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Neurodegenerative diseases affect a significant portion of the aging population. Several

lines of evidence suggest a positive association between environmental exposures,

which are common and cumulative in a lifetime, and development of neurodegenerative

diseases. Environmental or occupational exposure to manganese (Mn) has been

implicated in neurodegeneration due to its ability to induce mitochondrial dysfunction,

oxidative stress, and α-synuclein (α-Syn) aggregation. The role of the α-Syn protein vis-

a-vis Mn is controversial, as it seemingly plays a duplicitous role in neuroprotection

and neurodegeneration. α-Syn has low affinity for Mn, however an indirect interaction

cannot be ruled out. In this review we will examine the current knowledge surrounding

the interaction of α-Syn and Mn in neurodegenerative process.
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MANGANESE METABOLISM AND NEUROTOXIC ASPECTS

Manganese (Mn) plays a necessary role in brain physiology and homeostasis. Although it is less
abundant that other essential metals like iron and copper, it is a metalloenzyme and enzyme
activator, playing crucial roles in cell homeostasis. Mn acts as a cofactor in pyruvate carboxylase
(Scrutton et al., 1966), serine/threonine glutamine synthase, arginase, and manganese superoxide
dismutase (MnSOD; Greger, 1999). The necessary dietary levels of Mn can easily be obtained by
consumption of a variety of foods, such as green leafy vegetables, legumes, nuts, tea, chocolate,
and fruits. Mn absorption is limited to 3–5% in adults (Davidsson et al., 1989a) and it occurs
predominantly in the intestine. The distribution ofMn to various tissues occurs via plasma withMn
carrier proteins, such as transferrin (Tf; Davidsson et al., 1989b) and albumin or by conjugationwith
citrate. It has been demonstrated that the oxidative state of Mn in blood, influenced by plasma pH
and ceruloplasmin activity(Jursa and Smith, 2009), can affect its binding to different carriers, with
Mn in the trivalent state binding more avidly to Tf than Mn2+ (Davidsson et al., 1989b); however it
is not clear whether distinct transition states influence Mn accumulation in brain. Mn reaches the
brain by transport across the blood-brain barrier (BBB) via various mechanisms, including divalent
metal transporter 1 (DMT1) transferrin receptor (TfR), calcium (Ca) channels, members of the
organic anion transporter polypeptide (OATP), or ATP- binding cassette (ABC) superfamilies, in
the case of Mn bound to citrate and diffusion. Uptake of Mn via the olfactory tract and trigeminal
nerve also occurs. DMT1, transferrin receptor (TfR), zinc transporters (ZIP8 and ZIP14), the citrate
and choline transporters, the dopamine transporter (DAT), and Ca2+ channels are responsible for
Mn import to the cells in the central nervous system (CNS; Crossgrove et al., 2003; Crossgrove and
Yokel, 2004, 2005; Roth, 2006). The essentiality of Mn means that the absorption and excretion
of Mn must be tightly controlled to maintain stable tissue levels. The liver exerts this control. In
the liver, Mn is removed from the blood, conjugated with bile and excreted into the intestine for
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elimination. Ferroportin (Fpn1) and SLC30A10 are primarily
responsible for cellular efflux of Mn (Yokel et al., 2003; Quadri
et al., 2012; Martinez-Finley et al., 2013; Chen et al., 2016). An
overview of Mn metabolism and mechanisms of transport can be
found in Figure 1.

Chronic overexposure to Mn can have a detrimental
effect on the brain resulting in a disease state referred to
as manganism. Manganism is characterized by behavioral
changes, tremors, difficulty walking slow and clumsymovements,
tremors, and facial muscle spasms. There are symptoms that
precede advanced manganism, such as slowed hand movements,
irritability, aggressiveness, and hallucinations. Like many other

