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The challenge to produce more food for a rising global population on diminishing
agricultural land is complicated by the effects of climate change on agricultural
productivity. Although great progress has been made in crop improvement, so far most
efforts have targeted above-ground traits. Roots are essential for plant adaptation and
productivity, but are less studied due to the difficulty of observing them during the plant
life cycle. Root system architecture (RSA), made up of structural features like root length,
spread, number, and length of lateral roots, among others, exhibits great plasticity in
response to environmental changes, and could be critical to developing crops with
more efficient roots. Much of the research on root traits has thus far focused on the
most common cereal crops and model plants. As cereal yields have reached their
yield potential in some regions, understanding their root system may help overcome
these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato,
cassava, and yam may hold more potential for providing food security in the future, and
knowledge of their root system additionally focuses directly on the edible portion. Root-
trait modeling for multiple stress scenarios, together with high-throughput phenotyping
and genotyping techniques, robust databases, and data analytical pipelines, may
provide a valuable base for a truly inclusive ‘green revolution.’ In the current review,
we discuss RSA with special reference to RTCs, and how knowledge on genetics of
RSA can be manipulated to improve their tolerance to abiotic stresses.

Keywords: root system architecture (RSA), abiotic stress tolerance, root and tuber crops, drought tolerance,
sweetpotato, potato, yam, cassava

INTRODUCTION TO ROOTS AND ROOT SYSTEM
ARCHITECTURE

Roots are essential for plant productivity and serve a variety of functions, such as water and nutrient
uptake, forming symbioses with other microorganisms in the rhizosphere, anchoring the plant to
the soil, and acting as storage organs. The different interactions of a root with its environment
depend on its organization and structure, from the cellular to whole-plant level. The root contains
a stele, comprised of the xylem, the phloem, and the pericycle (Smith and De Smet, 2012). The
stele is encircled by concentric layers of epidermal, cortical, and endodermal tissues. The root
apical meristem forms the basic stem cell pool from which other cell types develop. This root
apical meristem also holds the quiescent center (QC), with rarely dividing cells that signals the
surrounding cells to organize and maintain the initial stem cells (Dolan et al., 1993). There are
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generally two types of roots: (i) those that are formed in
the embryo, such as the primary and seminal roots in maize
(Hochholdinger, 2009), tap or primary root in common bean
(Lynch and Brown, 2012); (ii) those formed post-embryonically
from consecutive nodes on shoots, normally referred to as
adventitious roots (ARs). These include basal roots in beans,
nodal roots in maize, ARs of sweetpotato, potato, cassava, as well
as yam, and lateral roots (LRs; Lynch and Brown, 2012). LRs are
formed post-embryonically from the pericycle of all root classes
through auxin-dependent cell cycle activation. This cell cycle
forms the LR founder cells that undergo several rounds of cell
division to initiate LRs (Overvoorde et al., 2010). The elongation,
growth angles from the main axis, lateral branching and longevity
of all root classes forms the root system which is determined
by genetic, physiological, and environmental factors (Lynch and
Brown, 2012).

Root system architecture (RSA) therefore refers to the spatial
configuration of the root system or the explicit deployment
of root axes (Lynch, 1995). Under poorly understood genetic
control, RSA exhibits plasticity and responds to external
environmental conditions such as soil moisture, nutrients,
temperature, pH, and microbial communities (Bao et al., 2014).
The study of RSA is important for agricultural productivity
because most soils have uneven distribution of resources and/or
localized depletions that make spatial distribution of the root
system an important determinant of a plant’s ability to exploit
these resources (Lynch, 1995). Progress in the study of RSA in
agricultural crops has consequently been realized, especially for
cereals, and evidence for the genetic control of RSA and its
relationship to increased productivity under stress is currently
well-documented. Despite these achievements, information on
RSA in root and tuber crops (RTCs), which form the second
largest group of crops for global food security after cereals, is
still lacking. A recent review by Villordon et al. (2014b) on root
architecture and RTC productivity clearly indicates this gap. In
the current review, we discuss RSA with special reference to
RTCs, the genetic control of RSA, the relationship between RSA
and abiotic stresses, and how RSA can be manipulated to confer
tolerance to abiotic stresses. We then draw conclusions on the
way forward for RSA studies in RTCs.

ROOT SYSTEM ARCHITECTURE IN
ROOT AND TUBER CROPS

Understanding RSA and the mechanisms of its development
will allow manipulation and exploitation of different root
traits to improve plants’ adaptation to changing climates and
increase yields for the growing global human population (Smith
and De Smet, 2012). Vegetatively propagated RTCs such as
potato (Solanum tuberosum), sweetpotato (Ipomoea batatas),
cassava (Manihot esculenta), and yam (Dioscorea spp.) provide
food security for vast populations, especially in sub-Saharan
Africa where many resource-poor small holder farmers provide
the majority of food. Of the four major RTCs, cassava and
sweetpotato are storage roots, while potato and yam are tubers.
Little literature is specifically targeted to root growth and

development in RTCs compared to cereals. The little literature
available also mainly focuses on the growth and development of
the storage root or tuber, primarily at harvest and post-harvest
evaluations, rather than the entire root system. In this section
we describe the root systems in the four major RTCs, based on
available literature (Figure 1).

