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Bacterial persisters are phenotypic variants with extraordinary tolerances toward
antibiotics. Persister survival has been attributed to inhibition of essential cell functions
during antibiotic stress, followed by reversal of the process and resumption of growth
upon removal of the antibiotic. Metabolism plays a critical role in this process, since it
participates in the entry, maintenance, and exit from the persister phenotype. Here, we
review the experimental evidence that demonstrates the importance of metabolism to
persistence, highlight the successes and potential of targeting metabolism in the search
for anti-persister therapies, and discuss the current methods and challenges to understand
persister physiology.
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INTRODUCTION
Bacterial cultures contain a small subpopulation of cells that can-
not readily be killed by antibiotics (Bigger, 1944). These cells have
been named persisters, and their existence can be detected from
antibiotic kill curves, where the first, rapid killing regime rep-
resents the death of normal cells and the second, slower killing
regime indicates the presence of persisters (Balaban et al., 2004;
Kint et al., 2012). Further, when these survivors are cultured,
they produce populations with antibiotic sensitivities identical
to those of the original culture. This establishes persistence as a
phenotypic trait, unique from antibiotic resistance where genetic
determinants allow growth at higher antibiotic concentrations.
Persisters are an important health concern because they are
enriched in biofilms and thought to underlie the proclivity of
biofilm infections to relapse following the conclusion of antibi-
otic therapy (Lewis, 2008, 2010). Persisters have proven to be
difficult to analyze due to their transient nature, low abundance,
and similarity to the viable but non-culturable (VBNC) cell-type
(Roostalu et al., 2008; Orman and Brynildsen, 2013b). However,
strong evidence, in the form of genetic- and microscopy-based
data (Balaban et al., 2004; Lewis, 2010; Maisonneuve et al., 2013),
exists to support that, while under antibiotic stress, persister toler-
ances are derived from inactivity of essential cell functions. While
this is not always the case, as demonstrated in a study of isoni-
azid (a prodrug requiring activation) (Wakamoto et al., 2013),
and dormancy is not essential for persistence prior to antibi-
otic stress (Orman and Brynildsen, 2013a), prolonged survival
to the majority of antibiotics, in the absence of genetic muta-
tions, requires inactivity of the antibiotic’s primary target. To
achieve and maintain this state, as well as reverse the process

to repopulate environments, coordinated metabolic action is
needed. Namely, metabolism would participate in cessation of
essential functions, be needed to maintain culturability (e.g.,
sustain a minimal adenylate charge: [ATP + 0.5ADP]/[ATP +
ADP + AMP] (Chapman et al., 1971), repair/resynthesize dam-
aged proteins (Nystrom and Gustavsson, 1998)), and reactivate
the cell during reawakening (Figure 1). We refer to this process
as the persister metabolic program and summarize the accumu-
lated evidence substantiating the importance of metabolism to
the persister phenotype as well as current methods and challenges
to studying the metabolism of these rare and transient phenotypic
variants.

GENOMIC STUDIES IDENTIFY METABOLIC GENES AS
IMPORTANT TO THE PERSISTER PHENOTYPE
Perturbations to genes that encode enzymes or regulators of
metabolism have frequently been found to alter persister levels
(Table 1). In one of the initial genomic screens for persistence,
a library was generated through digestion of the Escherichia coli
chromosome, ligation of the fragments into plasmids, and trans-
formation of the library into E. coli (Spoering et al., 2006). Upon
successive rounds of ampicillin (AMP) treatment and culturing of
survivors, a plasmid carrying glpD, encoding G3P-dehydrogenase
that converts glycerol-3-phosphate (G3P) to dihydroxyacetone-
phosphate (DHAP), was found to increase the abundance of
persisters. Further analysis identified additional enzymes in G3P
metabolism important for persistence to AMP, ofloxacin (OFL),
and ciprofloxacin (CIP) (Table 1). The importance of G3P to
E. coli persistence was further supported by a transposon mutant
screen where glpD mutants were found to increase persistence
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FIGURE 1 | Persister metabolic program. Persisters can be pre-existing
in a bacterial population (Balaban et al., 2004), formed in response to
stress, such as stresses that activate the stringent response (Amato
et al., 2013), and induced during antibiotic treatment (Dörr et al., 2009;
Orman and Brynildsen, 2013a). Maintenance of the persister state for the
duration of the antibiotic treatment requires temporary inhibition of