FIGURE 1 | Only 3–5% of ingested manganese (Mn) is absorbed through the intestinal epithelium and the majority is excreted via bile. In plasma, Mn is

found conjugated with transferrin (Tf), citrate or albumin (not shown), and distributed to various tissues. Mn can cross the blood-brain barrier (BBB) and access

neurons and glia. Shown are proteins that participate in Mn transport across the plasma membrane: When conjugated with Tf and recognized by the transferrin

receptor (TfR), Mn is endocytosed and can access the cytoplasm through divalent metal transporter-1 (DMT-1). Mn conjugated to citrate may be carried by members

of the organic anion transporter polypeptide (Oatp) or ATP- binding cassette (ABC) superfamilies. Mn can also diffuse across the plasma membrane. Because they are

both divalent, Mn can cross calcium (Ca2+) channels, which are also present in mitochondria. Excess Mn in mitochondria may induce oxidative stress. DMT-1 is the

main transporter for Mn and other divalent ions. Mn uptake also occurs through the dopamine transporter (DAT). SLC30A10 is a newly characterized Mn exporter and

ferroportin (FPN) has also been described to export Mn to the extracellular space. Mn binds to Asp-121, Asn-122, and Glu-123 residues of α-Synuclein (α-Syn),

located in the C-terminus domain, a region with binding sites for various metals. This interaction has been shown to induce different consequences which are cited in

the figure. Oxidative stress has been proposed to contribute to α-Syn oligomerization following exposure to Mn. DAT, dopamine transporter; DMT-1, divalent metal

tranporter-1; ZIPs, zinc transporters that also show affinity for Mn; Tf, transferrin; TfR, transferrin receptor; NAC, Non-Aβ component.

neurodegenerative diseases, patients may be asymptomatic for
months or years after exposure (Huang et al., 1989; Crossgrove
and Zheng, 2004; Cersosimo and Koller, 2006). It has also
been suggested that Mn exposure could be an environmental
factor for the development of other neurodegenerative diseases,
such as Parkinson’s disease (PD; Calne et al., 1994; Fukushima
et al., 2010). At the cellular level, Mn toxicity is mediated
by autoxidation of intracellular catecholamines, production of
free radicals, reactive oxygen species, and toxic metabolites;
depletion of cellular antioxidant defense mechanisms and
alterations in mitochondrial function and ATP production. All
of these factors may be related to deficits in dopaminergic
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(DAergic) neurotransmission and eventual degeneration of these
neurons. Conversely, Mn deficiency could lead to impaired
growth, skeletal abnormalities, ataxia, lipid, and carbohydrate
metabolism defects and reproductive deficits (Aschner and
Aschner, 2005). The primary source of Mn toxicity is
occupational exposure. Of particular concern is inhalational
exposure to welding fumes over a chronic period of time.
Also concerning are exposures in those who work in the
iron and steel, dry-cell battery, smelting, and ferromanganese
industries (Josephs et al., 2005; Sriram et al., 2015). Significant
levels of Mn can also be achieved through total parenteral
nutrition and chronic liver failure (Nagatomo et al., 1999; Boggio
Bertinet et al., 2000). Mn is also found as the fuel additive
methylcyclopentadienyl Mn tricarbonyl (MMT), which is used as
an anti-knock agent, increasing the levels of Mn in air (Gulson
et al., 2006). Industrial activity may also elevate levels of Mn in
air and water, contributing to widespread non-occupational Mn
exposure (Carvalho et al., 2013; Oulhote et al., 2014; Bowler et al.,
2015).

Although Mn is widely distributed in the environment,
it is not clear if Mn exposure can induce early onset PD.
Manganism and PD are two distinct syndromes, with overlapping
dopaminergic symptoms. Mn affects the globus pallidus and
striatum, while PD degeneration is concentrated to the substantia
nigra pars compacta. Molecular characteristics of PD include:
Impaired mitochondrial function, with consequent oxidative
stress; abnormal vesicle processing; impaired proteassomal
function; α-synuclein (α-Syn) aggregation; and Lewy bodies
formation. Evidence of Mn interaction with PD-related gene
products [parkin (PARK2), DJ-1 (PARK7), PINK1 (PTEN-
induced putative kinase 1, PARK6), ATP13A2 (PARK9), and
SLC30A10 as well as LRRK2 (leucine-rich repeat kinase 2,
PARK8) and VPS35 (vacuolar protein sorting-associated protein
35, PARK17] has been reviewed (Roth, 2014) and it is likely that
genetic predisposition combined with Mn exposure accelerates
PD onset. In this review we will focus on Mn interaction with α-
Syn. There are two aspects to be considered: (1) α-Syn influence
over Mn induced toxicity (neuroprotection or aggravation of
neurotoxicity (2) a possible contribution of Mn to α-Syn toxic
actions (inducing fibril formation and aggregration).