Cassava, potato, sweetpotato, and yam have ARs originating
from the shoot or subterranean stem, in contrast with the primary
root in seed-propagated crops which originates from the embryo.
In sweetpotato and cassava, RSA is composed of ARs, LRs and
storage roots (SRs), whereas in potato, the ARs can be divided
into basal (ARs in Figure 1) and stolon roots (STR). In yam, the
ARs root system is the most pronounced. The simple recognition
of the main AR axis and its spatial and temporal relationship
to LRs and their initiation in RTCs would enable systematic
investigations to further understand the mechanisms that trigger
LR emergence and morphogenesis.

Root Architecture in Root and Tuber
Crops: The Current State of Knowledge
A comparative survey of reports published in the last 25 years
on the subject of root architecture among cassava, potato,
sweetpotato, and yam is shown in Table 1. In general,
current knowledge is at the level of classical morphology,
with relatively little on the genetic, hormonal, and molecular
control of root architecture development among RTCs. The
first available documented attempt to specifically describe RSA
development of several vegetable species, including sweetpotato,
across different developmental stages was by Weaver and Bruner
(1927). In sweetpotato, the pericyclic development of LRs
and its connection to protoxylem poles, where the number
of protoxylem poles correspond to the number of LRs on
enlarged storage roots, was made in the early 1900s (Hayward,
1938). Yasui (1944) later reported that the protoxylem in ARs
of sweetpotato was generally either pentarch or hexarch, and
that adventitious buds arose from five or six longitudinal
rows of LR “scars.” Relatively recent work documenting the
pericyclic origin of cassava LRs noted that xylem poles ranged
from four to eight and LRs developed from the pericycle
opposite the xylem pole (Medina et al., 2007; Bonfim et al.,
2011). Chaweewan and Taylor (2015) found that the roots
developing from stem cut end of cassava (basal ARs) did
not develop into storage roots. Such roots were also initiated
from the cambium. However, roots developing from buried
nodes (nodal ARs) at the boundary between the xylem and
the stele had the capacity to develop into storage roots. Only
one reference was found for yams, the second most important
root crop in Sub-Saharan Africa1, which described two distinct
well-organized root systems: the seminal root system and the
adventitious, more definitive root system (Charles-Dominique
et al., 2009). Other studies in yam only focused on root
morphology at crop harvest stage in response to fertilization
(Melteras et al., 2008; O’Sullivan, 2008; Hgaza et al., 2012).
Iwama et al. (1977) specifically analyzed root systems and the
relationship between root systems and tuber yield in potato

1http://www.fao.org/docrep/x5415e/x5415e01.htm
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FIGURE 1 | Root system architecture of cassava, sweetpotato, yam, and potato showing different root types (potato and sweetpotato figures
adapted from Villordon et al., 2014b).

(Iwama et al., 1981). The effect of environment on RSA
has been examined from different angles, for example Asfary
et al. (1983) measured average root length under different
nitrogen (N) fertilization, Vos and Groenwold (1986) studied
root growth of potato on a marine clay soil, while Parker
et al. (1989) studied the properties of subsoil loosening and
irrigation on soil physical characteristics, root distribution, and
water uptake in potato. More recently, Iwama (2008) studied
the physiology and morphology of potato roots, specifically root
length distribution, and examined their relationship with tuber
growth.

The Link between Root Architecture and
Yield in Root and Tuber Crops
In sweetpotato, storage root formation is marked by the
formation of cambia around the protoxylem and secondary
xylem elements, but lignification in the stele region reduces
storage root formation (Togari, 1950; Wilson and Lowe,
1973). The first evidence of a link between sweetpotato
LR development and storage root yield suggested that LRs
may be essential in supplying “internal growth elements” for
storage root formation (Koshimizu and Nishida, 1949). Recent
work demonstrated the link between LR development and
lignification. In ARs with a prevalence of arrested or non-
emerged LR primordia, the adjacent stelar tissue becomes
lignified thus rendering it incapable of undergoing swelling due
to the absence of vascular and anomalous cambia development
(Villordon et al., 2012). The precise relationship between
stele lignification and LR development is still not clear
in sweetpotato. However, proteomics work with maize lrt1
(lateral rootless1) mutants showed the detection of proteins
associated with lignin metabolism in the primary root, providing
evidence that LRs influenced the proteome of the primary
root (Hochholdinger et al., 2004). These findings suggest that
intrinsic and external stimuli which promote LR development

preclude stele lignification, rendering the juvenile AR competent
for storage root formation. In cassava, LRs are responsible for
root system plasticity during the critical storage root formation
stage (Pardales and Yamauchi, 2003). There is currently a lack
of evidence to suggest a relationship between LR development
and the capacity of an AR to become a storage root. Early

TABLE 1 | Summary of articles published within the last 25 years that
address root architecture development in cassava, sweetpotato, potato,
and yams.

