal
apoptosis. Cell Death Differ (2010) 17(3):488–98. doi:10.1038/cdd.2009.144

19. Wey S, Luo B, Lee AS. Acute inducible ablation of GRP78 reveals its role in
hematopoietic stem cell survival, lymphogenesis and regulation of stress sig-
naling. PLoS One (2012) 7(6):e39047. doi:10.1371/journal.pone.0039047

20. Zhu G, Ye R, Jung DY, Barron E, Friedline RH, Benoit VM, et al. GRP78 plays
an essential role in adipogenesis and postnatal growth in mice. FASEB J (2013)
27(3):955–64. doi:10.1096/fj.12-213330

21. Luo S, Mao C, Lee B, Lee AS. GRP78/BiP is required for cell proliferation
and protecting the inner cell mass from apoptosis during early mouse embry-
onic development. Mol Cell Biol (2006) 26(15):5688–97. doi:10.1128/MCB.
00779-06

22. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in
cancer: chaperones of tumorigenesis. Trends Biochem Sci (2006) 31(3):164–72.
doi:10.1016/j.tibs.2006.01.006

23. Calderwood SK, Ciocca DR. Heat shock proteins: stress proteins with Janus-
like properties in cancer. Int J Hyperthermia (2008) 24(1):31–9. doi:10.1080/
02656730701858305

24. Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL. Heat shock pro-
teins come of age: primitive functions acquire new roles in an adaptive world.
Immunity (1998) 8(6):657–65. doi:10.1016/S1074-7613(00)80570-1

25. Srivastava P. Interaction of heat shock proteins with peptides and antigen pre-
senting cells: chaperoning of the innate and adaptive immune responses. Annu
Rev Immunol (2002) 20:395–425. doi:10.1146/annurev.immunol.20.100301.
064801

26. Wang X-Y, Easton DP, Subjeck JR. The large mammalian hsp70 family proteins,
hsp110 and grp170, and their roles in biology and cancer therapy. In: Calder-
wood SK, editor. Protein Reviews: Cell Stress Proteins, Vol 7. New York: Springer
(2007). p. 178–205. doi:10.1007/978-0-387-39717-7_8

27. Chen X, Easton D, Oh HJ, LeeYoon DS, Liu XG, Subjeck J. The 170 kDa glucose
regulated stress protein is a large HSP70-, HSP110-like protein of the endoplas-
mic reticulum. FEBS Lett (1996) 380(1–2):68–72. doi:10.1016/0014-5793(96)
00011-7

28. Ikeda J, Kaneda S, Kuwabara K, Ogawa S, Kobayashi T, Matsumoto M, et al.
Cloning and expression of cDNA encoding the human 150 kDa oxygen-
regulated protein, ORP150. Biochem Biophys Res Commun (1997) 230(1):94–9.
doi:10.1006/bbrc.1996.5890

29. Craven RA, Tyson JR, Colin J, Stirling CJ. A novel subfamily of Hsp70s in
the endoplasmic reticulum. Trends Cell Biol (1997) 7(7):277–82. doi:10.1016/
S0962-8924(97)01079-9

30. Gao YY, Liu BQ, Du ZX, Zhang HY, Niu XF, Wang HQ. Implication of oxygen-
regulated protein 150 (ORP150) in apoptosis induced by proteasome inhibitors
in human thyroid cancer cells. J Clin Endocrinol Metab (2010) 95(11):E319–26.
doi:10.1210/jc.2010-1043

31. Namba T, Hoshino T, Tanaka K, Tsutsumi S, Ishihara T, Mima S, et al. Up-
regulation of 150-kDa oxygen-regulated protein by celecoxib in human gastric
carcinoma cells. Mol Pharmacol (2007) 71(3):860–70. doi:10.1124/mol.106.
027698

32. Sciandra JJ, Subjeck JR, Hughes CS. Induction of glucose-regulated proteins
during anaerobic exposure and of heat-shock proteins after reoxygenation.
Proc Natl Acad Sci U S A (1984) 81(15):4843–7. doi:10.1073/pnas.81.15.4843

33. Cai JW, Henderson BW, Shen JW, Subjeck JR. Induction of glucose regulated
proteins during growth of a murine tumor. J Cell Physiol (1993) 154(2):229–37.
doi:10.1002/jcp.1041540204

34. Whelan SA, Hightower LE. Differential induction of glucose-regulated and
heat shock proteins: effects of pH and sulfhydryl-reducing agents on chicken
embryo cells. J Cell Physiol (1985) 125(2):251–8. doi:10.1002/jcp.1041250212

35. Kuwabara K, Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda Y, et al. Purifi-
cation and characterization of a novel stress protein, the 150-kDa oxygen-
regulated protein (ORP150), from cultured rat astrocytes and its expression in
ischemic mouse brain. J Biol Chem (1996) 271(9):5025–32. doi:10.1074/jbc.
271.9.5025

Frontiers in Oncology | Tumor Immunity January 2015 | Volume 4 | Article 377 | 8

http://dx.doi.org/10.1016/j.ceb.2013.02.006
http://dx.doi.org/10.1101/cshperspect.a007526
http://dx.doi.org/10.1101/cshperspect.a013169
http://dx.doi.org/10.1016/j.bbamcr.2013.03.007
http://dx.doi.org/10.1016/j.bbamcr.2013.03.007
http://dx.doi.org/10.1038/nature10317
http://dx.doi.org/10.1126/science.1209235
http://dx.doi.org/10.1038/nrm2199
http://dx.doi.org/10.1186/1756-8722-4-8
http://dx.doi.org/10.1016/j.tcb.2003.11.001
http://dx.doi.org/10.1038/onc.2012.130
http://dx.doi.org/10.1002/jcp.1041060113
http://dx.doi.org/10.1073/pnas.78.8.4922
http://dx.doi.org/10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO;2
http://dx.doi.org/10.1038/nrc3701
http://dx.doi.org/10.3109/02656736.2013.803607
http://dx.doi.org/10.1016/S0968-0004(01)01908-9
http://dx.doi.org/10.1016/S0968-0004(01)01908-9
http://dx.doi.org/10.1038/cdd.2009.144
http://dx.doi.org/10.1371/journal.pone.0039047
http://dx.doi.org/10.1096/fj.12-213330
http://dx.doi.org/10.1128/MCB.00779-06
http://dx.doi.org/10.1128/MCB.00779-06
http://dx.doi.org/10.1016/j.tibs.2006.01.006
http://dx.doi.org/10.1080/02656730701858305
http://dx.doi.org/10.1080/02656730701858305
http://dx.doi.org/10.1016/S1074-7613(00)80570-1
http://dx.doi.org/10.1146/annurev.immunol.20.100301.064801
http://dx.doi.org/10.1146/annurev.immunol.20.100301.064801
http://dx.doi.org/10.1007/978-0-387-39717-7_8
http://dx.doi.org/10.1016/0014-5793(96)00011-7
http://dx.doi.org/10.1016/0014-5793(96)00011-7
http://dx.doi.org/10.1006/bbrc.1996.5890
http://dx.doi.org/10.1016/S0962-8924(97)01079-9
http://dx.doi.org/10.1016/S0962-8924(97)01079-9
http://dx.doi.org/10.1210/jc.2010-1043
http://dx.doi.org/10.1124/mol.106.027698
http://dx.doi.org/10.1124/mol.106.027698
http://dx.doi.org/10.1073/pnas.81.15.4843
http://dx.doi.org/10.1002/jcp.1041540204
http://dx.doi.org/10.1002/jcp.1041250212
http://dx.doi.org/10.1074/jbc.271.9.5025
http://dx.doi.org/10.1074/jbc.271.9.5025
http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang et al. GRP170 and anti-tumor immunity