essential cell functions; however, persisters must remain culturable,
which requires a minimal adenylate charge to be sustained (Chapman
et al., 1971) and damage to be repaired (Nystrom and Gustavsson, 1998).
Upon removal of the antibiotic, persisters exit their tolerant state and
give rise to a bacterial population of identical antibiotic susceptibility as
the original population (Balaban et al., 2004).

after successive rounds of selection on LB-AMP agar (Girgis et al.,
2012). This effect was attributed to elevated levels of methylgly-
oxal, a toxic compound derived from DHAP. Interestingly, these
observations, where GlpD inactivation increased persistence,
were opposite to those of Spoering and colleagues. However, we
note that G3P is a highly connected metabolite, given its prox-
imity to central metabolism, interaction with the quinone pool,
and use as a precursor for phospholipid biosynthesis. Therefore,
different assay conditions may explain the variable impacts on
persistence.

Beyond G3P, genomic studies have found that mutations
perturbing amino acid (AA) metabolism significantly influ-
ence persistence (Table 1). Screening of an E. coli transposon
library for persistence to ticarcillin (TIC) or OFL identified 18
mutants with increased persister levels, and of those, 16 mapped
to genes involved in AA biosynthesis (Bernier et al., 2013).
Pseudomonas aeruginosa screens have also uncovered disrup-
tions in AA metabolism as important to persistence. Mutation
of PA4115, a putative lysine decarboxylase, was found to increase
persistence to carbenicillin (CB) (Manuel et al., 2010), whereas
mutation of pheA, which is also involved in AA metabolism, was
found to increase persistence to OFL (De Groote et al., 2009).
These studies suggest that AA metabolism is a critical mediator
of persistence, and as one would expect, the stringent response,
a major metabolic regulatory system controlled by ppGpp and
its transcriptional partner DksA, also mediates persistence (Korch
et al., 2003; Viducic et al., 2006; Fung et al., 2010; Nguyen et al.,
2011; Amato et al., 2013; Maisonneuve et al., 2013). This influence
was also detected in a screen where �dksA was found to produce
far fewer persisters toward OFL (Hansen et al., 2008).

The third major metabolic system that has been shown to
impact persistence is energy metabolism. A screen of an E. coli
transposon library found that deactivation of phoU reduced per-
sistence (Li and Zhang, 2007). PhoU is a negative regulator of
the phosphate operon, and its inactivation led to a hyperac-
tive metabolic state. In a screen of the Keio collection for AMP
persistence, �sucB and �ubiF were found to produce lower

persister levels (Ma et al., 2010). SucB participates in the TCA
cycle, whereas UbiF is an enzyme in ubiquinone biosynthesis,
and deactivation of either of these genes leads to deficient energy
production. Interestingly, these studies point to both metabolic
hyperactivity and inhibition as methods to reduce persistence.
One interpretation of these results could be that metabolic hyper-
activity reduces entry into the persister state, whereas inhibi-
tion of energy production prevents exit from the phenotype.
Regardless, energy generation appears to be a critical process to
the persister metabolic program.

Collectively, these studies have provided a wealth of evidence
on the importance of metabolism to bacterial persistence, even
though they have sampled only a fraction of the mutational
landscape. The details of how each genetic perturbation affects
entry into, maintenance of, or exit from the persister state largely
remains to be elucidated; however, it is clear that G3P, AA
metabolism, and energy production are all important to defining
persistence in a bacterial population.

