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Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the

movement of water and many other small molecules. Compared to animals, plants

contain a much higher number of AQPs in their genome. Homology-based identification

of AQPs in sequenced species is feasible because of the high level of conservation

of protein sequences across plant species. Genome-wide characterization of AQPs

has highlighted several important aspects such as distribution, genetic organization,

evolution and conserved features governing solute specificity. From a functional point

of view, the understanding of AQP transport system has expanded rapidly with

the help of transcriptomics and proteomics data. The efficient analysis of enormous

amounts of data generated through omic scale studies has been facilitated through

computational advancements. Prediction of protein tertiary structures, pore architecture,

cavities, phosphorylation sites, heterodimerization, and co-expression networks has

become more sophisticated and accurate with increasing computational tools and

pipelines. However, the effectiveness of computational approaches is based on the

understanding of physiological and biochemical properties, transport kinetics, solute

specificity, molecular interactions, sequence variations, phylogeny and evolution of

aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression

systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited

to study the many facets that influence solute transport by AQPs. In the present

review, we discuss genome-wide identification of AQPs in plants in relation with recent

advancements in analytical tools, and their availability and technological challenges as

they apply to AQPs. An exhaustive review of omics resources available for AQP research

is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of

computational tools and analytical pipelines is offered as a resource for AQP research.
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INTRODUCTION

Aquaporins (AQPs) are channel-forming proteins that facilitate
selective transport of water and many other small molecules like
urea, silicon (Si) in the form of silicic acid, boron (B) in the
form of boric acid, and CO2 across biological membranes. AQPs
are present in almost all living organisms including eukaryotes
and prokaryotes (Quigley et al., 2001; Tanghe et al., 2006; Benga
and Huber, 2012; Benga, 2013). In animals, minor defects or
changes in AQP configuration are known to cause many diseases
such as hereditary nephrogenic diabetes insipidus, congenital
cataracts and, more commonly, the inability to concentrate
solutes in urine (Verkman, 2009; Benga and Huber, 2012).
Similarly, plant AQPs have an important role in regulating the
overall development of a plant, namely in the maintenance
of hydraulic status under extreme conditions. As early as
1986, Benga et al. in a pioneer effort, reported the role of
proteins in water transport (Benga et al., 1986a,b). Subsequently,
Peter Agre’s team proved through cRNA expression studies
that those proteins, named aquaporin-1, were specific water
channels (Preston et al., 1992), and Agre was awarded the
Nobel Prize in chemistry in 2003 for his discovery (Agre,
2004). These findings have sparked a veritable explosion of
work that has enhanced our understanding of the importance
of AQPs in animals as well as in plants (Papadopoulos and
Verkman, 2013; Deshmukh et al., 2015; Kitchen et al., 2015;
Maurel et al., 2015; Kirscht et al., 2016; Srivastava et al.,
2016).

AQPs from diverse origins have characteristic hourglass-
like structures with six transmembranes (TM) alpha helices
and two half TM alpha-helices with conserved NPA domains
(asparagine–proline–alanine) (Jung et al., 1994; Murata et al.,
2000). The two half alpha helices form a constraint in
the center of the pore that regulates the selective transport
of solutes through the pore. Another constraint known as
the aromatic arginine (ar/R) selectivity filter (SF), formed
mostly with four amino acid residues, plays also a major
role in solute selectivity (Murata et al., 2000; Törnroth-
Horsefield et al., 2006). Based on their phylogenetic distribution,
plant AQPs are generally categorized into five major sub-
families: plasma membrane intrinsic proteins (PIP), nodulin
26-like intrinsic proteins (NIPs), tonoplast intrinsic proteins
(TIPs), small intrinsic proteins (SIPs), and uncharacterized
intrinsic proteins (XIPs) (Quigley et al., 2001; Deshmukh
et al., 2015). The phylogenic classification of each group is
very well aligned with the functionality and characteristic
features of AQPs (Grégoire et al., 2012; Deshmukh et al.,
2015).

Availability of whole genome sequences for animal and
plant species has facilitated genome-wide identification and
classification of AQPs. For instance, compared to animals,
plants have a larger number of AQPs ranging from 23
in Selaginella moellendorffii to 72 in soybean (Deshmukh
et al., 2015). Apart from identifying novel genes, genome-
wide studies have contributed to a better understanding of
the molecular evolution of the AQP gene families (Gupta
and Sankararamakrishnan, 2009; Deshmukh and Bélanger,

2016). Precise identification of conserved features along
with their functional relevance has progressed rapidly with
the availability of AQP sequences from many plant species.
Similarly, transcriptome profiling of AQPs conducted
in several plant species has helped to determine that
AQPs have expression specific to tissue, growth stage, or
environmental conditions (Gupta and Sankararamakrishnan,
2009).

Regulation of solute transport through AQPs is a very
complex phenomenon that involves environmental stimuli,
transcriptional changes, and post-translational modifications.
For a better understanding of AQP-mediated transport
systems, integration of information generated through different
approaches such as genomics, transcriptomics, and proteomics
is required. In addition, information about analytical tools and
available resources is also important to properly characterize
AQPs. In the present review, we discuss how different approaches
and analytical tools exploiting the many available resources can
contribute to the study of AQPs.