36. Shen J, Hughes C, Chao C, Cai J, Bartels C, Gessner T, et al. Coinduction
of glucose-regulated proteins and doxorubicin resistance in Chinese ham-
ster cells. Proc Natl Acad Sci U S A (1987) 84(10):3278–82. doi:10.1073/pnas.
84.10.3278

37. Park J, Easton DP, Chen X, MacDonald IJ, Wang XY, Subjeck JR. The chaperon-
ing properties of mouse grp170, a member of the third family of hsp70 related
proteins. Biochemistry (2003) 42(50):14893–902. doi:10.1021/bi030122e

38. Shaner L, Morano KA. All in the family: atypical Hsp70 chaperones are con-
served modulators of Hsp70 activity. Cell Stress Chaperones (2007) 12(1):1–8.
doi:10.1379/CSC-245R.1

39. Lin HY, Masso-Welch P, Di YP, Cai JW, Shen JW, Subjeck JR. The 170-kDa
glucose-regulated stress protein is an endoplasmic reticulum protein that
binds immunoglobulin. Mol Biol Cell (1993) 4(11):1109–19. doi:10.1091/mbc.
4.11.1109

40. Melnick J, Dul JL, Argon Y. Sequential interaction of the chaperones BiP and
GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature
(1994) 370(6488):373–5. doi:10.1038/370373a0

41. Dierks T, Volkmer J, Schlenstedt G, Jung C, Sandholzer U, Zachmann K, et al.
A microsomal ATP-binding protein involved in efficient protein transport into
the mammalian endoplasmic reticulum. EMBO J (1996) 15(24):6931–42.

42. Spee P, Subjeck J, Neefjes J. Identification of novel peptide binding proteins in
the endoplasmic reticulum: ERp72, calnexin, and grp170. Biochemistry (1999)
38(32):10559–66. doi:10.1021/bi990321r

43. Tyson JR, Stirling CJ. LHS1 and SIL1 provide a lumenal function that is essen-
tial for protein translocation into the endoplasmic reticulum. EMBO J (2000)
19(23):6440–52. doi:10.1093/emboj/19.23.6440

44. Craven RA, Egerton M, Stirling CJ. A novel Hsp70 of the yeast ER lumen
is required for the efficient translocation of a number of protein precursors.
EMBO J (1996) 15(11):2640–50.

45. Oh HJ, Chen X, Subjeck JR. Hsp110 protects heat-denatured proteins and
confers cellular thermoresistance. J Biol Chem (1997) 272(50):31636–40.
doi:10.1074/jbc.272.50.31636

46. Wang XY, Chen X, Manjili MH, Repasky E, Henderson R, Subjeck JR. Tar-
geted immunotherapy using reconstituted chaperone complexes of heat shock
protein 110 and melanoma-associated antigen gp100. Cancer Res (2003)
63(10):2553–60.

47. Wang XY, Arnouk H, Chen X, Kazim L, Repasky EA, Subjeck JR. Extracellular
targeting of endoplasmic reticulum chaperone glucose-regulated protein 170
enhances tumor immunity to a poorly immunogenic melanoma. J Immunol
(2006) 177(3):1543–51. doi:10.4049/jimmunol.177.3.1543

48. Wang XY, Sun X, Chen X, Facciponte J, Repasky EA, Kane J, et al. Supe-
rior antitumor response induced by large stress protein chaperoned protein
antigen compared with peptide antigen. J Immunol (2010) 184(11):6309–19.
doi:10.4049/jimmunol.0903891

49. Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as
drivers of functional specificity. Nat Rev Mol Cell Biol (2010) 11(8):579–92.
doi:10.1038/nrm2941

50. Andreasson C, Rampelt H, Fiaux J, Druffel-Augustin S, Bukau B. The endo-
plasmic reticulum Grp170 acts as a nucleotide exchange factor of Hsp70 via
a mechanism similar to that of the cytosolic Hsp110. J Biol Chem (2010)
285(16):12445–53. doi:10.1074/jbc.M109.096735

51. Weitzmann A, Volkmer J, Zimmermann R. The nucleotide exchange factor
activity of Grp170 may explain the non-lethal phenotype of loss of Sil1 func-
tion in man and mouse. FEBS Lett (2006) 580(22):5237–40. doi:10.1016/j.
febslet.2006.08.055

52. de Keyzer J, Steel GJ, Hale SJ, Humphries D, Stirling CJ. Nucleotide binding by
Lhs1p is essential for its nucleotide exchange activity and for function in vivo.
J Biol Chem (2009) 284(46):31564–71. doi:10.1074/jbc.M109.055160

53. Behnke J, Hendershot LM. The large Hsp70 Grp170 binds to unfolded protein
substrates in vivo with a regulation distinct from conventional Hsp70s. J Biol
Chem (2014) 289(5):2899–907. doi:10.1074/jbc.M113.507491

54. Mandal AK, Gibney PA, Nillegoda NB, Theodoraki MA, Caplan AJ, Morano
KA. Hsp110 chaperones control client fate determination in the hsp70-Hsp90
chaperone system. Mol Biol Cell (2010) 21(9):1439–48. doi:10.1091/mbc.E09-
09-0779

55. Hotamisligil GS. Endoplasmic reticulum stress and atherosclerosis. Nat Med
(2010) 16(4):396–9. doi:10.1038/nm0410-396

56. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and
death decisions. J Clin Invest (2005) 115(10):2656–64. doi:10.1172/JCI26373

57. Rutkowski DT, Hegde RS. Regulation of basal cellular physiology by the
homeostatic unfolded protein response. J Cell Biol (2010) 189(5):783–94.
doi:10.1083/jcb.201003138

58. Kusaczuk M, Cechowska-Pasko M. Molecular chaperone ORP150 in ER
stress-related diseases. Curr Pharm Des (2013) 19(15):2807–18. doi:10.2174/
1381612811319150016

59. Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat
Res (2005) 569(1–2):29–63. doi:10.1016/j.mrfmmm.2004.06.056

60. Hetz C. The unfolded protein response: controlling cell fate decisions under
ER stress and beyond. Nat Rev Mol Cell Biol (2012) 13(2):89–102. doi:10.1038/
nrm3270

61. Walter P, Ron D. The unfolded protein response: from stress pathway to home-
ostatic regulation. Science (2011) 334(6059):1081–6. doi:10.1126/science.
1209038

62. Kaneda S, Yura T, Yanagi H. Production of three distinct mRNAs of 150
kDa oxygen-regulated protein (ORP150) by alternative promoters: prefer-
ential induction of one species under stress conditions. J Biochem (2000)
128(3):529–38. doi:10.1093/oxfordjournals.jbchem.a022783

63. Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting
endoplasmic reticulum stress response element responsible for transcriptional
induction of mammalian glucose-regulated proteins. Involvement of basic
leucine zipper transcription factors. J Biol Chem (1998) 273(50):33741–9.
doi:10.1074/jbc.273.50.33741

64. Travers KJ, Patil CK,Wodicka L, Lockhart DJ,Weissman JS,Walter P. Functional
and genomic analyses reveal an essential coordination between the unfolded
protein response and ER-associated degradation. Cell (2000) 101(3):249–58.
doi:10.1016/S0092-8674(00)80835-1