α-SYNUCLEIN AND ITS ROLES IN
NEURODEGENERATION

α-Syn is a small protein (∼140 amino acids) that is expressed
in the CNS and in red blood cells (Barbour et al., 2008). The
synuclein family is made up of alpha (α)-, beta (β)-, and gamma
(γ)- synucleins, which are predominantly localized to presynaptic
neurons (α/β), and glia (γ) (Bendor et al., 2013). The γ form
has also been shown in many cancers (Bendor et al., 2013).
α-Syn, the focus of this review, is highly soluble, found in
the cytosol and in presynaptic terminals near synaptic vesicles
and can interact with lipid membranes. In the cytosol α-Syn
is primarily unfolded but it can undergo many protein folding
modifications including self-aggregation and formation of fibrils.
α-Syn has a N-terminal, membrane binding structure, a central

NAC domain, and a C-terminal domain (Figure 1). Vertebrates
have seven 11 residue repeats in the N-terminus that are highly
conserved, while worms, flies, and yeast do not contain α-Syn
homologs (Bendor et al., 2013). The C-terminal end undergoes
phosphorylation at multiple sites and is believed to be integral
in the formation of fibrils but the mechanisms are unclear. Early
intermediary oligomers of α-Syn appear to be the pathogenic
species, rather than the mature fibrils (Xu et al., 2015). Of
particular interest to this review, α-Syn exhibits an affinity for
metals (Uversky et al., 2001; Binolfi et al., 2006) and it appears
as though protein aggregation and cross-linking can be triggered
by the presence of metals such as Aluminum (Al), Copper (Cu),
Cadmium (Cd), Iron (Fe), Mn, and Zinc (Zn; Paik et al., 1999).
It is unknown whether α-Syn can regulate intracellular levels
of transition metals in a physiologically relevant way and how
metals regulate posttranslational modifications of α-Syn.

The role of α-Syn in degeneration has been the focus of several
lines of research, and the accumulation ofmisfolded α-Syn is used
to define certain types of neurodegeneration (Bendor et al., 2013).
α-Syn is of particular interest due to its role in Lewy-body (LB)
formation in neurons of PD patients and accumulation in senile
plaques in Alzheimer’s disease (Ueda et al., 1993; Trojanowski
et al., 1998; Goedert, 1999). Interestingly, monoclonal antibodies
that are raised against Lewy bodies recognize α-Syn highlighting
its role in PD (Giasson et al., 2000). PD has a complex etiology,
with some forms sporadic and others due to proclivities in genetic
makeup. α-Syn was the first gene identified as a genetic risk factor
for autosomal-dominant PD (PARK1/SNCA; Gasser, 2009).
Subsequent studies have further classified SNCA gene mutations
to several point mutations duplications and triplications, A53T
(Polymeropoulos et al., 1997; Li et al., 2001, 2004), A30P
(Polymeropoulos et al., 1997; Li et al., 2001), E46K (Zarranz
et al., 2004), H50Q (Appel-Cresswell et al., 2013), G51D (Lesage
et al., 2013), and G209A (Papadimitriou et al., 1999). α-Syn
aggregation in neurodegeneration is the best understood role for
α-Syn, while the function of α-Syn under normal physiological
conditions is more elusive. It can directly bind to the soluble
N-ethylmaleimide-sensitive factor attachment protein receptor
(SNARE)-protein synaptobrevin-2/vesicle-associated membrane
protein (VAMP2) and promote SNARE complex assembly (Burre
et al., 2010). α-Syn has also been shown to participate in
dopamine biosynthesis and regulation (Perez et al., 2002). A
relatively new theory is that α-Syn might spread in a prion-like
process, self-propagating from the intestine, and in the CNS,
progressing via transneuronal transport (Recasens and Dehay,
2014).