PERSISTER LEVELS DEPEND ON THE NUTRITIONAL
ENVIRONMENT
In addition to genetic evidence, the importance of metabolism to
persistence has been supported by the impact of nutrient avail-
ability on persister levels. The most comprehensive investigation
in this regard explored how the absence of AAs, glucose, ammo-
nium, phosphate, and nucleobases altered persistence to AMP,
OFL, and gentamicin (GEN) in E. coli (Fung et al., 2010). This
study concluded that AA deprivation often increases persistence,
mirroring the results from genomic screens that found muta-
tions in AA metabolism to enhance persistence (Table 1). In a
study of persister awakening, the number of E. coli persisters to
AMP and norfloxacin (NOR) were found to be higher when the
same stationary-phase culture was inoculated into media unable
to support rapid growth resumption (minimal glycerol) in com-
parison to media with rapid regrowth (LB and minimal glucose)
(Joers et al., 2010). Similarly, E. coli biofilms have been reported
to exhibit higher tolerance to OFL or TIC in fresh media lacking
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glucose, in comparison to controls with glucose (Bernier et al.,
2013). Further support derives from the numerous studies that
have shown that nutrient-limited stationary phase and biofilm
cultures produce higher persister levels than their exponentially
growing counterparts (Spoering and Lewis, 2001; Keren et al.,
2004a; Lechner et al., 2012; Bernier et al., 2013). However, it is
important to note that high density phenotypes such as quorum
signaling may also contribute to persistence in such populations
(Möker et al., 2010; Vega et al., 2012).

Taken together, these studies demonstrate that the nutritional
environment directly influences persistence, suggesting a central
role for metabolism in the persistence phenotype. Further, the
mechanisms by which these nutritional stresses enhance persis-
tence have been investigated, and ppGpp has been found to be a
key mediator of this process.

ppGpp, THE METABOLITE CONTROLLER OF PERSISTENCE
ppGpp and the transcriptional regulator DksA are global regula-
tors of metabolism (Traxler et al., 2006; Dalebroux and Swanson,
2012) that are critical mediators of persistence (Korch et al., 2003;
Hansen et al., 2008; Amato et al., 2013; Bokinsky et al., 2013;
Germain et al., 2013; Maisonneuve et al., 2013). In E. coli, AA
limitation stimulates the ribosome-associated RelA to synthe-
size ppGpp, whereas various stress conditions, such as carbon
(Xiao et al., 1991) and fatty acid starvation (Seyfzadeh et al.,
1993), stimulate ppGpp synthesis from the cytoplasmic SpoT,
which also encodes the sole ppGpp hydrolase. In conjunction
with DksA, ppGpp interacts with RNA polymerase to inhibit
transcription from stable ribosomal RNA promoters, while simul-
taneously upregulating transcription of AA biosynthesis and
stress response genes (Potrykus and Cashel, 2008; Dalebroux and
Swanson, 2012). ppGpp was initially associated with persistence
through hipA7, a toxin mutant that required ppGpp for its ele-
vated persister phenotype (Korch et al., 2003). Recent work on
the native HipA has also shown that its impact on persistence
requires ppGpp (Bokinsky et al., 2013; Germain et al., 2013).
ppGpp can also increase persistence through its inhibition of
exopolyphosphatase (ppx), a modulator of the antitoxin degrad-
ing Lon protease (Maisonneuve et al., 2013). Additionally, we
have demonstrated that RelA, SpoT, and DksA mediate persis-
ter formation in response to carbon source transitions (Amato
et al., 2013). In particular, we found that the ppGpp biochemi-
cal network can act as a metabolic toxin–antitoxin module, where
ppGpp is the metabolite toxin and SpoT is its enzymatic antitoxin.
We demonstrated that increased ppGpp levels resulted in growth
arrest and increased persistence, which could be reverted by SpoT
coexpression, and using a mathematical model, we showed that
the ppGpp biochemical network can exhibit bistability, where one
subpopulation corresponds to normal cells (low ppGpp) and the
other to persisters (high ppGpp). Interestingly, RelA–SpoT also
demonstrate the prototypical conditional essentiality of a classi-
cal toxin–antitoxin system, where the toxin (relA) can be deleted,
but the antitoxin (spoT) can only be removed in a strain with-
out the toxin. In addition to E. coli, the stringent response has
been shown to impact persistence in other organisms as well.
In P. aeruginosa, RelA, SpoT, and DksA have all been found to
impact persistence (Viducic et al., 2006; Nguyen et al., 2011),

whereas in Mycobacterium tuberculosis, ppGpp was required for
long term survival in an in vitro starvation and murine model
(Primm et al., 2000; Dahl et al., 2003). Further, the mycobacte-
rial stringent response was shown to exhibit bistability (Ghosh
et al., 2011), supporting the assertion that ppGpp is a possible
source of phenotypic heterogeneity. In addition, in Staphylococcus
aureus, ppGpp has been shown to mediate antibiotic tolerance in
response to cell envelope stress (Geiger et al., 2014).