65. Han D, Lerner AG, Vande Walle L, Upton JP, Xu W, Hagen A, et al. IRE1alpha
kinase activation modes control alternate endoribonuclease outputs to deter-
mine divergent cell fates. Cell (2009) 138(3):562–75. doi:10.1016/j.cell.2009.
07.017

66. Sanson M, Auge N, Vindis C, Muller C, Bando Y, Thiers JC, et al. Oxi-
dized low-density lipoproteins trigger endoplasmic reticulum stress in vascular
cells: prevention by oxygen-regulated protein 150 expression. Circ Res (2009)
104(3):328–36. doi:10.1161/CIRCRESAHA.108.183749

67. Sanson M, Ingueneau C, Vindis C, Thiers JC, Glock Y, Rousseau H, et al.
Oxygen-regulated protein-150 prevents calcium homeostasis deregulation and
apoptosis induced by oxidized LDL in vascular cells. Cell Death Differ (2008)
15(8):1255–65. doi:10.1038/cdd.2008.36

68. Kretowski R, Borzym-Kluczyk M, Cechowska-Pasko M. Hypoxia enhances the
senescence effect of bortezomib – the proteasome inhibitor – on human skin
fibroblasts. Biomed Res Int (2014) 2014:196249. doi:10.1155/2014/196249

69. Kitano H, Nishimura H, Tachibana H, Yoshikawa H, Matsuyama T. ORP150
ameliorates ischemia/reperfusion injury from middle cerebral artery occlu-
sion in mouse brain. Brain Res (2004) 1015(1–2):122–8. doi:10.1016/j.brainres.
2004.04.058

70. Ozawa K, Kuwabara K, Tamatani M, Takatsuji K, Tsukamoto Y, Kaneda S, et al.
150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced
apoptotic cell death. J Biol Chem (1999) 274(10):6397–404. doi:10.1074/jbc.
274.10.6397

71. Tamatani M, Matsuyama T, Yamaguchi A, Mitsuda N, Tsukamoto Y, Taniguchi
M, et al. ORP150 protects against hypoxia/ischemia-induced neuronal death.
Nat Med (2001) 7(3):317–23. doi:10.1038/85463

72. Aleshin AN, Sawa Y, Kitagawa-Sakakida S, Bando Y, Ono M, Memon IA, et al.
150-kDa oxygen-regulated protein attenuates myocardial ischemia-reperfusion
injury in rat heart. J Mol Cell Cardiol (2005) 38(3):517–25. doi:10.1016/j.yjmcc.
2005.01.001

73. Kitao Y, Ozawa K, Miyazaki M, Tamatani M, Kobayashi T, Yanagi H, et al.
Expression of the endoplasmic reticulum molecular chaperone (ORP150)
rescues hippocampal neurons from glutamate toxicity. J Clin Invest (2001)
108(10):1439–50. doi:10.1172/JCI200112978

74. Wang Y, Wu Z, Li D, Wang D, Wang X, Feng X, et al. Involvement of
oxygen-regulated protein 150 in AMP-activated protein kinase-mediated alle-
viation of lipid-induced endoplasmic reticulum stress. J Biol Chem (2011)
286(13):11119–31. doi:10.1074/jbc.M110.203323

75. Ye Z, Wang N, Xia P, Wang E, Liao J, Guo Q. Parecoxib suppresses CHOP
and Foxo1 nuclear translocation, but increases GRP78 levels in a rat model of
focal ischemia. Neurochem Res (2013) 38(4):686–93. doi:10.1007/s11064-012-
0953-4

www.frontiersin.org January 2015 | Volume 4 | Article 377 | 9

http://dx.doi.org/10.1073/pnas.84.10.3278
http://dx.doi.org/10.1073/pnas.84.10.3278
http://dx.doi.org/10.1021/bi030122e
http://dx.doi.org/10.1379/CSC-245R.1
http://dx.doi.org/10.1091/mbc.4.11.1109
http://dx.doi.org/10.1091/mbc.4.11.1109
http://dx.doi.org/10.1038/370373a0
http://dx.doi.org/10.1021/bi990321r
http://dx.doi.org/10.1093/emboj/19.23.6440
http://dx.doi.org/10.1074/jbc.272.50.31636
http://dx.doi.org/10.4049/jimmunol.177.3.1543
http://dx.doi.org/10.4049/jimmunol.0903891
http://dx.doi.org/10.1038/nrm2941
http://dx.doi.org/10.1074/jbc.M109.096735
http://dx.doi.org/10.1016/j.febslet.2006.08.055
http://dx.doi.org/10.1016/j.febslet.2006.08.055
http://dx.doi.org/10.1074/jbc.M109.055160
http://dx.doi.org/10.1074/jbc.M113.507491
http://dx.doi.org/10.1091/mbc.E09-09-0779
http://dx.doi.org/10.1091/mbc.E09-09-0779
http://dx.doi.org/10.1038/nm0410-396
http://dx.doi.org/10.1172/JCI26373
http://dx.doi.org/10.1083/jcb.201003138
http://dx.doi.org/10.2174/1381612811319150016
http://dx.doi.org/10.2174/1381612811319150016
http://dx.doi.org/10.1016/j.mrfmmm.2004.06.056
http://dx.doi.org/10.1038/nrm3270
http://dx.doi.org/10.1038/nrm3270
http://dx.doi.org/10.1126/science.1209038
http://dx.doi.org/10.1126/science.1209038
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022783
http://dx.doi.org/10.1074/jbc.273.50.33741
http://dx.doi.org/10.1016/S0092-8674(00)80835-1
http://dx.doi.org/10.1016/j.cell.2009.07.017
http://dx.doi.org/10.1016/j.cell.2009.07.017
http://dx.doi.org/10.1161/CIRCRESAHA.108.183749
http://dx.doi.org/10.1038/cdd.2008.36
http://dx.doi.org/10.1155/2014/196249
http://dx.doi.org/10.1016/j.brainres.2004.04.058
http://dx.doi.org/10.1016/j.brainres.2004.04.058
http://dx.doi.org/10.1074/jbc.274.10.6397
http://dx.doi.org/10.1074/jbc.274.10.6397
http://dx.doi.org/10.1038/85463
http://dx.doi.org/10.1016/j.yjmcc.2005.01.001
http://dx.doi.org/10.1016/j.yjmcc.2005.01.001
http://dx.doi.org/10.1172/JCI200112978
http://dx.doi.org/10.1074/jbc.M110.203323
http://dx.doi.org/10.1007/s11064-012-0953-4
http://dx.doi.org/10.1007/s11064-012-0953-4
http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang et al. GRP170 and anti-tumor immunity

76. Fu Y, Lee AS. Glucose regulated proteins in cancer progression, drug resistance
and immunotherapy. Cancer Biol Ther (2006) 5(7):741–4. doi:10.4161/cbt.5.
7.2970

77. Feldman DE, Chauhan V, Koong AC. The unfolded protein response: a novel
component of the hypoxic stress response in tumors. Mol Cancer Res (2005)
3(11):597–605. doi:10.1158/1541-7786.MCR-05-0221

78. Hetz C. The UPR as a survival factor of cancer cells: more than folding proteins?
Leuk Res (2009) 33(7):880–2. doi:10.1016/j.leukres.2009.02.017

79. Koumenis C. ER stress, hypoxia tolerance and tumor progression. Curr Mol
Med (2006) 6(1):55–69. doi:10.2174/156652406775574604