Subject Crop species Reference

Morphological
description

Potato Wishart et al., 2013

Cassava El-Sharkawy, 2004

Sweetpotato None found

Yam Charles-Dominique et al., 2009

Functional
anatomy

Potato None found

Cassava Bonfim et al., 2011

Sweetpotato None found

Yam None found

Genetic and
hormonal
control

Potato Xie et al., 2011; Roumeliotis et al., 2012

Cassava None found

Sweetpotato Ku et al., 2008

Yam None found

Environmental
signals

Potato Dechassa et al., 2003; Busse and
Palta, 2006; Palta, 2010

Cassava Pardales and Esquibel, 1996; Pardales
and Yamauchi, 2003; Subere et al.,
2009

Sweetpotato Pardales and Yamauchi, 2003; Villordon
et al., 2012, 2013

Yam None found

Breeding Potato Iwama, 2008; Wishart et al., 2013
Cassava Pardales and Yamauchi, 2003

Sweetpotato Pardales and Yamauchi, 2003

Yam None found
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work describing anatomical changes associated with storage root
formation in cassava did not mention LRs (Indira and Kurian,
1977). Related work examined the branching pattern of LRs and
reported that LRs increased root surface area and compensated
for the decrease in the main root length (Izumi et al., 1999). It was
concluded that roots with a well-developed branching pattern
likely absorbed water and essential nutrients for storage root
growth better. In potato, root mass is positively correlated with
shoot mass and tuber bulking, but negatively correlated with early
tuber bulking. Final tuber yield is related to RSA component traits
such as specific root length of basal roots and total root weight for
various root classes of potato under field grown conditions. Basal
roots are important for water uptake and anchorage, whereas
stolon roots are connected with nutrient acquisition and tuber
formation (Wishart et al., 2013). Despite these efforts, the link
between storage root/tuber yield and the carbon partition to other
root types as well as the regulatory networks involved in RTCs
is yet to be established. Understanding the genetic, physiological
and environmental factors influencing these components of RSA
in RTCs is therefore critical in adapting genotypes to changing
climates.

HORMONAL AND GENETIC CONTROL
PATHWAYS FOR ROOT SYSTEM
ARCHITECTURE

Most genetic studies on RSA have been carried out using ‘model’
plant Arabidopsis and a few ‘model’ cereals including maize and
rice. In this section we review the hormonal/genetic control
of RSA as reported in Arabidopsis and/or cereals followed by
what is known in RTCs for storage root and tuber development.
Formation of LRs as an important aspect of RSA which is a result
of cell division of a specific subset of pericyle cells (Casimiro
et al., 2001). The cell division process is under the control of
both root- and shoot-derived auxin, where cellular levels of
auxin contribute to the regulation of gene expression, which
then impacts root branching (Overvoorde et al., 2010). Auxin
activates Cyclin-dependent-kinases (CDKs) (Himanen et al., 2002)
and D-type cyclin (CYCD) (Nieuwland et al., 2009). These two
are cell-cycle genes involved in pericycle division during the
LR initiation process and whose inhibition leads to a reduced
number of LRs. Also related to the cell cycle initiation is
the E2Fa/Dpa transcription factor, which promotes the G1-S
transition by controlling the expression of genes required for
DNA replication (Boudolf et al., 2004). However, initiation of
the cell cycle alone is not enough to initiate LR formation but,
as Vanneste et al. (2005) showed, LR initiation requires fine
tuning by both negative and positive mechanisms regulating
auxin homeostasis and signal transduction in the pericycle.
These processes are under the control of auxin-responsive genes
dependent on Auxin/indole-3-acetic acid-auxin response factors
(AUX/IAA-ARFs) auxin signaling pathways. Genes containing
auxin-responsive elements (AREs) in the promoter region are
directly regulated by ARFs. In the absence of auxin, the ARFs
combine with AUX/IAA proteins (AUX/IAA-ARFs) and are
therefore not active. In the presence of auxin, however, the

AUX/IAA proteins are degraded by auxin-receptor proteins
TIR1 and AFBs through the SCF TIR1/AFBs complexes and
26S proteasomes (Goh et al., 2012). This degradation leaves
the ARFs active to either positively or negatively regulate
auxin responsive transcription. There are several of these
AUX/IAA-ARF modules which are proposed to successively
coordinate different developmental processes by regulating
distinct targets (De Smet et al., 2010). The exact number of such
modules involved in LR development is however still unknown.
De Smet et al. (2010) showed a bimodal auxin response where
they found that in addition to the Solitary root/indole-3-acetic
acid14 – auxin response factors7 and 19 (SLR/IAA14-ARF7-
ARF19), the Bodenlos/indole-3-acetic acid12/monopteros-auxin
response factor5 (BDL/IAA12/MP-ARF5), acting downstream of
SLR/IAA14, was required to guarantee organized LR patterning.
Goh et al. (2012) listed several modules responsible for different
stages of LR initiation, including the IAA28-ARFs module, which
regulates the specification of LR founder cells; the SLR/IAA14-
ARF7-ARF19, which regulates nuclear migration and asymmetric
cell division of the LR founder cells for LR initiation and
the BDL/IAA12/MP-ARF5, which regulates LR initiation and
organogenesis; the Short hypocotyl2/IAA3-ARF (SHY2/IAA3-
ARF), which regulates primordia development and emergence
after SLR/IAA14-ARF dependent LR initiation, and which
also inhibits LR initiation. Each of these modules have target
genes. Okushima et al. (2007), for example, showed that the
SLR/IAA14-ARF7-ARF19 module regulates LR formation by
directly activating lateral organ boundaries domain/ asymmetric
leaves2-like (LBD/ASL) genes. Many other hormones interact
with the auxin signaling pathways during LR initiation Cytokinin
(CK) and exogenous abscisic acid (ABA) negatively affect LR
development whereas Brassinosteroid (BR) positively affects LR
formation. The pericycle founder cell cycling is blocked in the G2
to M transition phase by CK thereby inhibiting LR formation. In
the presence of exogenous ABA, emergence of LR primordia from
the parent root is inhibited before the LR meristem is activated.
Despite this negative regulation of LR development by exogenous
ABA, ABA signaling also has cross talks with auxin action via
the ABA insensitive 3 (ABI3) and the enhanced response to ABA
1 (ERA1) genes which enhance auxin-regulated LR formation.
Cross-talk is also indicated between BR and auxin-dependent
LR formation, where it is thought to promote acropetal auxin
transport (reviewed by Fukaki and Tasaka, 2009). Although most
of these studies were carried out in Arabidopsis, Orman-Ligeza
et al. (2013) compared some of these molecular control pathways
in cereals and Arabidopsis and found that the AUX/IAA-ARF
and the LBD/ASL regulatory pathways were conserved. Several
reviews on genetic and hormonal control of RSA are available.
Smith and De Smet (2012) have reviewed the genetic control of
root branching, giving insights from Arabidopsis and cereals. Jung
and McCouch (2013) also provide a comprehensive review on the
genetic and hormonal control of RSA.