GENOME-WIDE IDENTIFICATION OF AQPS

The initial genome-wide studies in Arabidopsis have paved
the way to understand the distribution, characterization, and
evolution of gene families in plants. The Arabidopsis genome
has 35 AQPs that can be classified into four subfamilies based on
phylogenetic distribution (Quigley et al., 2001). This classification
was found to cluster fairly well with the functionality of AQPs.
Subsequently, a second genome-wide study was performed in
rice, which is considered as a model cereal crop and also
represents a distinct monocot clade (Sakurai et al., 2005). Apart
from the phylogenetic classification, solute-based classification
of AQPs like aquaporins, aquaglyceroporins and S-aquaporins
has also been used, particularly in animals (Benga, 2012). The
information of AQPs in rice and Arabidopsis facilitated the
monocot-dicot comparison that expanded the understanding of
AQP gene families in plants. Later on, the genome sequencing
of cucumber (Cucumis sativus) using next generation sequencing
approaches started a new era characterized by a constant flow of
reports of plant genome sequences and subsequent genome-wide
AQP studies in plants (Huang et al., 2009; Deshmukh et al., 2013;
Ariani and Gepts, 2015).

The genome sequences for moss (Physcomitrella patens)
enabled the identification of 23 AQPs (Danielson and Johanson,
2008). In addition, the study added two new AQP subfamilies:
Hybrid Intrinsic Proteins (HIP) and GlpF-like intrinsic proteins
(GIPs) (Danielson and Johanson, 2008). Mosses, being primitive
plants, are valuable for evolutionary studies, and the features
observed inmosses are likely to be present in higher plants. In this
regard, the seven AQP subfamilies found in mosses suggest that
the diversion of AQPs was an early event and that higher plants
lost two sub-families in the course of evolution. Subsequently,
tissue-specific expression observed in vascular plants is argued
to have evolved after the diversion of subfamilies. A recent
study highlighting genome-wide comparison of AQPs in 25 plant
species revealed several unique features about the subfamilies
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(Deshmukh et al., 2015). For instance, it is now clear that the
XIP subfamily has been lost throughout the entire monocots,
as well as within the Brassicaceae. In addition, Brassicaceae
have also lost NIP2s from their genome (Deshmukh et al.,
2015).

Most of the genome-wide studies have used AQP sequences
reported in rice and Arabidopsis as a query to perform
homology-based searches. However, it would be more accurate if
a larger number of AQPs from different species could be included
in the query sequences given that some subfamilies and groups
are absent from Arabidopsis and rice. For example, NIP2s having
characteristic G-S-G-R ar/R SF are missing from Arabidopsis,
and, similarly, the entire XIP subfamily is absent in both
Arabidopsis and rice (Table 1). In this paper, we have described
over 1000 aquaporins from 26 plant species representing a
wide range of families and clades (Supplementary Dataset 1).
This exhaustive list will be useful as a query in genome-wide
identification of AQPs in other plant species. The analytical steps

required for genome-wide identification of AQPs are described
in Figure S1.

TRANSCRIPTOMICS STUDIES FOR AQPS

Transcriptomics progressed initially with the technological
improvement in chip-based expression profiling platforms
(Schulze and Downward, 2001). Subsequently, the advancements
in affordable sequencing technologies have greatly contributed to
transcriptome sequencing (Burgess, 2016; Chen et al., 2016). As
a result, transcriptomic resources have become widely available
with RNA-seq studies performed on many plant species covering
major crops, medicinal plants, model species and plant species
important for evolutionary studies (www.ncbi.nlm.nih.gov/sra).
Available transcriptomic resources are helpful to integrate
information with genomics data for a better comprehension
of gene functions (Movahedi et al., 2012; Patil et al., 2015;
Sonah et al., 2016; Song et al., 2016). For instance, many of the

TABLE 1 | Genome-wide identification and classification of aquaporins in 31 plant species.

Plant species PIP TIP NIP SIP XIP AQP References

Physcomitrella patens 9 4 5 2 2 23 Danielson and Johanson, 2008

Selaginella moellendorffii 3 3 8 1 3 19 Anderberg et al., 2014; Deshmukh et al., 2015

Picea abies 18 6 13 2 0 39 Deshmukh et al., 2015

Musa acuminate 21 18 9 3 0 51 Deshmukh et al., 2015

Oryza sativa 11 10 11 2 0 34 Sakurai et al., 2005

Brachypodium distachyon 11 10 9 2 0 32 Deshmukh et al., 2015

Sorghum bicolor 14 13 10 3 0 40 Deshmukh et al., 2015

Zea mays 10 13 13 7 0 43 Deshmukh et al., 2015

Setaria italic 16 16 15 3 0 50 Deshmukh et al., 2015

Elaeis guineensis 9 10 9 2 0 30 Deshmukh et al., 2015

Arabidopsis thaliana 13 10 9 3 0 35 Quigley et al., 2001

Arabidopsis lyrata 14 12 10 3 0 39 Deshmukh et al., 2015

Brassica rapa 22 16 15 6 0 59 Deshmukh et al., 2015

Brassica oleracea 25 19 17 6 0 67 Deshmukh et al., 2015

Carica papaya 10 7 7 2 2 28 Deshmukh et al., 2015

Citrus sinensis 11 9 8 3 3 34 Deshmukh et al., 2015

Citrus clementine 14 10 9 3 1 37 Deshmukh et al., 2015

Vitis vinifera 9 9 9 1 2 30 Deshmukh et al., 2015

Glycine max 22 23 17 8 2 72 Deshmukh et al., 2013

Cajanus cajan 12 13 10 4 1 40 Deshmukh et al., 2015

Fragaria vesca 10 9 14 4 2 39 Deshmukh et al., 2015

Prunus persica 7 8 9 3 2 29 Deshmukh et al., 2015

Ricinus communis 10 9 8 4 5 36 Deshmukh et al., 2015

Populus trichocarpa 15 18 11 7 7 58 Gupta and Sankararamakrishnan, 2009

Solanum tuberosum 15 11 11 2 5 44 Deshmukh et al., 2015

Solanum lycopersicum 14 10 11 3 6 44 Deshmukh et al., 2015

Phaseolus vulgaris 12 13 10 4 2 41 Ariani and Gepts, 2015

Hevea brasiliensis Muell. Arg. 15 17 9 4 6 51 Zou et al., 2015

Hordeum vulgare L 11 7 4 2 0 22 Hove et al., 2015

Jatropha curcas 9 9 8 4 2 32 Zou et al., 2016

Phyllostachys edulis 10 6 8 2 0 26 Sun et al., 2016

Total 31 plant species 402 348 316 105 53 1224
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recent studies highlighting genome-wide identification of AQPs
have relied on transcriptomic resources to explain tissue-specific
expression of those genes (Gupta and Sankararamakrishnan,
2009; Reuscher et al., 2013; Venkatesh et al., 2013; Deshmukh
et al., 2015; Hu et al., 2015; Deokar and Tar’an, 2016; Deshmukh
and Bélanger, 2016; Zou et al., 2016).