80. Jamora C, Dennert G, Lee AS. Inhibition of tumor progression by suppression
of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl
Acad Sci U S A (1996) 93(15):7690–4. doi:10.1073/pnas.93.15.7690

81. Chen CN, Chang CC, Su TE, Hsu WM, Jeng YM, Ho MC, et al. Identification of
calreticulin as a prognosis marker and angiogenic regulator in human gastric
cancer. Ann Surg Oncol (2009) 16(2):524–33. doi:10.1245/s10434-008-0243-1

82. Hori O, Ichinoda F, Yamaguchi A, Tamatani T, Taniguchi M, Koyama Y, et al.
Role of Herp in the endoplasmic reticulum stress response. Genes Cells (2004)
9(5):457–69. doi:10.1111/j.1356-9597.2004.00735.x

83. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: dis-
ease relevance and therapeutic opportunities. Nat Rev (2008) 7(12):1013–30.
doi:10.1038/nrd2755

84. Vitadello M, Penzo D, Petronilli V, Michieli G, Gomirato S, Menabo R, et al.
Overexpression of the stress protein Grp94 reduces cardiomyocyte necrosis
due to calcium overload and simulated ischemia. FASEB J (2003) 17(8):923–5.
doi:10.1096/fj.02-0644fje

85. Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D, et al. Glucose-
regulated protein GRP78 is up-regulated in prostate cancer and correlates with
recurrence and survival. Hum Pathol (2007) 38(10):1547–52. doi:10.1016/j.
humpath.2007.03.014

86. Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz
AM, et al. Overexpression of the glucose-regulated stress gene GRP78 in malig-
nant but not benign human breast lesions. Breast Cancer Res Treat (2000)
59(1):15–26. doi:10.1023/A:1006332011207

87. Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS. GRP78 as a novel pre-
dictor of responsiveness to chemotherapy in breast cancer. Cancer Res (2006)
66(16):7849–53. doi:10.1158/0008-5472.CAN-06-1660

88. Pootrakul L, Datar RH, Shi SR, Cai J, Hawes D, Groshen SG, et al. Expres-
sion of stress response protein Grp78 is associated with the development
of castration-resistant prostate cancer. Clin Cancer Res (2006) 12(20 Pt
1):5987–93. doi:10.1158/1078-0432.CCR-06-0133

89. Reddy RK, Lu J, Lee AS. The endoplasmic reticulum chaperone glycoprotein
GRP94 with Ca(2+)-binding and antiapoptotic properties is a novel prote-
olytic target of calpain during etoposide-induced apoptosis. J Biol Chem (1999)
274(40):28476–83. doi:10.1074/jbc.274.40.28476

90. Banerjea A, Ahmed S, Hands RE, Huang F, Han X, Shaw PM, et al. Col-
orectal cancers with microsatellite instability display mRNA expression sig-
natures characteristic of increased immunogenicity. Mol Cancer (2004) 3:21.
doi:10.1186/1476-4598-3-21

91. Kubota H, Suzuki T, Lu J, Takahashi S, Sugita K, Sekiya S, et al. Increased
expression of GRP94 protein is associated with decreased sensitivity to X-
rays in cervical cancer cell lines. Int J Radiat Biol (2005) 81(9):701–9.
doi:10.1080/09553000500434727

92. Tsukamoto Y, Kuwabara K, Hirota S, Kawano K, Yoshikawa K, Ozawa K, et al.
Expression of the 150-kd oxygen-regulated protein in human breast cancer.
Lab Invest (1998) 78(6):699–706.

93. Stojadinovic A, Hooke JA, Shriver CD, Nissan A, Kovatich AJ, Kao TC,
et al. HYOU1/Orp150 expression in breast cancer. Med Sci Monit (2007)
13(11):BR231–9.

94. Ozawa K, Tsukamoto Y, Hori O, Kitao Y, Yanagi H, Stern DM, et al. Regu-
lation of tumor angiogenesis by oxygen-regulated protein 150, an inducible
endoplasmic reticulum chaperone. Cancer Res (2001) 61(10):4206–13.

95. Miyagi T, Hori O, Koshida K, Egawa M, Kato H, Kitagawa Y, et al. Antitumor
effect of reduction of 150-kDa oxygen-regulated protein expression on human
prostate cancer cells. Int J Urol (2002) 9(10):577–85. doi:10.1046/j.1442-2042.
2002.00519.x

96. Asahi H, Koshida K, Hori O, Ogawa S, Namiki M. Immunohistochemical detec-
tion of the 150-kDa oxygen-regulated protein in bladder cancer. BJU Int (2002)
90(4):462–6. doi:10.1046/j.1464-410X.2002.02915.x

97. Mahadevan NR, Rodvold J, Sepulveda H, Rossi S, Drew AF, Zanetti M. Trans-
mission of endoplasmic reticulum stress and pro-inflammation from tumor
cells to myeloid cells. Proc Natl Acad Sci U S A (2011) 108(16):6561–6.
doi:10.1073/pnas.1008942108

98. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apop-
totic cell death releases heat shock proteins, which deliver a partial maturation
signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol
(2000) 12(11):1539–46. doi:10.1093/intimm/12.11.1539

99. Zhang Y, Liu R, Ni M, Gill P, Lee AS. Cell surface relocalization of the endoplas-
mic reticulum chaperone and unfolded protein response regulator GRP78/BiP.
J Biol Chem (2010) 285(20):15065–75. doi:10.1074/jbc.M109.087445

100. Feng H, Zeng Y, Graner MW, Likhacheva A, Katsanis E. Exogenous stress
proteins enhance the immunogenicity of apoptotic tumor cells and stimulate
antitumor immunity. Blood (2003) 101(1):245–52. doi:10.1182/blood-2002-
05-1580

101. Mambula SS, Calderwood SK. Heat shock protein 70 is secreted from tumor
cells by a nonclassical pathway involving lysosomal endosomes. J Immunol
(2006) 177(11):7849–57. doi:10.4049/jimmunol.177.11.7849

102. Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV. The
role of Grp 78 in alpha 2-macroglobulin-induced signal transduction. Evidence
from RNA interference that the low density lipoprotein receptor-related protein
is associated with, but not necessary for, GRP 78-mediated signal transduction.
J Biol Chem (2002) 277(44):42082–7. doi:10.1074/jbc.M206174200

103. Misra UK, Pizzo SV. Receptor-recognized alpha(2)-macroglobulin binds to
cell surface-associated GRP78 and activates mTORC1 and mTORC2 signaling
in prostate cancer cells. PLoS One (2012) 7(12):e51735. doi:10.1371/journal.
pone.0051735

104. Zhang Y, Tseng CC, Tsai YL, Fu X, Schiff R, Lee AS. Cancer cells resistant to
therapy promote cell surface relocalization of GRP78 which complexes with
PI3K and enhances PI(3,4,5)P3 production. PLoS One (2013) 8(11):e80071.
doi:10.1371/journal.pone.0080071

105. Liu R, Li X, Gao W, Zhou Y, Wey S, Mitra SK, et al. Monoclonal antibody
against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signal-
ing, tumor growth, and metastasis. Clin Cancer Res (2013) 19(24):6802–11.
doi:10.1158/1078-0432.CCR-13-1106

106. Tamura Y, Hirohashi Y, Kutomi G, Nakanishi K, Kamiguchi K, Torigoe T,
et al. Tumor-produced secreted form of binding of immunoglobulin protein
elicits antigen-specific tumor immunity. J Immunol (2011) 186(7):4325–30.
doi:10.4049/jimmunol.1004048