In sweetpotato, the only study found specifically referring
to genetic control of RSA is by Villordon et al. (2014a) who
showed evidence that orthologs of genes associated with RSA in
model crops were present in sweetpotato. They found increased
expression of a putative nitrogen transporter and deceased

Frontiers in Plant Science | www.frontiersin.org 4 November 2016 | Volume 7 | Article 1584

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01584 October 28, 2016 Time: 12:48 # 5

Khan et al. Root System Architecture of Root and Tuber Crops

expression of a high affinity nitrogen transporter as well as
decreased expression of a MAD-box gene under low nitrogen
(N) conditions. A substantial amount of information is however
available for storage root formation which is part of RSA in
sweetpotato and cassava. Cytokinin is important in regulating
storage root development in sweetpotato (Hashizume et al.,
1982). Zeatin Riboside (ZR), Trans-Zeatin Riboside (t-ZR) and 9-
glucosyl-n-6-2-isopentenyl adenosine (i6Ado) are the major CK
involved in developing and activating the primary cambium.
Besides hormones, several genes are involved in storage root
formation and development in sweetpotato. Tanaka et al.
(2005) found SRF1 through SRF10 developmentally regulated
genes to be involved in storage root formation. SRF1, SRF2,
SRF3, SRF5, SRF6, SRF7, and SRF9 were upregulated while
SRF4, SRF8, and SRF10 were downregulated during storage
root formation. Tanaka et al. (2008) showed that knotted1-
like homeobox (KNOX1) genes, Ibkn1, Ibkn2 and Ibkn3, are
associated with storage root development in sweetpotato. Ibkn1
and Ibkn2 were upregulated in developing and mature storage
roots relative to fibrous roots. Ibkn1 is homologous to shoot
meristemless (STM) gene of Arabidopsis whose overexpression
leads to higher CK levels, while Ibkn2 and Ibkn3 are homologous
to Brevipedicellus gene of Arabidopsis which negatively regulates
lignin biosynthesis. A group of MAD-box genes, IbMADS genes
such as IbMADS3, IbMADS4, and IbMADS79 are also found in
fibrous roots before thickening, mainly in the vascular cambium
region where rapid cell division occurs during storage root
thickening (Kim et al., 2002). Noh et al. (2010) found that a
MADS-box protein copy DNA, SRD1 enhances the proliferation
of the metaxylem and cambium cells during the auxin-dependent
initial thickening and growth of storage roots. Storage root
development in sweetpotato is enhanced when an expansin
gene (IbEXP1) is down-regulated (Noh et al., 2012), but lignin
biosynthesis is inhibited as starch biosynthesis is enhanced during
early storage root formation (Firon et al., 2013). Details on the
molecular regulation of storage root formation in sweetpotato
have been reviewed by Ravi et al. (2009, 2014). No literature
was available on the genetic control of ARs and LRs in cassava.
However, de Souza et al. (2004) showed overexpression of the
Mec1 gene which codes for a Pt2L4 glutamic acid-rich protein
and a RING Zinc Finger and LEA protein genes in the secondary
xylem tissue of storage roots relative to fibrous roots. Based on
a correlation network, the relationship between KNOX1 genes,
phytohormone biosynthesis and phytohormone-signaling genes
was established, and it was hypothesized that phytohormones are
involved in the initiation of storage root development in cassava
(Sojikul et al., 2015). Both potato and cassava storage organs
have been substantially studied, but not the genetic and hormonal
control of RSA for either crop.

In addition to hormones, signaling components, and
transcription factors, micro-interfering RNAs (miRNAs) and
small-interfering RNAs (siRNAs) have been shown to affect RSA
in plants, as reviewed by Meng et al. (2010) and Khan et al.
(2011). The miRNAs and siRNAs are thought to be involved
in auxin signaling, nutrition metabolism and stress response
by mediating signal interactions. They have been identified in
embryonic root development, radial patterning, formation of

ARs and LRs. However, their role in RTCs has not yet been
studied.