MANGANESE INTERACTION WITH
α-SYNUCLEIN

Metal dyshomeostasis is a feature present in many
neurodegenerative disorders. Menke′s disease orWilson’s disease
are linked to impaired Cu metabolism. Neurodegeneration with
Brain Iron Accumulation refers to a group of several syndromes
linked to impairment in Fe regulation. Furthermore, metals
even at low concentrations can promote the oligomerization
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and aggregation of several proteins. Among these proteins are
amyloid-beta (Aβ) that oligomerizes with Cu and Zn, amylin that
oligomerizes in presence of Cu, tau protein that oligomerizes in
presence of Al and Fe and α-Syn can oligomerize in presence
of different metals including Al, Cu, Cd, and Fe (Carboni and
Lingor, 2015). Mn has been shown to bind to Prion protein
and potentially play a role in prion disease progression in vivo
(Brazier et al., 2008; Choi et al., 2010). Mn can also bind to the
N-terminal part of the Aβ (1-40) peptide, with a weak binding
affinity in the milli- to micromolar range (Wallin et al., 2016).

α-Syn contains many divalent metal-binding sites in the
region comprising residues 110–140, specifically Asp121,
Asn122, and Glu123, additionally Cu can bind to His-50 (Rasia
et al., 2005) and the Met-1 (Dudzik et al., 2013). Nuclear
magnetic resonance (NMR) studies have shown that α-Syn has a
poor affinity for Mn2+ in its C-terminal binding site, the range of
affinity is in the 1mM (Binolfi et al., 2006). Nevertheless, Mn2+

was shown to influence α-Syn folding in tyrosine fluorescence
quenching assays but it failed to induce α-Syn fibril formation
in aggregation assays with Thioflavin T fluorescence (Uversky
et al., 2001). Furthermore, evidence points that Mn may regulate
α-Syn homeostasis and transport through the blood-CSF
barrier (BCSFB). Bates et al. (2015) used choroidal epithelial
Z310 cells derived from the rodent choroid plexus and found
that Mn exposure increased α-Syn uptake and intracellular
accumulation without significantly changing mRNA expression.
α-Syn expression was visualized using immunohistochemistry
(Bates et al., 2015).

Further evidence for Mn and α-Syn interaction was found
by Dučić et al. (2015), who evaluated the interplay between
α-Syn and Mn in Mn-treated rat primary midbrain neurons
overexpressing α-Syn using X-ray fluorescence imaging. They
found that overexpression of α-Syn increased intracellular Mn
levels of cells treated with 500µM MnCl2 for 2 h and conversely
decreased levels of other elements (Ca, Zn, K, P, and S). Cu,
Fe, and Cl levels remained unaltered. The subcellular resolution
revealed punctate Mn distribution, overlapping with DMT1 and
MnSOD expression. This study suggests a role for α-Syn as an
intracellular Mn store, however the authors do not show direct
binding of Mn to α-Syn and the higher accumulation of Mn in
these conditions could be due to decreased expression of Fpn1.
Overexpression of α-Syn did not alter expression of the Mn
import proteins DMT1 and voltage gated Ca channels (VGCC),
but did attenuate Fpn1 andMn release fromMn-treated neurons
(Dučić et al., 2015). This finding indicates an indirect mechanism
by which α-Syn regulates Mn accumulation.

The physiological concentration of Mn in the human
brain is estimated to lie between 5.32 and 14.03 ng Mn/mg
protein, equivalent to 20.0–52.8µM Mn. The estimated
pathophysiological threshold varies from 15.96 to 42.09 ng
Mn/mg protein (60.1–158.4µM Mn; Bowman and Aschner,
2014). Given that α-Syn possesses low affinity for Mn, it is
likely that it will bind with Mn in vivo in cases of high Mn
accumulation. It is possible, however, that Mn and α-Syn interact
by indirect mechanisms. Mn may alter the accumulation of other
metals, such as Cu and Fe (Fitsanakis et al., 2010; Angeli et al.,
2014), which have shown high affinity for α-Syn. Alpha-Syn

interacts with Cu in the µM range, with effects on its fibrillation
and making it prone to metal-induced oxidation, which can
also lead to protein aggregation (Binolfi et al., 2006). Thus,
α-Syn influence on Mn neurotoxicity (either neuroprotection
or aggravation of neurotoxicity), which will be discussed below,
could be due to other actions of α-Syn and not necessarily its
binding to Mn.