107. Martins I, Kepp O, Galluzzi L, Senovilla L, Schlemmer F, Adjemian S, et al.
Surface-exposed calreticulin in the interaction between dying cells and phago-
cytes. Ann N Y Acad Sci (2010) 1209:77–82. doi:10.1111/j.1749-6632.2010.
05740.x

108. Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, et al. Cal-
reticulin exposure is required for the immunogenicity of gamma-irradiation
and UVC light-induced apoptosis. Cell Death Differ (2007) 14(10):1848–50.
doi:10.1038/sj.cdd.4402201

109. Obeid M, Panaretakis T, Tesniere A, Joza N, Tufi R, Apetoh L, et al. Leveraging
the immune system during chemotherapy: moving calreticulin to the cell sur-
face converts apoptotic death from “silent” to immunogenic. Cancer Res (2007)
67(17):7941–4. doi:10.1158/0008-5472.CAN-07-1622

110. Gao P, Sun X, Chen X, Subjeck J, Wang XY. Secretion of stress protein
grp170 promotes immune-mediated inhibition of murine prostate tumor.
Cancer Immunol Immunother (2009) 58(8):1319–28. doi:10.1007/s00262-008-
0647-6

111. Arnouk H, Zynda ER, Wang XY, Hylander BL, Manjili MH, Repasky EA, et al.
Tumour secreted grp170 chaperones full-length protein substrates and induces
an adaptive anti-tumour immune response in vivo. Int J Hyperthermia (2010)
26(4):366–75. doi:10.3109/02656730903485910

112. Dai J, Liu B, Caudill MM, Zheng H, Qiao Y, Podack ER, et al. Cell surface
expression of heat shock protein gp96 enhances cross-presentation of cellular
antigens and the generation of tumor-specific T cell memory. Cancer Immun
(2003) 3:1.

113. Yamazaki K, Nguyen T, Podack ER. Cutting edge: tumor secreted heat
shock-fusion protein elicits CD8 cells for rejection. J Immunol (1999)
163(10):5178–82.

114. Strbo N, Oizumi S, Sotosek-Tokmadzic V, Podack ER. Perforin is required for
innate and adaptive immunity induced by heat shock protein gp96. Immunity
(2003) 18(3):381–90. doi:10.1016/S1074-7613(03)00056-6

Frontiers in Oncology | Tumor Immunity January 2015 | Volume 4 | Article 377 | 10

http://dx.doi.org/10.4161/cbt.5.7.2970
http://dx.doi.org/10.4161/cbt.5.7.2970
http://dx.doi.org/10.1158/1541-7786.MCR-05-0221
http://dx.doi.org/10.1016/j.leukres.2009.02.017
http://dx.doi.org/10.2174/156652406775574604
http://dx.doi.org/10.1073/pnas.93.15.7690
http://dx.doi.org/10.1245/s10434-008-0243-1
http://dx.doi.org/10.1111/j.1356-9597.2004.00735.x
http://dx.doi.org/10.1038/nrd2755
http://dx.doi.org/10.1096/fj.02-0644fje
http://dx.doi.org/10.1016/j.humpath.2007.03.014
http://dx.doi.org/10.1016/j.humpath.2007.03.014
http://dx.doi.org/10.1023/A:1006332011207
http://dx.doi.org/10.1158/0008-5472.CAN-06-1660
http://dx.doi.org/10.1158/1078-0432.CCR-06-0133
http://dx.doi.org/10.1074/jbc.274.40.28476
http://dx.doi.org/10.1186/1476-4598-3-21
http://dx.doi.org/10.1080/09553000500434727
http://dx.doi.org/10.1046/j.1442-2042.2002.00519.x
http://dx.doi.org/10.1046/j.1442-2042.2002.00519.x
http://dx.doi.org/10.1046/j.1464-410X.2002.02915.x
http://dx.doi.org/10.1073/pnas.1008942108
http://dx.doi.org/10.1093/intimm/12.11.1539
http://dx.doi.org/10.1074/jbc.M109.087445
http://dx.doi.org/10.1182/blood-2002-05-1580
http://dx.doi.org/10.1182/blood-2002-05-1580
http://dx.doi.org/10.4049/jimmunol.177.11.7849
http://dx.doi.org/10.1074/jbc.M206174200
http://dx.doi.org/10.1371/journal.pone.0051735
http://dx.doi.org/10.1371/journal.pone.0051735
http://dx.doi.org/10.1371/journal.pone.0080071
http://dx.doi.org/10.1158/1078-0432.CCR-13-1106
http://dx.doi.org/10.4049/jimmunol.1004048
http://dx.doi.org/10.1111/j.1749-6632.2010.05740.x
http://dx.doi.org/10.1111/j.1749-6632.2010.05740.x
http://dx.doi.org/10.1038/sj.cdd.4402201
http://dx.doi.org/10.1158/0008-5472.CAN-07-1622
http://dx.doi.org/10.1007/s00262-008-0647-6
http://dx.doi.org/10.1007/s00262-008-0647-6
http://dx.doi.org/10.3109/02656730903485910
http://dx.doi.org/10.1016/S1074-7613(03)00056-6
http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang et al. GRP170 and anti-tumor immunity

115. Oizumi S, Strbo N, Pahwa S, Deyev V, Podack ER. Molecular and cellular
requirements for enhanced antigen cross-presentation to CD8 cytotoxic T lym-
phocytes. J Immunol (2007) 179(4):2310–7. doi:10.4049/jimmunol.179.4.2310

116. Dai J, Liu B, Ngoi SM, Sun S, Vella AT, Li Z. TLR4 hyperresponsiveness
via cell surface expression of heat shock protein gp96 potentiates sup-
pressive function of regulatory T cells. J Immunol (2007) 178(5):3219–25.
doi:10.4049/jimmunol.178.5.3219

117. Liu B, Dai J, Zheng H, Stoilova D, Sun S, Li Z. Cell surface expression of
an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-
dependent systemic autoimmune diseases. Proc Natl Acad Sci U S A (2003)
100(26):15824–9. doi:10.1073/pnas.2635458100

118. Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70-kDa
heat shock protein family in anti-tumor immunity. Eur J Immunol (2005)
35(9):2518–27. doi:10.1002/eji.200535002

119. Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and
extracellular functions of heat shock proteins: repercussions in cancer therapy.
J Leukoc Biol (2007) 81(1):15–27. doi:10.1189/jlb.0306167

120. Manjili MH, Park JE, Facciponte JG, Wang XY, Subjeck JR. Immunoadjuvant
chaperone, GRP170, induces ‘danger signals’ upon interaction with dendritic
cells. Immunol Cell Biol (2006) 84(2):203–8. doi:10.1111/j.1440-1711.2006.
01418.x

121. Gao P, Sun X, Chen X, Wang Y, Foster BA, Subjeck J, et al. Secretable chaperone
Grp170 enhances therapeutic activity of a novel tumor suppressor, mda-7/IL-
24. Cancer Res (2008) 68(10):3890–8. doi:10.1158/0008-5472.CAN-08-0156

122. Nair S, Wearsch PA, Mitchell DA, Wassenberg JJ, Gilboa E, Nicchitta CV. Cal-
reticulin displays in vivo peptide-binding activity and can elicit CTL responses
against bound peptides. J Immunol (1999) 162(11):6426–32.