THE RELATIONSHIP BETWEEN ROOT
SYSTEM ARCHITECTURE AND ABIOTIC
STRESSES

Root system architecture has a central role in crop plants’
response to abiotic stresses. Since roots grow underground, they
are the first to sense abiotic stresses and adjust their genetic
program for post-embryonic development to survive the stress
(Lynch, 1995). Plant roots obtain water and nutrients from the
soil, which is a complex system with intrinsic properties, abiotic
and biotic interactions. Modulation of RSA is therefore affected
when changes in the plant nutritional status and external nutrient
supply over time are perceived and integrated into the intrinsic
root development program. The degree of root plasticity is based
on variations in the number, extension, placement, and growth
direction of individual components of the root system (Giehl
et al., 2014). These changes in RSA consequently affect the growth
and development of above-ground biomass (Paez-Garcia et al.,
2015) by altering carbon allocation to shoots and/or triggering
signaling pathways involving hormones, proteins, RNAs, among
others (DoVale and Fritsche-Neto, 2015). In this case therefore,
roots indirectly regulate leaf stomatal conductance and affect leaf
blade posture and photosynthetic rate when exposed to abiotic
stress.

Different abiotic stresses affect RSA in varied ways. Table 2
summarizes the root traits necessary for adaptation to different
abiotic stresses. Deeper roots are associated with increased
acquisition of water and mobile nutrients like N that may leach
to lower soil layers (Lynch and Wojciechowski, 2015). LRs, the
main determinants of ultimate RSA, are influenced strongly by
moisture and nutrient distribution in the soil (Postma et al.,
2014). Deak and Malamy (2005) showed that LR formation from
LR primordia in Arabidopsis is repressed under drought stress
when ABA and lateral root development (LRD2) gene, interact
with auxin. Since ABA, LRD2 and auxin are also involved in RSA
even without drought stress, it appears that such genes like LRD2
regulate the formation of LRs through promotive and repressive
hormone signaling pathways depending on the environmental
conditions. Repression of LR development under abiotic stress
is of particular importance in root crops. In sweetpotato for
example, the final storage root yield depends on the capacity
of a genotype to develop LRs on the main ARs. Those with
arrested or non-emerged LRs develop lignified steles, which
inhibit localized swelling into storage roots (Villordon et al.,
2012). Other Important contributors to RSA include single-cell
projections from root epidermal cells referred to as root hairs
(Tanaka et al., 2014). A high density of both root hairs and LRs
is associated with increased nutrient uptake, especially in the
top soil (Postma et al., 2014) but increased metabolic costs is
a trade-off here (Zhan et al., 2015). There are other trade-offs
associated with crop adaptation to individual abiotic stresses.
Primary root length is inhibited under low-soil phosphorus (P)
conditions, while LR development is promoted thereby leading to
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TABLE 2 | A summary of relevant phenotypes and required traits under different abiotic stresses.

Desired phenotypes Required traits Ref. general Ref. RTCs

Drought • Deeper root systems
• Redistribution of branch root

density from surface to depth
• Increased radial hydraulic

conductivity at depth
• Reduced metabolic costs

• Longer primary roots
• Larger root tip diameter
• Steeper, abundant and longer lateral

roots
• Reduced cortical cell file number
• Larger root cortical aerenchyma
• Gravitropism

• Wasson et al., 2012
• Uga et al., 2013
• Lynch, 2013
• Lynch et al., 2014
• Comas et al., 2013

• Wishart et al., 2014
• Pardales and Yamauchi, 2003

Nutrient deficiency • Top soil foraging
• Rhizosphere modification
• Reduced metabolic costs

• Abundant and longer root hairs
• Abundant and longer lateral roots
• Shallow and abundant adventitious

roots
• Exudation of organic anions
• Association with microbes
• Larger root cortical aerenchyma
• Reduced root respiration

• Lynch and Brown, 2001
• Richardson et al., 2009
• Forde, 2014
• Gruber et al., 2013
• Lynch, 2015
• Walch-Liu et al., 2006
• Postma and Lynch, 2011
• Nielsen et al., 1998
• Nielsen et al., 2001

• Melteras et al., 2008
• Hgaza et al., 2012
• O’Sullivan, 2008
• Wishart et al., 2013

Salinity • Water extraction efficiency
• Ion exclusion

• Reduction in main root elongation
• Redistribution of root mass between

main and lateral roots
• Reduction in sodium transport to

shoots
• Compartmentalization of sodium ions

into the root steles and vacuoles

• Munns and Tester, 2008
• Julkowska et al., 2014
• Roy et al., 2013
• Rus et al., 2006
• Katori et al., 2010
• Gupta and Huang, 2014

• None

a shallower root system. This has negative effects under drought
stress where deeper roots are necessary in order to have better
access to water (Wasson et al., 2012). Reduced frequency of
LR branching improves N uptake where genotypes with fewer
but longer LRs have greater axial root elongation, deeper roots
and better N uptake than those with a higher number of LRs
(Zhan and Lynch, 2015). On the other hand, a larger number of
LRs is required under P-limited conditions for topsoil foraging
(Lynch and Brown, 2001). Since abiotic stresses normally occur
in combination under field conditions, it is therefore evident that
there is ‘no size fits all’ if adaptation to abiotic stress conditions is
done considering each stress individually.