In a study of genome-wide identification of AQPs in
soybean, we have used publically available RNA-seq and
microarray data to elucidate the expression profile of AQPs
across tissues (Deshmukh et al., 2013). Among particular
observations, the study revealed a seed-specific expression for
all members of the TIP3 subgroup. A similar type of seed-
specific expression for TIP3s has been reported with rice
and Arabidopsis, transcriptomic data (Deshmukh et al., 2013).
These results suggest an important role of TIP3s in seed
development, possibly in the desiccation process required for
seed maturation. Similarly, Gupta and Sankararamakrishnan
(2009) have used microarray data to perform genome-wide
expression profiling of AQPs in poplar, and revealed higher
expression of TIPs and PIPs in xylem tissues. Using a
publicly available RNA-seq data for barley, Hove et al. (2015)
observed a high level of HvNIP4;1 expression in inflorescences.
Recently, the tissue-specific expression of NIP4s (AtNIP4; 1 and
AtNIP4; 2) was found to be required for pollen development
and pollination in Arabidopsis thaliana (Di Giorgio et al.,
2016). Such information about expression profile is instrumental
in defining substrate specificity and interdependency among
AQPs.

Interdependency of AQPs is a well-known phenomenon,
particularly in the case of PIP1s and PIP2s (Yaneff et al., 2014).
The AQP-mediated transport system is very complex andwill rely
on the conjugated action of distinct transporters to carry solutes
from one tissue to another (Ma et al., 2007; Sakurai et al., 2015).
In this context, recent developments in analytical tools offer great
opportunities for construction of co-expression networks and
several online tools are available for this purpose (Table 2). As an
example, Figure 1 describes a co-expression network in rice using
the online tool FREND that revealed the concerted role of PIP2-1,
PIP1-1, and PIP1-2. Another tool, PlaNet, allows a comparative
analysis of co-expression networks across plant species such
as rice, soybean, Brachypodium, barley, Medicago, poplar and
wheat. Furthermore, some tools exploit data from the literature,
known protein domains, experimentally proven protein-protein
interactions, genetic interactions based on QTL/GWAS studies,
and information generated through proteomics interactions to
infer specific roles of AQPs (Table 2). As part of an integrated
omics approach, these tools will provide precise information
about AQP-mediated molecular events in plants.

PROTEOMICS CONTRIBUTIONS IN AQP
STUDIES

Compared to genomics and transcriptomics, proteomic
approaches have contributed limited efforts to the study of
AQPs. This is mostly because of the costly and demanding

FIGURE 1 | Co-expression network developed for rice and Arabidopsis aquaporin genes: (A) Network analyzed with RiceFREND tool

(http://ricefrend.dna.affrc.go.jp) showing interdependency of PIP1-1, PIP1-2, and PIP2-1 in rice; and (B) Network of Arabidopsis visualized with GENEMANIA tool

(http://genemania.org) showing interaction of PIP1A with PIP2 and other genes. Network for all rice AQPs at the third hierarchical level is provided in Supplementary

Data 2.
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TABLE 2 | Tools available for the development of co-expression network using transcriptomic data from different plant species.

S. no. Database/

Online tool

Plant species Website Other notes/Features

1 PlaNet Arabidopsis, barley, Medicago

truncatula, poplar, rice, soybean,

Nicotiana tabacum, and wheat

http://aranet.mpimp-golm.mpg.de Allows comparative analysis of co-expression

networks across plant species

2 PLANEX Arabidopsis thaliana, soybean, barley,

rice, tomato, wheat, grape and maize

http://planex.plantbioinformatics.org Gene Expression Omnibus (GEO)

3 ATTED-II Arabidopsis, soybean, maize, rice,

tomato, wheat, grape poplar, and

muster

http://atted.jp Uses known protein-protein interactions and

functional annotations

4 CressExpress Arabidopsis http://cressexpress.org Suitable for downstream data-mining,

visualization, and analysis.

5 Genemania Arabidopsis http://genemania.org GeneMANIA’s database of 1800+ networks,

containing over 500 million interactions across

eight organisms

6 CORNET Maize, Tool https://bioinformatics.psb.ugent.be/cornet/ Allows co-expression analysis using either

predefined or user-defined groups of micro

array experiments.

7 VTCdb Grape http://vtcdb.adelaide.edu.au/Home.aspx Retrieves hierarchical optimized Gene Ontology

enrichment and tissue/condition specificity

genes within the module along with interactive

network visualization and analysis via

CytoscapeWeb.