123. Arnold D, Faath S, Rammensee H, Schild H. Cross-priming of minor
histocompatibility antigen-specific cytotoxic T cells upon immunization with
the heat shock protein gp96. J Exp Med (1995) 182(3):885–9. doi:10.1084/jem.
182.3.885

124. Nieland TJ, Tan MC, Monne-van Muijen M, Koning F, Kruisbeek AM, van
Bleek GM. Isolation of an immunodominant viral peptide that is endoge-
nously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A
(1996) 93(12):6135–9. doi:10.1073/pnas.93.12.6135

125. Rivoltini L, Castelli C, Carrabba M, Mazzaferro V, Pilla L, Huber V, et al. Human
tumor-derived heat shock protein 96 mediates in vitro activation and in vivo
expansion of melanoma- and colon carcinoma-specific T cells. J Immunol
(2003) 171(7):3467–74. doi:10.4049/jimmunol.171.7.3467

126. Wang XY, Kazim L, Repasky EA, Subjeck JR. Immunization with tumor-
derived ER chaperone grp170 elicits tumor-specific CD8+ T-cell responses
and reduces pulmonary metastatic disease. Int J Cancer (2003) 105(2):226–31.
doi:10.1002/ijc.11058

127. Srivastava PK, DeLeo AB, Old LJ. Tumor rejection antigens of chemi-
cally induced sarcomas of inbred mice. Proc Natl Acad Sci U S A (1986)
83(10):3407–11. doi:10.1073/pnas.83.10.3407

128. Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors
with autologous tumor-derived heat shock protein preparations. Science (1997)
278(5335):117–20. doi:10.1126/science.278.5335.117

129. Wang XY, Kazim L, Repasky EA, Subjeck JR. Characterization of heat shock pro-
tein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of
fever-range hyperthermia on vaccine activity. J Immunol (2001) 166(1):490–7.
doi:10.4049/jimmunol.166.1.490

130. Oki Y, Younes A. Heat shock protein-based cancer vaccines. Expert Rev Vaccines
(2004) 3(4):403–11. doi:10.1586/14760584.3.4.403

131. Gordon NF, Clark BL. The challenges of bringing autologous HSP-based vac-
cines to commercial reality. Methods (2004) 32(1):63–9. doi:10.1016/S1046-
2023(03)00188-9

132. Park JE, Facciponte J, Chen X, MacDonald I, Repasky EA, Manjili MH, et al.
Chaperoning function of stress protein grp170, a member of the hsp70 super-
family, is responsible for its immunoadjuvant activity. Cancer Res (2006)
66(2):1161–8. doi:10.1158/0008-5472.CAN-05-2609

133. Huo W, Ye J, Liu R, Chen J, Li Q. Vaccination with a chaperone complex based
on PSCA and GRP170 adjuvant enhances the CTL response and inhibits the
tumor growth in mice. Vaccine (2010) 28(38):6333–7. doi:10.1016/j.vaccine.
2010.06.093

134. Yuan B, Xian R, Wu X, Jing J, Chen K, Liu G, et al. Endoplasmic reticulum
chaperone glucose regulated protein 170-Pokemon complexes elicit a robust

antitumor immune response in vivo. Immunobiology (2012) 217(7):738–42.
doi:10.1016/j.imbio.2012.01.006

135. Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA. Mechanisms
of MHC class I-restricted antigen processing and cross-presentation. Immunol
Rev (2005) 207:145–57. doi:10.1111/j.0105-2896.2005.00316.x

136. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic
cells. Nat Rev Immunol (2012) 12:557–69. doi:10.1038/nri3254

137. Schuette V, Burgdorf S. The ins-and-outs of endosomal antigens for
cross-presentation. Curr Opin Immunol (2014) 26:63–8. doi:10.1016/j.coi.
2013.11.001

138. Kovacsovics-Bankowski M, Rock KL. A phagosome-to-cytosol pathway for
exogenous antigens presented on MHC class I molecules. Science (1995)
267(5195):243–6. doi:10.1126/science.7809629

139. Rodriguez A, Regnault A, Kleijmeer M, Ricciardi-Castagnoli P, Amigorena S.
Selective transport of internalized antigens to the cytosol for MHC class I pre-
sentation in dendritic cells. Nat Cell Biol (1999) 1(6):362–8. doi:10.1038/14058

140. Di Pucchio T, Chatterjee B, Smed-Sorensen A, Clayton S, Palazzo A, Montes
M, et al. Direct proteasome-independent cross-presentation of viral antigen by
plasmacytoid dendritic cells on major histocompatibility complex class I. Nat
Immunol (2008) 9(5):551–7. doi:10.1038/ni.1602

141. Gromme M, Uytdehaag FG, Janssen H, Calafat J, van Binnendijk RS, Kenter MJ,
et al. Recycling MHC class I molecules and endosomal peptide loading. Proc
Natl Acad Sci U S A (1999) 96(18):10326–31. doi:10.1073/pnas.96.18.10326

142. Pfeifer JD, Wick MJ, Roberts RL, Findlay K, Normark SJ, Harding CV. Phago-
cytic processing of bacterial antigens for class I MHC presentation to T cells.
Nature (1993) 361(6410):359–62. doi:10.1038/361359a0

143. Shen L, Sigal LJ, Boes M, Rock KL. Important role of cathepsin S in gener-
ating peptides for TAP-independent MHC class I crosspresentation in vivo.
Immunity (2004) 21(2):155–65. doi:10.1016/j.immuni.2004.07.004

144. Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity.
Nat Rev Immunol (2002) 2(3):185–94. doi:10.1038/nri749

145. Srivastava PK, Callahan MK, Mauri MM. Treating human cancers with heat
shock protein-peptide complexes: the road ahead. Expert Opin Biol Ther (2009)
9(2):179–86. doi:10.1517/14712590802633918

146. Wang XY, Facciponte JG, Subjeck JR. Molecular chaperones and cancer
immunotherapy. Handb Exp Pharmacol (2006) 172(172):305–29. doi:10.1007/
3-540-29717-0_13

147. Murshid A, Gong J, Calderwood SK. The role of heat shock proteins in antigen
cross presentation. Front Immunol (2012) 3:63. doi:10.3389/fimmu.2012.00063

148. Facciponte JG, Wang XY, Subjeck JR. Hsp110 and Grp170, members of
the Hsp70 superfamily, bind to scavenger receptor-A and scavenger recep-
tor expressed by endothelial cells-I. Eur J Immunol (2007) 37(8):2268–79.
doi:10.1002/eji.200737127

149. Wang H, Yu X, Guo C, Zuo D, Fisher PB, Subjeck JR, et al. Enhanced endoplas-
mic reticulum entry of tumor antigen is crucial for cross-presentation induced
by dendritic cell-targeted vaccination. J Immunol (2013) 191(12):6010–21.
doi:10.4049/jimmunol.1302312

150. Buck TM, Plavchak L, Roy A, Donnelly BF, Kashlan OB, Kleyman TR,
et al. The Lhs1/GRP170 chaperones facilitate the endoplasmic reticulum-
associated degradation of the epithelial sodium channel. J Biol Chem (2013)
288(25):18366–80. doi:10.1074/jbc.M113.469882

151. Kutomi G, Tamura Y, Okuya K, Yamamoto T, Hirohashi Y, Kamiguchi K, et al.
Targeting to static endosome is required for efficient cross-presentation of
endoplasmic reticulum-resident oxygen-regulated protein 150-peptide com-
plexes. J Immunol (2009) 183(9):5861–9. doi:10.4049/jimmunol.0803768

152. Tsai B, Ye Y, Rapoport TA. Retro-translocation of proteins from the endo-
plasmic reticulum into the cytosol. Nat Rev Mol Cell Biol (2002) 3(4):246–55.
doi:10.1038/nrm780

153. Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated
degradation. Nat Rev Mol Cell Biol (2008) 9(12):944–57. doi:10.1038/nrm2546

154. Udono H. Heat shock protein magic in antigen trafficking within den-
dritic cells: implications in antigen cross-presentation in immunity. Acta Med
Okayama (2012) 66(1):1–6.