In RTCs, it is known that the root system is made up of ARs
and LRs which presumably are involved in water and nutrient
uptake and hence respond to abiotic stress. However, some
RTCs have complex RSA because the harvestable part is also
underground with several root classes, e.g., in potato, which
may have different functions with regard to adaptation to abiotic
stress. The potato root system is known to be shallow, with
poor ability to penetrate soils thereby being drought susceptible
(Porter et al., 1999). Despite having a shallow root system, potato
is still not efficient in P and N uptake because the larger root
system has a respiration carbon cost (Balemi and Schenk, 2009).
Furthermore, most findings studied the root system as a whole
without identifying possible roles for different root classes. An
attempt at this was done by Wishart et al. (2013) who reported
genetic variation for potato root traits without any specific abiotic
stress. They suggested that basal roots were responsible for water
uptake and anchorage while stolon roots were responsible for
nutrient uptake and tuberization. Cassava and sweetpotato have
less root classes compared to potato because the harvestable
part is also a root. Pardales et al. (1999) studied the effects
of high root zone temperature on root systems of cassava and

sweetpotato. They showed a reduction in the total length of ARs,
number and total length of first order LRs, under high root zone
temperature in both crops. Pardales and Yamauchi (2003) also
showed a suppression of AR and LR formation and development
under drought stress in both sweetpotato and cassava. Recent
studies in sweetpotato indicate direct influence on RSA of spatial
and temporal availability of water and N availability similar to
model systems (Villordon et al., 2014a). In yam, Hgaza et al.
(2012) found no fertilizer response of tuber yield but a positive
correlation between thinner, longer roots with tuber yield.

MANIPULATING ROOT SYSTEM
ARCHITECTURE FOR ABIOTIC STRESS
TOLERANCE

The aim of carrying out RSA studies in crop plants is
to understand areas of interest within the root system and
incorporate this information in crop improvement programs.
Several approaches may be applied in manipulating RSA in order
to adapt crops to changing climates.

Combined-Stress versus Single-Stress
Selection
Most of the reported studies above were carried out for
stress-specific responses. However, stresses always occur in
combination, with different scenarios and complexity, to which
responses are also varied. In this case therefore, combined
stress scenarios may be considered in relation to RSA. The
complexity of the root growing environment and the limitations
associated with studying only one trait could be lessened by
ideotype or trait-based breeding, originally proposed by Donald
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(1968). Ideotype breeding requires consideration of relationships
between multiple traits in addition to each individual trait
(Rasmusson, 1987). A potato root ‘ideotype’ as summarized by
Wishart et al. (2013) for example, is hypothesized to be one
which is architecturally plastic, long, deep, and thin, as well as
being able to self-protect against parasites and pathogen. Such
a system should ideally be responsive to water deficits, able to
transport ABA to shoots, enable efficient stomatal closure, and
have minimum carbon costs, either by producing aerenchyma
or increasing specific root length, increasing root surface area,
or desirable root exudates and symbioses in the rhizosphere. In
sweetpotato, Villordon and Clark (2014) found an association
among RSA, virus resistance and availability of N thereby
indicating the necessity of a more systematic approach toward
determining and managing yield constraints. They showed that
AR and LR formation was decreased by about 51% under
deficiency and virus infection. On the other hand, storage root
formation is known to fail under excess moisture and high
N as more biomass is partitioned to above-ground biomass
(Villordon et al., 2012). An ideotype for sweetpotato therefore,
in addition to being efficient in water and mineral uptake and
utilization, and being pathogen resistance as indicated above
for potato, should also be tolerant to excess moisture and have
balanced biomass partitioning between storage root and above-
ground biomass. Trait -based breeding does not always result
in accumulation of additive effects, rather synergies among
traits need to be considered. It is proposed to incorporate root
phenes into breeding programs targeting RSA. A phene, which
has variants referred to as phene states, is the basic functional
unit of a phenotype, with a phenotype being defined as the
particular combination of states of all phenes of an individual
(York et al., 2013). With regard to RSA, Lynch and Brown (2012)
propose ‘elementary’ and ‘unique’ root phenes which cannot
be decomposed further and which are a result of only one set
of genes and processes. Root growth angle may for example
be considered one of the phenes of root depth as it is only
one of the factors determining root depth, while root depth is
referred to as a phene aggregate, being a result of several phenes.
A group of interacting phenes that may be selected together
are referred to as a phene module. York et al. (2013) proposed
hypotheses for integrating root phenes in a breeding program.
They considered synergies within a phene module which increase
as the number of positively acting phene-state combination
increases. Metabolic costs are to be expected with such synergies
except in metabolically neutral, positively acting, phene-state
combinations. The interactions between phenes within plants,
between plants and with the environment are expected to result
in genetic variation in RSA.