8 CORE Rice https://core.ac.uk/display/8598313/tab/similar-list Creates gene co-expression networks using

both condition-dependent and

condition-independent data

9 Xpressomics Arabidopsis https://xpressomics.com/search/ Uses differential expression from

expert-curated and analyzed raw data

10 CoP Arabidopsis, soybean, barley, rice,

poplar, wheat, grape, maize

http://webs2.kazusa.or.jp/kagiana/cop0911/ Provides information about gene

co-expression, specific gene expression,

biological processes, and metabolic pathways

that are mutually interconnected

11 RiceFREND Rice http://ricefrend.dna.affrc.go.jp/ Based on a large collection of microarray data

methodological requirements of proteomic studies. Most of the
large-scale proteomic analyses focusing on AQPs have been
conducted with Arabidopsis, and rice (Table S1). In general,
modern proteomic tools yield an enormous amount of valuable
data that can be used to resolve complex molecular mechanisms,
more specifically regarding post-translation modifications,
protein expression, and protein-protein interactions (Deshmukh
et al., 2014). However, relatively limited information is available
for membrane proteins including AQPs because of constraints
such as limited solubility, low expression and restricted use of
restriction enzymes (Tan et al., 2008).

Solubility of AQPs is a very critical issue to perform efficient
proteomic studies because of their higher hydrophobicity,
difficult extraction, and presence in relatively small amounts.
This issue prevents or limits reliance on standard approaches
utilizing mass spectrometry (MS), matrix-assisted laser
desorption ionization (MALDI), and electrospray ionization
(ESI). Some of the pioneer studies, including those of Schindler
et al. (1993) and Schey et al. (1992), developed procedures for
improving solubilisation of membrane proteins by using organic
solvents, acetonitrile, 2-propanol, hexafluoro-2-propanol and
detergents. Better solubilisation also helps for a more efficient

digestion. However, problems with dissolving membrane
proteins remain even though the amount of AQPs obtained with
fractionated plasma membrane was somewhat alleviated with the
advancement in instrumentation that works at the nano-scale
level (Table S1).

Santoni et al. (2003) described the first comprehensive
efforts for AQP research using proteomic approaches. They
developed an inventory of Arabidopsis AQP isoforms expressed
in root tissues that were characterized with MALDI and
electro-ionization tandem MS. The study also provided
key information about phosphorylation and other post-
translational modifications of AQPs, particularly within the
PIP subfamily. Nearly a decade after this pioneer work, a
study by Mirzaei et al. (2012) demonstrated the effects of
environmental factors like drought on AQP regulation in rice.
The study described the AQP expression profile at precise
physiological stages during the progression of drought over
time. For this purpose, the authors used label-free quantitative
shotgun proteomic approaches involving nano-LC-MS/MS
to identify 1548 proteins including AQPs, and predicted
the mechanisms involved in drought stress. Similarly, di
Pietro et al. (2013) conducted extensive proteomic studies of
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Arabidopsis AQPs under different physiological conditions.
They studied nine physiological treatments modulating root
hydraulics over different time periods. They observed 55
AQP peptides undergoing significant changes with respect
to different physiological conditions, including several post-
translational modifications like methylation, acetylation, and
phosphorylation.

AQUAPORIN TERTIARY STRUCTURE

The precise definition of the molecular structure of a protein is
very important to understand its function. It contributes to the
elucidation of the specific activity of a protein and its interaction
with other molecules including ligands and inhibitors. Since the
discovery of the first AQP in human red blood cells and renal
proximal tubules, several attempts have been made to resolve
AQP structure (Preston et al., 1992). Initial work by Preston
et al. (1994), using a-chymotrypsin digestion of intact oocytes
and inside-out membrane vesicles, confirmed the cytoplasmic
loops and orientations of the six transmembrane alpha helices
predicted by the hydropathy analysis. In the same year, another
study by Jung et al. (1994) predicted the hourglass model for
AQPs based on the topological information and the positioning
of the loops, more particularly loop B and loop E, which
penetrate in the membrane from opposite sides to form a
constrict harboring conserved NPA domains. This study was
instrumental in predicting for the first time the role of NPA
domains in the tight regulation of solute transport. Later, Murata
et al. (2000) solved the atomic structure of AQP1 using electron
crystallographic analysis that confirmed the earlier predictions.
The AQP1 structure has 3.8 Å resolution describing highly
conserved amino-acid residues that stabilize the fold, and form
the hourglass structure. The structural model presented by
Murata et al. (2000) showed the conserved hydrophobic residues
lining the water channel at the center of the protein. The structure
also showed constricts with a pore diameter of about 3 Å that
provided a clue as to how the AQP was permeable to water but
not the proton.

Up to now, about 51 AQP structures have been described
using different approaches at varying levels of resolution
(Table S2). Most of the solved structures belong to human and
Escherichia coli AQPs representing eukaryotic and prokaryotic
models. Apart from human, high-resolution AQP structures
are also available from other animals such as rat, sheep, and
cattle (Table S2). Compared to animals and prokaryotes, very
few structures are available for plant AQPs. The first plant AQP
structure, common bean TIP, was solved by Daniels et al. (1999)
at low resolution (7.7 Å) using electron cryo-crystallography.
In spite of the low resolution, the AQP structure showed
resemblance with animal AQPs. Törnroth-Horsefield et al. (2006)
described the first high resolution plant AQP structure (from
spinach, SoPIP2;1) in its closed (2.1 Å resolution) and open
conformation (3.9 Å resolution). The structure with closed and
open conformation explained the gating mechanism in which
loop D, through a displacement of up to 16 Å, widened the
pore and acted as molecular gating. The mechanism of gating

is found to be conserved across all plant species (Törnroth-
Horsefield et al., 2006). Recently, the structure of Arabidopsis
aquaporin AtTIP2;1 was determined at very high resolution
(1.18 Å) (Kirscht et al., 2016). Most of the previously reported
structures are from water-transporting AQPs (Table S2) but
AtTIP2;1 is a model AQP for ammonia transport. Interestingly,
Kirscht et al. (2016) discovered a fifth amino acid involved
in the permeability of ammonia, expanding the complexity of
solute specificity from the four amino acids ar/R SF. Owing
to the increasing availability of high-resolution AQP structures,
homology-based computational approaches used to predict 3D-
structure have now become more efficient and sophisticated
(Tables S2, S3).