These studies demonstrate the importance of the stringent
response to persistence and highlight a prevalent mechanism
by which metabolic stress can induce persistence. Considering
this evidence supporting a central role for ppGpp in persistence,
it is attractive to propose that an inhibitor of ppGpp synthe-
sis, such as Relacin (Wexselblatt et al., 2012), or an activator of
ppGpp hydrolysis could be effective therapeutics against persisters
(Amato et al., 2013; Maisonneuve et al., 2013).

PERSISTER METABOLISM AS A SOURCE OF ELIMINATION
STRATEGIES
To date, only a limited number of methods to kill persisters have
been discovered, and interestingly, persister metabolism plays a
vital role in each approach. For example, the first method, which
we co-developed, used metabolites to stimulate proton motive
force (pmf) generation in persisters, enabling aminoglycoside
(AG) transport and their subsequent killing of E. coli and S. aureus
persisters (Allison et al., 2011b). The participation of persister
metabolism was confirmed with genetic mutants and chemical
inhibitors, and subsequent studies have found the method to
also be effective against P. aeruginosa persisters (Barraud et al.,
2013). Another method was identified by Kim and colleagues,
who screened a chemical library and found that a chemical
named C10 promoted fluoroquinolone killing of E. coli persis-
ters by stimulating their reversion to a replicating state (Kim
et al., 2011). In another study, the quorum-sensing (QS) inhibitor
BF8 facilitated elimination of P. aeruginosa persisters when com-
bined with CIP or tobramycin (TOB) (Pan et al., 2012). However,
upon further analysis, it was discovered that the effect of BF8
was likely due to reactivation of metabolism rather than inhi-
bition of QS. Interestingly, BF8 has also been found to reduce
E. coli persister levels when combined with OFL, tetracycline
(TET), TOB, or GEN (Pan et al., 2013). Recently, another method
to eliminate S. aureus persisters was discovered by leveraging
knowledge that energy levels are low in persisters (Conlon et al.,
2013). Specifically, ADEP4, which renders the ClpP protease ATP-
independent, led to non-specific protein degradation and death
in energy-depleted persisters. Taken together, these studies show
that targeting persister metabolism holds great potential for the
elimination of these dangerous bacteria and that greater knowl-
edge of persister metabolism will facilitate the discovery of novel
therapeutic strategies.