Model-Assisted Phenotyping
In breeding approaches such as ideotype or phene-integrated,
structural-functional plant modeling and simulation may offer
a robust way of understanding the complexity of the non-
linear signals and transduction pathways involved in the roots’
responses to multiple abiotic stresses. This is expected to provide
new mechanistic insights into the regulation of root growth
and development (Chickarmane et al., 2010). In addition to

advances in high-throughput phenotyping techniques that allow
rapid evaluation of a large number of genotypes, model-assisted
phenotyping enhances prediction of difficult traits such as
those that vary with environmental conditions. It also allows
precise prediction of genotype × environment × management
interaction over a large number of environments thereby
allowing the estimation of comparative advantage of a given
phene state in different environments (Tardieu and Tuberosa,
2010). Multi-scale modeling which examines behavior at
subcellular, cellular, tissue, organ, and whole organism states
may allow the prediction of the effect of a given phene, phene
state, phene module, or phenotype in a complex abiotic stress
environment (Band et al., 2012). Leitner et al. (2014) showed
that functional-structural root models were appropriate to better
comprehend the role of roots in whole-plant adaptation to diverse
drought scenarios, in addition to their contribution to distinct
drought scenarios. Using a dynamic root architecture model and
root xylem hydraulic properties model, they showed that plants
which transpired more had root axes which matched the available
water distribution. They also found that water saving genotypes
had lower root conductance than the water spending genotypes.
Despite these advantages, encouragement for the adoption of
root models needs to be accompanied with realistic and more
explicit plant regulatory networks, in addition to integration
with phenomic databases (Dunbabin et al., 2013) in order to be
more representative and applicable to actual field performance of
genotypes. This approach has not been applied in RTCs yet.

Genomics-Based Approaches
Manipulating root traits has been carried out in several crops
through the use of molecular markers. Several specific genes
related with RSA were identified in crop plants, either from
gene mutants with quantifiable characteristics, or from QTL
analyses. The genetic control of LR formation as reviewed
above was elucidated based on gene mutants with quantifiable
characteristics. In rice, a gene controlling root angle, Deeper
Rooting 1 (DRO1), was identified using QTL mapping and
introgressed into an elite line through backcrossing, whereas
Phosphorus Starvation 1 (PSTOL1), a pup-1-specific protein
kinase gene confers early root growth for P-acquisition in
rice (Gamuyao et al., 2012) and sorghum (Hufnagel et al.,
2014). However, information on how these genes/QTL affect
the phenotypes and/or their performance in different genetic
backgrounds and/or different environments is still largely
lacking. This is because RSA response to environmental
conditions is normally quite different under field conditions,
given the broader spectrum of stresses the roots find themselves
in Rich and Watt (2013). Extrapolating results obtained from
a response to a specific abiotic stress is not therefore adequate
(Jung and McCouch, 2013). Most of these QTLs are small-
effect QTLs, i.e., they are normally conditioned by a single
gene and therefore not stable across environments. Kitomi
et al. (2015) for example, established that genotypes having the
same functional allele of DRO1 could have different rooting
angles. Small-effect QTLs therefore are assumed to be part of
a set of minor QTLs. In such cases, it is necessary to carry
out comparative data analysis and integration across controlled
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environments and field studies to establish target variants for
further investigation and introgression into genotypes of interest.
Alternatively, identification of large-effect QTLs which are more
stable across environments and genetic backgrounds seems to
be the most promising way of ensuring impact from genomics-
assisted breeding methods. Dixit et al. (2015) confirmed the
multi-genic and multi-environment effectiveness of qDTY12.1,
a large-effect QTL identified on chromosome 12 of the rice
genome. They confirmed the central role of the no apical
meristem (OsNAM12.1) transcription factor in the activity of
qDTY12.1 together with promoters of six intra-QTL genes with
NAM binding sites as well as three co-localized and/or partially
co-expressed genes of OsNAM12.1. These findings suggested that
identification and proper analysis of large-effect QTLs together
with their component genes could lead to a more efficient
breeding process for complex traits such as those involved in
adaptation and abiotic stress tolerance.

These reports are mainly based on Arabidopsis and cereal
crops with simple genetic make-ups. Most RTCs on the other
hand are polyploid with very complex genetic backgrounds.
Genetic analysis of these crops is complicated by multiple alleles
and loci, mixed inheritance patterns, association between ploidy
and variation in mating system, among others (Dufresne et al.,
2014). Marker-based procedures developed in diploid species
therefore present difficulty to apply in most polyploid RTCs and
adoption of these approach is not therefore straight forward.
Application of the most commonly used genotyping methods,
including new generation sequencing techniques, in RTCs
present problems in allele dosage determination, presence of null
alleles, distinguishing orthologs from paralogs, and copy number
variation (Dufresne et al., 2014). As a consequence, although
new techniques such as genomic selection offer great potential
in marker-based breeding, they are currently still difficult to
adopt. Additive, dominant and epistatic genetic effects are all
important in RTCs due to heterozygosity (Ceballos et al., 2015)
while models developed for genomic selection in cereals mainly
consider additive genetic effects. Marker-based approaches in this
class of crops therefore require re-thinking on the methods and
pipelines available so far.