Advances in computational methods during the last two
decades have made it possible to predict structures more
accurately. The success of computational methods can be
attributed to the evolutionary conserved features of proteins,
the relatively small number of unique protein fold in nature,
and the ever increasing number of solved protein structures
(www.rcsb.org; Koonin et al., 2002). Compared to proteins
that have no similarity with known structures, prediction of
structure for candidate AQPs is facilitated by the abundance
of resolved AQP structures publicly available (Table S2). In
addition, several online servers and tools available for the
homology-based prediction of protein structures are helpful to
pursue more advanced studies in AQPs (Table S3).

Molecular dynamics simulations are advanced computational
approaches used for in silico reconstitution of protein structure
in its native environment (Lindahl and Sansom, 2008).
Molecular dynamics simulations became more advanced
with the availability of very high-resolution 3-D structures,
increased computing power, and improvement in the analytical
algorithms. In addition, detailed information about the
interaction between amino acid residues and the surrounding
environment makes it possible to reconstitute protein structures
in different environments (Lindahl and Sansom, 2008). More
particularly, studies focusing on membrane proteins have
provided information about the interaction between individual
amino acids with the lipid molecules in the membrane
environment. There are several methods and tools available
for molecular dynamics simulations of membrane proteins
like AQPs (Lindahl and Sansom, 2008). Recently, Sakurai et al.
(2015) have performed molecular dynamics simulations to
study silicic acid uptake through AQP (OsLsi1) coupled with
another active transporter (OsLsi2) in rice roots. They developed
a mathematical model using diffusion equation along with
the effects of active transport by OsLsi2. The study provides s
good example for the utilization of in vivo experimental data to
calibrate the model.

ANALYTICAL AND FUNCTIONAL
APPROACHES

Xenopus Oocyte Assay
Oocytes of Xenopus laevis (African clawed frog) are commonly
used for the evaluation of solute transport activity by AQPs
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and many other transporters. cRNA of foreign proteins can
be easily injected and expressed in X. laevis oocytes. A cRNA
volume of up to 50 nL can be injected in the oocyte, which
allows production of large amounts of protein. The simplified
steps involved in the X. laevis oocyte assay are provided in
Figure 2. The transport of several different substrates by plant
AQPs has been evaluated using X. laevis oocyte assay (Table 3).
The oocyte assay conveniently allows the use of radiolabeled
substrates to facilitate a better estimation of transport kinetics
and also to increase the sensitivity of the assay (Ma et al.,
2006). However, in the case of certain substrates such as silicic
acid, many have used 68Ge as silicic acid surrogate, a method
often criticized given that 68Ge was never shown to represent a
perfectly interchangeable surrogate. In recent studies, silicic acid
transport (influx and efflux) in oocytes was measured directly by
atomic absorption spectrophotometry, a technical improvement
that greatly facilitates the study of silicic acid movement in plants
(Ma et al., 2006; Grégoire et al., 2012; Deshmukh et al., 2015;
Carpentier et al., 2016; Vivancos et al., 2016). The measurement
of change in volume of oocyte in response to osmolality of
external solution is a simple and effective measure to study water
transport by AQPs. The X. laevis oocyte system provides several
advantages for the study of transporters. For instance, there is
very low transport across the oocyte membrane through the
endogenous transporters; therefore there is limited background
effect and less ambiguity about solute transport. In addition,
the relatively large size of X. laevis oocytes facilitates their
manipulation and allows studying electrophoretic transporters
using the two-electrode voltage clamp technique. Nevertheless,
one has to keep in mind that the environment of a plant cell is
drastically different from that of the X. laevis oocyte. Therefore,
results obtained with the X. laevis oocyte assay need to be
corroborated with the actual activity of the protein in plant cells.

Translation of plant AQP transcripts in the oocyte may be
altered by the differential codon preference between plants and
Xenopus. For this reason, western blotting is often required to
confirm protein expression/presence in the oocytes. However,
codon optimization is rarely considered for plant AQPs when
tested with oocytes, which raises the question, whether codon
optimization is really a concern or not. Recently, Feng et al.
(2013) reported better nitrate transport in oocytes with codon-
optimized rice high affinity nitrate transporter. Similarly Bienert
et al. (2014) also observed a significantly higher expression
of ZmPIP1 and ZmPIP2 in yeast cells only after optimizing
the codons. Nowadays, the use of synthesized DNA for gene-
cloning related applications is becoming more common because
of reduced costs and codon optimization can be routinely applied
while synthesizing the gene for oocyte or yeast assays.

Evaluation of AQPs Using Yeast Assays
Characteristic features of yeasts including ease of growth,
short generation time, well established and easy transformation
systems, and sequenced genomes, make them amenable as a
heterologous system to study eukaryotic proteins. Several yeast
species, including Saccharomyces cerevisiae, Schizosaccharomyces
pombe, and Pichia pastoris have been used as a tool to study
foreign genes.