α-Synuclein and Neuroprotection against
Mn-Induced Neurotoxicity
α-Syn was shown to be neuroprotective against Mn-induced
neurotoxicity in a transgenic N27 dopaminergic neuronal cell
line stably expressing human wild-type α-Syn at physiological
levels (Harischandra et al., 2015). This cell line was compared
to a control line expressing vector only. Neuroprotection, in
the form of reducing cytochrome c release into the cytosol,
was seen within a 24 h time period following exposure to
300µM Mn. Therefore α-Syn appears to be protective against
mitochondrial apoptosis early on. α-Syn also inhibited caspase-
9 and -3 activation following Mn-exposure. The protective effect
of α-Syn appeared to be independent of reactive oxygen species
(ROS) inhibition, as ROS did not differ in any of the groups
tested. At later time points, α-Syn and continued exposure to Mn
promoted formation of α-Syn aggregates and it was no longer
protective (Harischandra et al., 2015). These findings corroborate
the notion of α-Syn as a Mn store, inducing protection. At later
time points it is likely that increased accumulation ofMn induced
α-Syn aggregration and toxicity.

Early onset PD-associated genes, parkin (PARK2) and
PINK1 have been shown to work with α-Syn to regulate the
mitochondrial stress response (Norris et al., 2015). In particular,
parkin can inactivate α-Syn thereby suppressing mitochondrial
fusion (Norris et al., 2015). C. elegans strains were used to
conduct a comprehensive study of the interplay between wildtype
α-Syn, Mn and mutated pdr1 (parkin), pink1, and djr1.1 (dj1).
The study demonstrated rescue of oxidative stress, particularly
reactive oxygen and nitrogen species, by α-Syn in the pdr1
and djr1.1 strains that were exposed to Mn compared to
the deletion alone. α-Syn also decreased Mn accumulation
in the pdr1 and djr1.1 mutants. They further probed dat-
1 (dopamine transporter) levels in these mutant strains and
reported downregulation of dat-1 in djr1.1mutants as compared
to pdr1 mutants, suggesting deficits in synaptic dopamine
clearance in djr1.1mutants which was corroborated by increased
neurodegeneration in α-Syn djr1.1 mutants (Bornhorst et al.,
2014).

It is important to note that wild type α-Syn was used in both
of the studies showing neuroprotection against Mn exposure.
Future studies should address the contribution of mutant α-Syn
forms (i.e., A53T mutants) to neurodegeneration.

α-Synuclein and Aggravation of
Mn-Induced Neurotoxicity
While the role of α-Syn in the absence of disease remains an
open question, the participation of α-Syn in disease processes has
been well established, with α-Syn fibrils being amajor component
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of Lewy bodies. Upregulation of α-Syn has also been shown to
induce neuronal cell death (Sung et al., 2001) and is accepted to
be toxic to dopaminergic neurons (Li et al., 2010). The question of
metal toxicity as a potential etiology for diseases of aging has been
proposed based on known neurotoxic effects of metals combined
with the reality that lifelong exposures to metals are usual and
cumulative damage may appear in diseases of aging. There is
evidence that Mn both alters the expression of α-Syn, leading
to increased cellular levels of α-Syn in Mn treated cells (Cai
et al., 2010; Li et al., 2010) and leads to aggregation of α-Syn, a
hallmark of α-Syn in the disease state (Cai et al., 2010). Treatment
of both SH-SY5Y human neuroblastoma cells, and PC12 cells
with Mn resulted in toxicity and cell death with concomitant
overexpression of α-Syn. Knockdown of α-Syn reduced the level
of toxicity in response to Mn treatment, indicating that α-Syn
participated in Mn toxicity.

Additional studies used human neuroblastoma (SK-N-MC)
cells that stably expressed human dopamine transporter (DAT)
and were transfected with human α-Syn and exposed for 24–
72 h to 30–300µM MnCl2. Mn treatment showed a synergistic
exacerbation of cellular toxicity with α-Syn overexpression that
was both concentration and time dependent suggesting that they
work in concert with one another to produce neurodegeneration.
The 30µM group did not have significant differences but the cell
loss was apparent in the 100 and 300µM groups. No differences
in DA transport were noted in this model (Pifl et al., 2004). These
findings provide further evidence that one route of Mn toxicity
may involve α-Syn overexpression and aggregation.