METHODS TO MEASURE PERSISTER METABOLISM
Given the potential of persister metabolism to yield anti-persister
therapeutics, enhanced metabolic knowledge of these phenotypic
variants is desirable. However, direct measurement of metabo-
lites in persisters or assessment of their metabolic activities
using conventional approaches, such as mass spectrometry and
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formazan-based colorimetric assays, are not currently possible
due to isolation difficulties (Roostalu et al., 2008; Kint et al.,
2012; Orman and Brynildsen, 2013a,b). Although several meth-
ods can provide persister-enriched samples (Keren et al., 2004b;
Shah et al., 2006), such samples still contain many more other
cell-types, such as normal cells and VBNCs, than persisters, and
thus are of limited utility for metabolic measurements (Orman
and Brynildsen, 2013b). Indeed, the major limitation to segregat-
ing persisters from a heterogeneous population is their similarity
to VBNCs, which are often more highly abundant. Both VBNCs
and persisters stain as live cells, harbor metabolic activity, and
are non-growing under antibiotic stress. The only present dif-
ference between these subpopulations is that persisters resume
growth on standard media, though we note that some VBNCs
can regain culturability on non-standard media (Oliver, 2005)
suggesting a role for the post-antibiotic environment in defining
those cells that survive. Given these technical limitations, we have
developed two methods to quantify persister metabolism. The
first uses fluorescence activated cell sorting (FACS), a fluorescent
measure of metabolic activity, and persistence assays to evalu-
ate the metabolic status of persisters (Orman and Brynildsen,
2013a). This study, which provided the first direct measure-
ment of persister metabolism, demonstrated that E. coli persisters
largely contained low cellular reductase activity prior to antibi-
otic stress, confirming previous assumptions about the metabolic
activity of the persister state. The second method leveraged the
phenomenon by which specific metabolites enabled AG killing
of persisters (Allison et al., 2011b). AG potentiation offered a
rapid way to measure the breadth of persister metabolic activ-
ities (Orman and Brynildsen, 2013b), since the phenomenon
relies on persister catabolism of nutrients for pmf generation.
Persister metabolic activities are inferred from culturability on
standard media, the distinguishing feature between VBNCs and
persisters, thereby allowing investigation of persister metabolism
even in the presence of VBNCs. This method enabled identifica-
tion of nutrients metabolized by persisters to different antibiotics
(AMP, OFL) during distinct growth stages (exponential, station-
ary), and thus allowed quantification of heterogeneity in per-
sister metabolism. From these investigations, we demonstrated
that glycerol and glucose are the most ubiquitously used car-
bon sources by various types of persisters, suggesting that the
enzymes required for their catabolism are broadly available in
persisters.

CHALLENGES IN THE STUDY OF PERSISTER METABOLISM
The technical hurdles associated with isolation of persisters have
hindered understanding of the persister metabolic program and
other aspects of persister physiology, including their transcrip-
tome and proteome content. However, FACS offers a technical
opportunity to discriminate between VBNC and persister phe-
notypes. For instance, mixed populations of VBNCs and per-
sisters can be segregated from antibiotic-treated cultures using
FACS (Roostalu et al., 2008; Orman and Brynildsen, 2013b),
and since VBNCs are much more abundant than persisters in
these samples, VBNC physiology can be quantified and poten-
tial biomarkers to discriminate between these two cell-types
can be found. Nevertheless, any distinguishing features may be

condition-specific, since numerous mechanisms can contribute
to persister formation (Dhar and McKinney, 2007; Allison et al.,
2011a; Balaban, 2011). Indeed, activation of particular path-
ways will depend on the environment and antibiotic used (Li
and Zhang, 2007; Luidalepp et al., 2011), and different forma-
tion mechanisms may be active in different growth stages, giving
rise to persister heterogeneity, where multiple, distinct persister
subpopulations, each with its own unique antibiotic tolerances,
coexist in a bacterial culture (Allison et al., 2011a). As a result of
heterogeneity, any isolation technique may only capture a fraction
of the persisters present, yielding a limited sample of the per-
sister population. Single-cell analysis techniques offer means to
interrogate individual cells (Iino et al., 2012, 2013); however, the
identification of persisters before they exit their non-replicative
state is not presently possible. Perhaps a viable path forward is to
study model persisters generated following the over-expression of
genes that have been shown to increase persister levels (Korch and
Hill, 2006; Vázquez-Laslop et al., 2006). Quantifying metabolic
changes in these model systems may provide insight into the phys-
iology and metabolic capabilities of different types of persisters
(Bokinsky et al., 2013).

CONCLUSION
Persisters embody a medically important bacterial phenotype
that relies on metabolism to establish and maintain a dor-
mant, tolerant state during antibiotic stress, and exit that state
upon removal of antibiotics (Figure 1). Considerable experimen-
tal evidence has accumulated substantiating the importance of
metabolism to persistence, and the participation of metabolism
in current persister eradication methods provides a convincing
argument that enhanced knowledge of the persister metabolic
program will accelerate the discovery of additional elimination
strategies. However, isolation difficulties impede progress in the
understanding of persister physiology, including metabolism.
Two potential paths forward are to improve isolation techniques
by studying the differences between persisters and VBNCs and to
use model persisters to define the breadth and landscape of the
persister metabolic program.
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