Numerous AQPs have been studied using a yeast expression
system (Table 4). The study of water fluxes through AQPs in
yeast assays is a particularly easy and affordable option. Water
transport in yeast results in measurable cell volume changes
(swelling or shrinking) in relatively short periods of time. The
water transport through AQPs (as a hydrophilic passage) is
much faster than the transport through the hydrophobic lipid
bilayer membrane. This allows discrimination between water
transport through the foreign AQP expressed in the yeast and
the transport through the membrane. The volume change in
yeast affects several physical parameters that can be used to make
quantitative measurements essential to understand transport
kinetics. Light absorption, light scattering or reflection with
fluorescent dye are effective variables that are being used to
monitor cell volume changes (Table 4, Figure 3). Given the small
the size of the yeast that takes milliseconds to change volume
in response to osmotic pressure, it requires a method known
as stopped-flow spectrometry to take precise measurements.
In stopped-flow spectrometry, protoplasts, vesicles or even
intact cells are subjected simultaneously to hypotonic and
hypertonic buffers. The rapidly mixing hypotonic and hypertonic
solution stops transport in milliseconds, which allows taking
measurements at the scale required to understand transport
kinetics. Use of florescent dye in stopped-flow spectrometry
increases precision of measurements. Recently, Sabir et al. (2014)
evaluated grape AQPs for water conductivity using a stopped-
flow fluorescence spectroscopy assay. They pre-loaded yeast cells
with the non-fluorescent precursor 5-(and-6)-carboxyfluorescein
diacetate (CFDA) that is permeable to membranes, and then
intracellularly hydrolyzed CFDA to release the membrane
impermeable fluorescent compound. Changes in cell volume in
stopped-flow assay in response to osmotic changes resulted in
changes in fluorescence intensity that can be measured to deduct
transport kinetics.

Apart from water, transport of many other solutes through
AQPs is also studied with yeast systems. Commonly, yeast
growth and survival are used to study solutes (Table 4). For
instance, uptake of germanium (Ge), arsenate (As), boric acid
and antimonite severely affect yeast growth, and this effect can be
measured through heterologous expression of AQPs specific for
such solutes. Similarly, mutant strains like YNVW1 carrying the
deletion ∆dur3 cannot grow on media with urea as sole nitrogen
source, thus making such deletion strains useful to study urea
transport by AQPs (Table 4).

Recently, To et al. (2015) demonstrated rapid screening of an
AQP mutant library to evaluate the effects of amino acid changes
on solute transport. The authors developed a novel method that
looks promising to study water transport ability for hundreds of
AQPs simultaneously. The assay can be used to identify inhibitors
as well as co-transporting molecules. The method exploits the
property of yeast cells that show increased freezing tolerance
with expression of functional AQPs. The rapid transport of water
through AQP allows removal of water from freezing yeast cells
that avoid formation of ice crystals thus preventing cell damage.
With this method, a library of yeasts (preferably AQP mutant
strains) transformed with different AQPs can grow in 96-well
microplates that are exposed to freeze-thaw cycles. Only the
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FIGURE 2 | Simplified workflow of Xenopus oocyte assay used for the evaluation of solute transport by heterologously expressed foreign transporters

including aquaporins.

TABLE 3 | List of important studies performed to evaluate different solutes transported by plant aquaporins using the Xenopus oocyte assay.

Plant species Gene Solute References

Arabidopsis AtTIP2;1, AtTIP2;3 Ammonium Loqué et al., 2005; Liu et al., 2013

Rice Lsi1 (OsNIP2;1) Arsenite Zhao et al., 2010

Arabidopsis NIP5;1 Boron Takano et al., 2006

Arabidopsis NIP6;1 Boron Tanaka et al., 2008

Nicotiana tabacum NtAQP1 CO2 Uehlein et al., 2003

Nicotiana tabacum NtXIP1;1 Glycerol, urea, boric acid Bienert et al., 2011

Soybean Nodulin 26 Glycerol, Water Dean et al., 1999

Nicotiana tabacum NtAQP1 Glycerol, Water, Biela et al., 1999

Poplar PtNIP2-1 Silicic acid Deshmukh et al., 2015

Tomato SlNIP2-1 (Mutant) Silicic acid Deshmukh et al., 2015

Barley HvLsi1 Silicic acid Chiba et al., 2009

Equisetum arvense EaNIP3;1, EaNIP3;3 and EaNIP3;4 Silicic acid Grégoire et al., 2012

Soybean GmNIP2-1, GmNIP2-2 Silicic acid Deshmukh et al., 2013

Rice Lsi1 (OsNIP2;1) Silicic acid (68Ge) Ma et al., 2006

Maize ZmPIP1-5b Urea, Water Bousser et al., 2003

Spinach PM28A Water Johansson et al., 1998

Maize ZmPIP2a Water Chaumont et al., 2000

Rice OsPIP1;1 Water Liu et al., 2013

Radish VM23 Water Higuchi et al., 1998

Olive OePIP2.1, OeTIP1.1 Water Secchi et al., 2007

Tomato LeAqp2 Water Werner et al., 2001

Walnut JrPIP2,1 Water Sakr et al., 2003

Soybean GmTIP1-5, GmTIP2-5 Water Song et al., 2016
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TABLE 4 | List of plant aquaporins evaluated for transport of different solutes using yeast assays.

Aquaporin Plant Yeast strain Solute Yeast assay References

TIP1;1, TIP1;2 Arabidopsis 1tsa1,2, 1skn7, 1yap1,

1fps1, 1yfl054c

H2O2 Spheroplast Swelling Assay, Survival

test, Catalase Activity Assay,

Fluorescence Assay, Bioimaging

Bienert et al., 2007

AtNIP1;1, AtNIP2;1,

AtNIP5;1,AtNIP6;1, AtNIP7;1

Arabidopsis W303-1A As(III), As(V),

antimonite

Yeast growth and survival test Bienert et al., 2008

AtPIP1;2, AtPIP2;3 Arabidopsis W303 CO2 Stopped-flow spectrometry Heckwolf et al., 2011

SIP1;1, SIP1;2, SIP2;1 Arabidopsis BJ5458 H2O Stopped-flow spectrometry Ishikawa et al., 2005

AtNIP7;1 Arabidopsis acr31, fsp11 As(III), As(V), Yeast growth and survival test Isayenkov and