The mechanism of Mn-induced α-Syn toxicity remains under
investigation. Mn toxicity is known to involve oxidative stress,
but it is unknown whether this has a direct effect on α-Syn.
To investigate the contribution of oxidative stress, rat brain
slices were treated with Mn (II) chloride tetrahydrate, 0–400µM
for 24 h. Results showed concentration-dependent increases in
ROS production, neuronal apoptosis and a decrease in SOD
activity (Xu et al., 2013). Furthermore, α-Syn mRNA and protein
expression was increased as were the appearance of α-Syn
oligomers. The number of oligomers increased with increasing
concentrations of Mn and were found to be mostly membrane
bound. Protein carbonyl levels increased in a concentration-
dependent fashion but were alleviated by pretreatment with
GSH and aggravated by pretreatment with H2O2,as were α-Syn
oligomers. This study highlighted the contribution of oxidative
stress to α-Syn oligomerization following exposure to Mn (Xu
et al., 2013).

Mn is known to exert toxic effects through more than one
mechanism. Calpain 1 is a protease that has been shown to
use α-Syn as a substrate. It has been hypothesized that α-Syn
aggregation occurs through oligomerization of fragmented α-
Syn. Calpain I was shown to play an important signaling role
in Mn-induced α-Syn oligomerization (Xu et al., 2015). Xu and
colleagues treated organotypic rat brain slices with 400µMMn2+

for 24 h and observed increases in the number of apoptotic cells
(by up to 29.6%), lactate dehydrogenase release, intracellular
calcium concentrations, calpain activity, mRNA and protein
expression of calpain 1, and α-Syn. Calpain inhibitor II was used
to pretreat cells prior to Mn exposure in an effort to explore the

role of calpain in α-Syn oligomerization following Mn exposure
(Xu et al., 2015). Pretreatment with calpain inhibitor II (4µM)
decreased the number of C- and N-terminal fragments of α-Syn
and decreased overall oligomerization of α-Syn, suggesting that
calpain-cleaved α-Syn fragments promote α-Syn oligomerization
(Xu et al., 2015). This study provided further evidence that
suggests that calpain I interacts with α-Syn in the cytoplasm of
neuronal cells (Xu et al., 2015).

The effect of Mn and α-Syn on degeneration of dopaminergic
cells was investigated using a mouse model. Mn interaction
with human wild-type α-Syn was investigated using transgenic
C57BL/6J mice expressing human α-Syn exposed to MnCl2
starting at 4 months of age. The study found that homovanillic
acid (HVA)/dopamine (DA) ratios and aspartate levels were
significantly increased in mice with human α-Syn compared to
non-transgenic controls at 7 months of age. At that same time
point, mice exposed to Mn had HVA/DA levels and aspartate
levels that were significantly reduced in transgenic α-Syn mice
but not in non-transgenic mice or mice with mutated α-Syn
(A53T/A30P). This suggests that Mn interacted with human
wild-type α-Syn influencing DA turnover even when there is no
appreciable neurodegeneration (Peneder et al., 2011).

Mn-Induced α-Synuclein Aggregration
Several groups have investigated a mechanism for α-Syn
aggregation in the presence of metals, including Mn. Given that
aggregation of α-Syn in Lewy bodies is a hallmark of Parkinson’s
disease, insight into the interaction of α-Syn with metals could
help to elucidate a mechanism for the formation of Lewy
bodies lending insight into the etiology of Parkinson’s disease.
Binding features of several divalent metals, including Mn, were
investigated using NMR spectroscopy to look at protein-metal
interactions in an effort to identify possible binding sites for
metals to α-Syn (Binolfi et al., 2006). This study identified a
binding region for metals, including Mn, on the C-terminal
portion of the α-Syn protein. However, this study showed a
very low-affinity binding, in the millimolar range, suggesting that
mechanisms other than direct binding may play a role in Mn-
induced α-Syn aggregation. In a study by Uversky et al. (2001)
it was shown that even low levels of metals were able to induce
a conformational change in α-Syn, leading to the idea that a
partially folded intermediate may act as a step in the process of
aggregation, possibly through the process of ligand bridging by
divalent metals, including Mn (Uversky et al., 2001).