155. Ackerman AL, Giodini A, Cresswell P. A role for the endoplasmic reticulum
protein retrotranslocation machinery during crosspresentation by dendritic
cells. Immunity (2006) 25(4):607–17. doi:10.1016/j.immuni.2006.08.017

156. Gagnon E, Duclos S, Rondeau C, Chevet E, Cameron PH, Steele-Mortimer O,
et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry

www.frontiersin.org January 2015 | Volume 4 | Article 377 | 11

http://dx.doi.org/10.4049/jimmunol.179.4.2310
http://dx.doi.org/10.4049/jimmunol.178.5.3219
http://dx.doi.org/10.1073/pnas.2635458100
http://dx.doi.org/10.1002/eji.200535002
http://dx.doi.org/10.1189/jlb.0306167
http://dx.doi.org/10.1111/j.1440-1711.2006.01418.x
http://dx.doi.org/10.1111/j.1440-1711.2006.01418.x
http://dx.doi.org/10.1158/0008-5472.CAN-08-0156
http://dx.doi.org/10.1084/jem.182.3.885
http://dx.doi.org/10.1084/jem.182.3.885
http://dx.doi.org/10.1073/pnas.93.12.6135
http://dx.doi.org/10.4049/jimmunol.171.7.3467
http://dx.doi.org/10.1002/ijc.11058
http://dx.doi.org/10.1073/pnas.83.10.3407
http://dx.doi.org/10.1126/science.278.5335.117
http://dx.doi.org/10.4049/jimmunol.166.1.490
http://dx.doi.org/10.1586/14760584.3.4.403
http://dx.doi.org/10.1016/S1046-2023(03)00188-9
http://dx.doi.org/10.1016/S1046-2023(03)00188-9
http://dx.doi.org/10.1158/0008-5472.CAN-05-2609
http://dx.doi.org/10.1016/j.vaccine.2010.06.093
http://dx.doi.org/10.1016/j.vaccine.2010.06.093
http://dx.doi.org/10.1016/j.imbio.2012.01.006
http://dx.doi.org/10.1111/j.0105-2896.2005.00316.x
http://dx.doi.org/10.1038/nri3254
http://dx.doi.org/10.1016/j.coi.2013.11.001
http://dx.doi.org/10.1016/j.coi.2013.11.001
http://dx.doi.org/10.1126/science.7809629
http://dx.doi.org/10.1038/14058
http://dx.doi.org/10.1038/ni.1602
http://dx.doi.org/10.1073/pnas.96.18.10326
http://dx.doi.org/10.1038/361359a0
http://dx.doi.org/10.1016/j.immuni.2004.07.004
http://dx.doi.org/10.1038/nri749
http://dx.doi.org/10.1517/14712590802633918
http://dx.doi.org/10.1007/3-540-29717-0_13
http://dx.doi.org/10.1007/3-540-29717-0_13
http://dx.doi.org/10.3389/fimmu.2012.00063
http://dx.doi.org/10.1002/eji.200737127
http://dx.doi.org/10.4049/jimmunol.1302312
http://dx.doi.org/10.1074/jbc.M113.469882
http://dx.doi.org/10.4049/jimmunol.0803768
http://dx.doi.org/10.1038/nrm780
http://dx.doi.org/10.1038/nrm2546
http://dx.doi.org/10.1016/j.immuni.2006.08.017
http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang et al. GRP170 and anti-tumor immunity

into macrophages. Cell (2002) 110(1):119–31. doi:10.1016/S0092-8674(02)
00797-3

157. Guermonprez P, Saveanu L, Kleijmeer M, Davoust J,Van Endert P,Amigorena S.
ER-phagosome fusion defines an MHC class I cross-presentation compartment
in dendritic cells. Nature (2003) 425(6956):397–402. doi:10.1038/nature01911

158. Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G, Laplante A, et al. Phago-
somes are competent organelles for antigen cross-presentation. Nature (2003)
425(6956):402–6. doi:10.1038/nature01912

159. Calderwood SK, Mambula SS, Gray PJ Jr. Extracellular heat shock pro-
teins in cell signaling and immunity. Ann N Y Acad Sci (2007) 1113:28–39.
doi:10.1196/annals.1391.019

160. Henderson B, Calderwood SK, Coates AR, Cohen I, van Eden W, Lehner T, et al.
Caught with their PAMPs down? The extracellular signalling actions of molec-
ular chaperones are not due to microbial contaminants. Cell Stress Chaperones
(2010) 15(2):123–41. doi:10.1007/s12192-009-0137-6

161. Akira S. Innate immunity and adjuvants. Philos Trans R Soc Lond B Biol Sci
(2011) 366(1579):2748–55. doi:10.1098/rstb.2011.0106

162. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to
work. Immunity (2010) 33(4):492–503. doi:10.1016/j.immuni.2010.10.002

163. Ghimire TR, Benson RA, Garside P, Brewer JM. Alum increases antigen uptake,
reduces antigen degradation and sustains antigen presentation by DCs in vitro.
Immunol Lett (2012) 147(1–2):55–62. doi:10.1016/j.imlet.2012.06.002

164. Huang M, Wang W. Factors affecting alum-protein interactions. Int J Pharm
(2014) 466(1–2):139–46. doi:10.1016/j.ijpharm.2014.03.015

165. Colaco CA, Bailey CR, Walker KB, Keeble J. Heat shock proteins: stimula-
tors of innate and acquired immunity. Biomed Res Int (2013) 2013:461230.
doi:10.1155/2013/461230

166. Zuo D, Yu X, Guo C, Yi H, Chen X, Conrad DH, et al. Molecular chaper-
oning by glucose-regulated protein 170 in the extracellular milieu promotes
macrophage-mediated pathogen sensing and innate immunity. FASEB J (2012)
26(4):1493–505. doi:10.1096/fj.11-197707

167. Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrancois L, et al. Heat
shock protein gp96 is a master chaperone for toll-like receptors and is impor-
tant in the innate function of macrophages. Immunity (2007) 26(2):215–26.
doi:10.1016/j.immuni.2006.12.005

168. Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, et al.
Rapid and strong human CD8+ T cell responses to vaccination with peptide,
IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest (2005) 115(3):739–46.
doi:10.1172/JCI200523373

169. Andreakos E, Williams RO, Wales J, Foxwell BM, Feldmann M. Activa-
tion of NF-kappaB by the intracellular expression of NF-kappaB-inducing
kinase acts as a powerful vaccine adjuvant. Proc Natl Acad Sci U S A (2006)
103(39):14459–64. doi:10.1073/pnas.0603493103

170. Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for
presentation by dendritic cells. Nature (2006) 440(7085):808–12. doi:10.1038/
nature04596

171. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol (2004)
4:499–511. doi:10.1038/nri1391

172. van Duin D, Medzhitov R, Shaw AC. Triggering TLR signaling in vaccination.
Trends Immunol (2006) 27(1):49–55. doi:10.1016/j.it.2005.11.005