Maathuis, 2008

HvNIP2;1 Barley INVSc2, SY1 Boric acid, Ge, As Yeast growth and survival test Schnurbusch et al.,

2010

HvNIP1;1, HvNIP1;2, HvNIP2;1,

HvNIP2;2

Barley 1SKN7, 1ACR3 H2O2, As(OH)3 Yeast growth and survival test Katsuhara et al., 2014

VvTnPIP2;1, VvTnTIP1;1,

VvTnTIP2;2, VvTnPIP1;4,

VvTnPIP2;3, VvTnTIP4;1

Grape 10560-6B H2O Stopped-flow fluorescence

spectroscopy

Sabir et al., 2014

HaTIP1;1, HaPIP1;1, HaPIP1;2 Helianthemum

almeriense

SY1 CO2, NH3, H2O Stopped-flow spectrometry Navarro-Ródenas

et al., 2013

VALT (TIP), PALT1 (PIP) Hydrangea

(Hydrangea

macrophylla)

1hsp150, BY4741 Al Yeast growth and survival test Negishi et al., 2012

LjNIP5;1, LjNIP6;1 Lotus japonicus W303-1A As(III), As(V),

antimonite

Yeast growth and survival test Bienert et al., 2008

LjNIP1 Lotus japonicus 31019b, YNVW1 Amonia, Urea,

H2O

Stopped-flow spectrometry, Yeast

growth and survival test

Giovannetti et al.,

2012

ZmPIP1;2, ZmPIP2;5 Maize 31019b (∆mep1–3), BY4741 H2O2 Yeast growth and survival test, Codon

optimization

Bienert et al., 2014

PvTIP4;1 Pteris vittata ∆fps1 and ∆acr3 As(III), As(V) Yeast growth and survival test He et al., 2016

RsPIP1-2, RsPIP1-3, RsPIP2-1,

RsPIP2-2

Radish BJ5458 H20 Stopped-flow spectrophotometry Suga and Maeshima,

2004

OsNIP1;1, OsNIP1;2,

OsNIP2;1, OsNIP2;2,

OsNIP3;1, OsNIP3;2,

OsNIP3;3, OsNIP4;1

Rice 1SKN7, 1ACR3 H2O2, As(OH)3 Yeast growth and survival test Katsuhara et al., 2014

OsNIP2;1, OsNIP2;2, OsNIP3;2 Rice W303-1A As(III), As(V),

antimonite

Yeast growth and survival test Bienert et al., 2008

TsTIP1;2 Thellungiella

salsuginea

aqy-null strain H2O2 Fluorescence assays, Yeast growth and

survival test

Wang et al., 2014

NtXIP1;1, StXIP1;1 Tobacco YNVW1 (∆dur3) Urea Yeast growth and survival test Bienert et al., 2011

TaTIP2;2 Wheat 31019b, BJ5458 Ammonia Stopped-flow spectrometry Bertl and Kaldenhoff,

2007

yeasts transformed with functional AQPs will survive following
freeze-thaw cycles, a quick way to assess AQP properties. Such
high-throughput procedures will certainly expand the analytical
power required to integrate omics scale research.

Mesophyll Protoplast Assay
Mesophyll protoplasts can be easily obtained for several plant
species (Shen et al., 2014). More particularly, the procedure
for the evaluation of AQPs using Arabidopsis, tobacco and
maize mesophyll protoplasts is well established (Yoo et al.,
2007; Besserer et al., 2012; Ma et al., 2015). There are several
methods for the delivery of macromolecules into protoplasts
including, electroporation, microinjection, and PEG–calcium
fusion method (Sade et al., 2009; Shen et al., 2014). Transient

expression of AQPs in plant mesophyll protoplast allows efficient
study of solute transport and also the subcellular localization of
the protein. Recently, Wang et al. (2015) exploited Arabidopsis
protoplasts for the transient expression of an AQP from maize
(MzPIP2;1) tagged with a green fluorescent protein to confirm
the plasma membrane specific localization. Similarly, Chevalier
et al. (2014) used the mesophyll protoplast assay to study
subcellular localization of several maize AQPs belonging to
the ZmPIP1s and ZmPIP2s subfamilies. They observed efficient
localization in plasma membrane only for ZmPIP2s when
expressed alone in the mesophyll protoplasts. They further
swapped transmembrane domain-3 along with the ER export
diacidic motif to demonstrate its requirement in the localization.
Another study conducted using tobacco protoplasts showed the
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FIGURE 3 | Yeast heterologous expression system used to evaluate aquaporins. Aquaporin cloned in the expression vector can be easily transferred in yeasts

for different assays like growth and survival tests, protein localization, and/or stopped-flow spectrometry.

role of phosphoinositides in modulating aquaporin activity (Ma
et al., 2015). AQP gene ZmPIP2;4 from maize was transiently
expressed in tobacco protoplasts to evaluate phosphoinositides
effect on AQP expression and water flux (Ma et al., 2015). In
spite of the rather routine application of the mesophyll protoplast
assay, a high-throughput method for AQP evaluation using
this assay has not been developed yet. Such an assay would
allow large-scale exploitation of native rather than surrogate
membranes. However, the major limitation with this technique is
the requirement of highly skilled expertise to handle protoplasts,
and the relatively low rate of success when experiments are
replicated across different labs.

Isolated Vesicle Assay: Right-Side Out and
Inside-Out
Vesicles isolated from different types of tissues and cell types
are being used for the evaluation of AQPs. The vesicles can be
easily obtained following ultracentrifugation-based fractioning.
After obtaining vesicles separated from the other organelles and
cytoplasm, AQPs can be studied with stopped-flow fluorescence
spectroscopy that measures shrinking/swelling of the vesicle.
Dordas et al. (2000) used plasma membrane vesicles obtained
from squash (Cucurbita pepo) roots to study the role of AQPs in
boric acid transport. They used mercuric chloride and phloretin,
a well-known non-specific transporter inhibitor, to conclude
that boric acid permeation occurred both through proteinaceous
channels and diffusion through the membrane.