α-Syn forms aggregates in the presence of Al, Cu, and Fe.
To further investigate the mechanism by which Mn acts in the
process of α-Syn oligomerization, Xu et al. (2014) explored the
association between Mn-induced α-Syn oligomerization and S-
nitrosylation of protein disulfide isomerase. They found that Mn
induced nitrosative stress in the endoplasmic reticulum through
activation of iNOS and S-nitrosylation of protein disulfide
isomerase, a protein that is intimately linked to proper folding
and maturation of native proteins. Cultured rat slices were
treated with 0, 25, 100, or 400µM Mn for 24 h. Results showed
concentration-dependent increases in α-Syn oligomerization,
apoptotic percentage of cells, lactate dehydrogenase release,
NO production, inducible nitric oxide synthase activity and
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increases in mRNA and protein expression of iNOS and protein
disulfide isomerase. Mn also increased α-Syn oligomerization
and S-nitrosylated protein disulfide isomerase. Protein disulfide
isomerase was S-nitrosylated at higher Mn levels, which
significantly decreased its affinity for α-Syn. Pre-treatment of
these slices with L-Canavanine (an iNOS inhibitor used to
inhibit S-nitrosylation), administered prior to Mn, reduced Mn-
induced α-Syn oligomerization, thereby highlighting the role of
S-nitrosylation of protein disulfide isomerase in Mn-induction of
α-Syn oligomerization (Xu et al., 2014).

In amultidisciplinary assessment of the effects ofMn exposure
on 5–6 year old Cynomolgus macaques Verina et al. (2013)
reported diffuse amyloid-β aggregation in the frontal cortex of
Mn-exposed animals prompting them to assess α-Syn in their
Mn-exposed primates. Mn was delivered via injection of 3.3–
5.0, 5.0–6.7, 8.3–10.0mg Mn/kg BW MnSO4. They reported
increased α-Syn immunoreactivity in the frontal cortex gray
matter and adjacent white matter of Mn-exposed primates.
Multiple system atrophy, a type of progressive neurodegenerative
disorder, was induced upon Mn exposure and appeared to have
been driven by the aggregate formation of α-Syn, although the
aggregation differed from animal to animal (Verina et al., 2013).
An overview of publications regarding Mn interaction with
α-Syn is available in Supplementary Table 1.

CONCLUSION

The question of whether α-Syn is neurotoxic or neuroprotective
and how Mn affects its role appears to be concentration and
time dependent. Time frame for exposure and aggregation is a
major consideration as α-Syn appears to be protective early on,
often acting as a metal scavenger but later contributing to protein
aggregation, neurodegeneration, and cell death. Mn can trigger
misfolding and accumulation of α-Syn at certain concentrations.
Some studies suggest that it can do this in the absence of
increased mRNA expression, at least in the time frames tested.
α-Syn’s interaction with membranes, which extends to the

endoplasmic reticulum and mitochondrial membranes as well
as the plasma membrane, is likely the source of toxicity to
the cells and eventual neurodegeneration and Mn appears to
promote that process. However, it is not clear by the studies
reviewed herein whether Mn interacts with α-Syn in vivo by a
direct mechanism. It is suggested that Mn contributes to α-Syn
aggregation, however current information support an indirect
mechanism ofMn interactionwith α-Syn, since it has been shown
that Mn has low affinity for the protein and interaction only
occurs in the millimolar range. Other metals, such as Cu and
Fe, exhibit greater affinity for α-Syn and are known for inducing
fibril formation. There is a complex interplay between metals,
with each one influencing the homeostasis of the other. Therefore
we cannot exclude heavy metal exposure as a molecular trigger to
the development of PD and the elucidation of the mechanism by
which these metals accumulate intracellularly and influence α-
Syn aggregation could lead to another therapeutic target against
PD. Additional studies that examine the effect of Mn vis-à-vis
mutated forms of α-Syn in triggering neurodegeneration are also
warranted to clarify a potential role of Mn in PD onset.
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