173. Yu X, Guo C, Yi H, Qian J, Fisher PB, Subjeck JR, et al. A multifunctional
chimeric chaperone serves as a novel immune modulator inducing therapeutic
antitumor immunity. Cancer Res (2013) 73(7):2093–103. doi:10.1158/0008-
5472.CAN-12-1740

174. Murthy KG, Deb A, Goonesekera S, Szabo C, Salzman AL. Identification of
conserved domains in Salmonella muenchen flagellin that are essential for its
ability to activate TLR5 and to induce an inflammatory response in vitro. J Biol
Chem (2004) 279(7):5667–75. doi:10.1074/jbc.M307759200

175. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The
innate immune response to bacterial flagellin is mediated by toll-like receptor
5. Nature (2001) 410(6832):1099–103. doi:10.1038/35074106

176. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, et al.
Structural basis of TLR5-flagellin recognition and signaling. Science (2012)
335(6070):859–64. doi:10.1126/science.1215584

177. Yoshimura S, Bondeson J, Foxwell BMJ, Brennan FM, Feldmann M. Effective
antigen presentation by dendritic cells is NF-{{kappa}}B dependent: coordi-
nate regulation of MHC, co-stimulatory molecules and cytokines. Int Immunol
(2001) 13(5):675–83. doi:10.1093/intimm/13.5.675

178. Moore F, Buonocore S, Aksoy E, Ouled-Haddou N, Goriely S, Lazarova E,
et al. An alternative pathway of NF-{kappa}B activation results in matura-
tion and T cell priming activity of dendritic cells overexpressing a mutated
I{kappa}B{alpha}. J Immunol (2007) 178(3):1301–11. doi:10.4049/jimmunol.
178.3.1301

179. Lind EF, Ahonen CL, Wasiuk A, Kosaka Y, Becher B, Bennett KA, et al.
Dendritic Cells require the NF-{kappa}B2 pathway for cross-presentation of
soluble antigens. J Immunol (2008) 181(1):354–63. doi:10.4049/jimmunol.181.
1.354

180. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I,
et al. Cross-presentation of viral and self antigens by skin-derived CD103+
dendritic cells. Nat Immunol (2009) 10(5):488–95. doi:10.1038/ni.1724

181. Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA, et al.
Cross-presentation, dendritic cell subsets, and the generation of immunity
to cellular antigens. Immunol Rev (2004) 199:9–26. doi:10.1111/j.0105-2896.
2004.00142.x

182. Henri S, Siret C, Machy P, Kissenpfennig A, Malissen B, Leserman L. Mature
DC from skin and skin-draining LN retain the ability to acquire and efficiently
present targeted antigen. Eur J Immunol (2007) 37(5):1184–93. doi:10.1002/
eji.200636793

183. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M,
et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in
cytotoxic T cell immunity. Science (2008) 322(5904):1097–100. doi:10.1126/
science.1164206

184. Osorio F, Tavernier SJ, Hoffmann E, Saeys Y, Martens L, Vetters J, et al.
The unfolded-protein-response sensor IRE-1alpha regulates the function
of CD8alpha+ dendritic cells. Nat Immunol (2014) 15(3):248–57. doi:10.1038/
ni.2808

185. Iwakoshi NN, Pypaert M, Glimcher LH. The transcription factor XBP-1 is
essential for the development and survival of dendritic cells. J Exp Med (2007)
204(10):2267–75. doi:10.1084/jem.20070525

186. Kamimura D, Bevan MJ. Endoplasmic reticulum stress regulator XBP-1
contributes to effector CD8+ T cell differentiation during acute infection.
J Immunol (2008) 181(8):5433–41. doi:10.4049/jimmunol.181.8.5433

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 31 October 2014; paper pending published: 26 November 2014; accepted: 16
December 2014; published online: 12 January 2015.
Citation: Wang H, Pezeshki AM, Yu X, Guo C, Subjeck JR and Wang X-Y (2015)
The endoplasmic reticulum chaperone GRP170: from immunobiology to cancer
therapeutics. Front. Oncol. 4:377. doi: 10.3389/fonc.2014.00377
This article was submitted to Tumor Immunity, a section of the journal Frontiers in
Oncology.
Copyright © 2015 Wang , Pezeshki, Yu, Guo, Subjeck and Wang . This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Oncology | Tumor Immunity January 2015 | Volume 4 | Article 377 | 12

http://dx.doi.org/10.1016/S0092-8674(02)00797-3
http://dx.doi.org/10.1016/S0092-8674(02)00797-3
http://dx.doi.org/10.1038/nature01911
http://dx.doi.org/10.1038/nature01912
http://dx.doi.org/10.1196/annals.1391.019
http://dx.doi.org/10.1007/s12192-009-0137-6
http://dx.doi.org/10.1098/rstb.2011.0106
http://dx.doi.org/10.1016/j.immuni.2010.10.002
http://dx.doi.org/10.1016/j.imlet.2012.06.002
http://dx.doi.org/10.1016/j.ijpharm.2014.03.015
http://dx.doi.org/10.1155/2013/461230
http://dx.doi.org/10.1096/fj.11-197707
http://dx.doi.org/10.1016/j.immuni.2006.12.005
http://dx.doi.org/10.1172/JCI200523373
http://dx.doi.org/10.1073/pnas.0603493103
http://dx.doi.org/10.1038/nature04596
http://dx.doi.org/10.1038/nature04596
http://dx.doi.org/10.1038/nri1391
http://dx.doi.org/10.1016/j.it.2005.11.005
http://dx.doi.org/10.1158/0008-5472.CAN-12-1740
http://dx.doi.org/10.1158/0008-5472.CAN-12-1740
http://dx.doi.org/10.1074/jbc.M307759200
http://dx.doi.org/10.1038/35074106
http://dx.doi.org/10.1126/science.1215584
http://dx.doi.org/10.1093/intimm/13.5.675
http://dx.doi.org/10.4049/jimmunol.178.3.1301
http://dx.doi.org/10.4049/jimmunol.178.3.1301
http://dx.doi.org/10.4049/jimmunol.181.1.354
http://dx.doi.org/10.4049/jimmunol.181.1.354
http://dx.doi.org/10.1038/ni.1724
http://dx.doi.org/10.1111/j.0105-2896.2004.00142.x
http://dx.doi.org/10.1111/j.0105-2896.2004.00142.x
http://dx.doi.org/10.1002/eji.200636793
http://dx.doi.org/10.1002/eji.200636793
http://dx.doi.org/10.1126/science.1164206
http://dx.doi.org/10.1126/science.1164206
http://dx.doi.org/10.1038/ni.2808
http://dx.doi.org/10.1038/ni.2808
http://dx.doi.org/10.1084/jem.20070525
http://dx.doi.org/10.4049/jimmunol.181.8.5433
http://dx.doi.org/10.3389/fonc.2014.00377
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive

	The endoplasmic reticulum chaperone GRP170: from immunobiology to cancer therapeutics
	Introduction
	Grp170 and its chaperoning property
	ER Stress and GRP170-conferred cytoprotection
	GRP170 in cancer development and progression
	Cancer immunogenicity altered by compartmentalization of GRP170
	GRP170 as an immune adjuvant of cancer vaccine
	Extracellular GRP170 and antigen cross-presentation
	Extracellular GRP170 as an alarmin and innate immunity
	Arming GRP170 with a pathogen-derived "danger" signal for improved anti-tumor potency
	Conclusion
	Acknowledgments
	References