Isolated inverted vesicles are useful to measure uptake inside
the vesicle by efflux transporter. The reversed membrane vesicle

is known as inside-out where the apoplastic side is inside
the vesicle. The inside out vesicles are generally used for
the evaluation of efflux transporters and energy dependent
transporters. Initially, Palmgren et al. (1990) developed the
method to prepare inside-out and right-side-out (apoplastic side
out) vesicles using sugar beet (Beta vulgaris L.) leaves. They used
freezing and thawing to turn vesicles inside-out and subsequently
separated the inside-out and right-side-out by repeating the
phase partition step. ATPase assay is used to verify the proportion
of inside-out vesicles, since the ATPase active site is situated on
the cytoplasmic side of the membrane, and only sealed, inside-
out vesicles efficiently perform ATP-dependent H+ pumping
(Palmgren et al., 1990). Similarly, Sutka et al. (2005) used the
stopped-flow technique to measure water transport activity of
tonoplast vesicles. They were able to conclude that most of the
AQPs located in the tonoplast membrane are sensitive to HgCl2
and few of them are inhibited by pH. Their study expanded
the use of isolated vesicle assays to the tonoplast-specific AQPs.
However, the major drawback of the system resides in its labor
intensive procedure required to isolate plasma membrane vesicle
fractions.

TRANSGENIC APPROACHES USED FOR
AQUAPORIN RESEARCH

The heterologous expression of AQPs in plants represents a
useful approach for functional evaluation of AQPs, even though it
can sometimes lead to experimental artifacts. Indeed, transgenic
approaches are often criticized over the use of constitutive
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or non-specific promoters that express AQPs in tissues where
natural expression is not observed. In the case where a plant
trait is governed by genotypic variations, complementation
assays with a transgenic approach is considered more reliable
since expression of the transgenes are evaluated under the
same conditions. In addition to contributing to the functional
annotation of novel AQPs, transgenic approaches are also being
exploited to develop crop plants with agronomically important
traits (Table S4). Currently, Arabidopsis and tobacco remain
the preferred source for the heterologous expression of genes
including AQPs. In addition, extensive resource of T-DNA
insertion mutant libraries available for Arabidopsis makes it
an obvious choice for the functional study of novel AQPs. As
a matter of fact, mutants are available for most of the AQPs
identified in the Arabidopsis genome, which facilitates evaluation
of any native Arabidopsis AQP as well as their homologs in other
plant species.

Most of the AQP transgenic studies have evaluated responses
against abiotic stresses like high salinity, drought, and cold
(Table S4). In a notable effort, Jang et al. (2007) analyzed the
effect of expression of AtPIP1;4 and AtPIP2;5 in Arabidopsis and
tobacco transgenic plants under various abiotic stress conditions.
They also noticed a change in endogenous AQP genes with the
over expression of AtPIP1;4 and AtPIP2;5 transgenes. Another
study by Peng et al. (2007) reported that the overexpression
of PgTIP1 from Panax ginseng in transgenic Arabidopsis plants
led to enhanced tolerance against salt-stress and drought, but
lowered cold acclimation ability. The contrasting effect of
overexpression of an AQP on drought and cold is expected
since altered water movement has a contrasting effect over
these stresses. However, many contradictory results with the
heterologous expression of AQPs in transgenic plants have
been reported. For instance, Peng et al. (2008) observed a
significantly lowered freezing tolerance with overexpression
of Rhododendron catawbiense AQP (RcPIP2) in Arabidopsis.
Similarly, with the overexpression of a PIP in transgenic tobacco,
Aharon et al. (2003) achieved improvement in plant growth
under favorable growth conditions but not under drought or
salt stress. AQPs are also extensively studied for physiological
parameters like CO2 conductance and photosynthesis efficiency
(Table S4). For instance, Katsuhara and Hanba (2008) evaluated
the effect of HvPIP2;1, cloned from barley for the transport
of water and CO2 conductance in a transgenic rice. In a
rare study with biotic stress, Vivancos et al. (2015) showed
that expression of a wheat NIP2 in Arabidopsis conferred
higher Si absorption and better protection against powdery
mildew.

CONCLUSIONS

Enormous progress has been achieved to understand solute
transport in plants over last two decades following the
discovery of the first AQP. Currently, over 30 plant species
have been analyzed for genome-wide identification of AQPs.
These efforts have highlighted the distribution and evolution
of AQPs in plants and have also defined the phylogeny

of AQPs and subsequent categorization into sub-families
and groups. The dataset of over 1000 well-characterized
AQPs provided here will be helpful to maximize the use
of query sequences in homology-based AQP identification
and subsequent characterization. Access to AQPs originating
from diverse species is important to insure the identification
of the entire set of AQPs in a given genome as well
as their proper classification. In addition, the ever-growing
resources of transcriptomic data should be exploited to
characterize AQPs and refine our understanding of their role
in relation with their tissue-specific expression. Integration
of omics approaches to complex molecular systems like
AQP-mediated transport has been facilitated lately with the
development of powerful computational tools. Computational
predictions however must be supported and validated by
functional studies. For this purpose, biological assays such as
Xenopus oocytes and yeast systems are now well-established
approaches used to study solute specificity and transport
kinetics of AQPs. In addition, several novel AQPs identified
with omics efforts have been functionally annotated through
transgenic approaches that have highlighted their beneficial
role. With the current concerns over water resources, it is
clear that a better understanding of AQP-mediated transport
system in plants can only lead to the development and
management of plants better adapted to changing environmental
conditions.
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