In addition to identifying QTLs and genes of interest from a
species, another approach for adapting roots to abiotic stress is
through transgenic technology. For example, spermidine synthase
genes (FSPD1) confer higher antioxidant enzyme activities to
plants. Under abiotic stress, plants with higher antioxidant
enzyme activities are generally more tolerant, as they are better
able to remove by-product reactive oxygen species (ROS) that are
harmful to the plant if allowed to accumulate. Using transgenic
technology, sweetpotato transformation with spermidine synthase
genes (FSPD1) from Cucurbita ficifolia increased their multiple
stress tolerance, with a higher concentration of FSPD1 in
leaves and storage roots (Kasukabe et al., 2006). Estrada-Melo
et al. (2015) used a 9-cis-epoxycarotenoid dioxygenase gene from
tomato (LeNCED1) overexpressed in petunia and confirmed that
NCED increased drought resistance of the transgenic plants.
A calcium-dependent protein kinase (OsCDPK7) conferred
tolerance to cold and salt/drought in rice transgenics. Two
distinct pathways for cold and salt/drought tolerance using a

single CDPK were implied which showed that manipulation of
CDPK has great potential to adaptation and abiotic stress tolerant
crop improvement. ‘Gene stacking,’ a form of ideotype breeding,
could be a good alternative to transgenic technology that relies
on a single gene. However, this has only been successful in
pest control engineering such as the Bt toxin resistance (York
et al., 2013). Gene stacking for complex traits is therefore still a
challenge due to trait interaction.

Genome editing, a new approach that involves targeted
DNA sequence modification through creation of double-strand
breaks using sequence specific nucleases, provides possibilities
to change a protein’s amino acid sequence through specific
nucleotide substitutions, delete genes or chromosome segments,
and introduce foreign DNA at desired genomic regions (Voytas,
2013). Several nucleases are available for targeted genome
engineering (reviewed by Esvelt and Wang, 2013), but the system
receiving most attention recently is CRISPR/Cas9, which involves
the use of a guided RNA to create targeted mutations in candidate
genes of key pathways in order to identify their effects and
create new variation within a relatively short time (Cong et al.,
2013), among other potential uses. These methods are gaining
application in crop plants including RTCs. Clasen et al. (2016)
used a TALENs approach to improve cold storage and processing
traits in potato. The vacuolar invertase (VINV)gene (VINV)
encoding a protein that breaks down sucrose to glucose and
fructose was silenced in order to minimize the accumulation of
reducing sugars which turn into anti-nutrients upon processing.

No matter which manipulation method is followed, proper
phenotypic evaluation prior to and after such manipulations is
important in order to realize and quantify genetic gains from RSA
manipulation in a breeding program.

PHENOTYPING ROOT SYSTEM
ARCHITECTURE TRAITS: AVAILABLE
TECHNOLOGIES/CHALLENGES

Since roots grow below ground, studying the entire root system
naturally requires digging it out, a complex process in itself, and
it is difficult to extract the entire system without breaking off
the finer parts. For this reason, studies have mainly dwelled on
above-ground traits related to abiotic stress tolerance. However,
given the pressures on crop productivity caused by global climate
change, with the associated abiotic stresses, and the notion
that food production needs to double in the next few years to
accommodate the growing global population, root manipulation
seems to hold the key toward sustainable food production.
Villordon et al. (2014a) suggested that a paradigm shift toward
RSA studies would enable a truly inclusive green revolution
and allow food-insecure, resource-poor farmers who depend on
RTCs in developing countries to also benefit. With this mindset,
plant biologists, geneticists, and breeders have now shifted some
focus toward studying of root traits. Due to the aforementioned
complexity of studying roots under the soil, plant scientists
are now set on finding minimally intrusive, non-destructive,
whole-root system evaluating platforms. Hydroponics and gels
are the most widely used systems to phenotype root systems
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(Jung and McCouch, 2013). Although, they offer a simple way to
study different root traits and have given insight into root growth
and development, both are controlled and do not represent
actual field environments, and correlation of the findings from
such experiments with actual performance of a plant in its
natural environment are limited. To address this bottleneck,
plant scientists are continually seeking to develop methods
that will allow study of RSA in a more natural environment.
Several methods have been proposed and applied in various
studies including ‘shovelomics’ (Trachsel et al., 2011), soil coring
(Wasson et al., 2014), rhizolysimeters (Eberbach et al., 2013) and
minirhizotrons (Maeght et al., 2013), which are all soil-based.
However, these methods are also low throughput, slow, and not
amenable to large numbers of genotypes like those required for
genome-wide association mapping studies. Image-based systems
have also been developed and proposed to study roots in their
natural environments, including X-ray computed tomography
(Tracy et al., 2010) where x-rays are used to acquire 3-D cross-
sectional images of the roots within the soil, Laser (Braga et al.,
2009) which allows collection of bio-speckle patterns of gel-
grown roots, nuclear magnetic resonance (NMR: Menzel et al.,
2007), ground penetrating radar (GPR; Hirano et al., 2012),
infra-red (IR) imaging (Dokken and Davis, 2007), and near-infra-
red (NIR) imaging (Tirlapur and König, 1999), among others.
However, application of some of these methods is still limited by
the costs involved and to a few genotypes. Another bottleneck
associated with imaging methods is image analysis. Several root
image analysis platforms have been developed to address this
limitation2. With these large numbers of imaging and image
analysis platforms, the need for sharing and use of data requires
establishment of trait ontology across them to allow development
of root ideotypes for different environments. Efforts by Lobet
et al. (2015) to develop a unified root architecture development
language are therefore right on time. This, combined with scaling
up of the image analysis methods mentioned above, will be able to
provide further knowledge required to adapt crops to their highly
variable environments.

2 www.plant-image-analysis.org

CONCLUSION

The increasing global population requires increased food
production on the same or even less agricultural land as used
currently, if the effects of climate change render some of
the available marginal lands unfit for agricultural production.
Most of the present and past crop improvement efforts have
focused on above-ground traits to adapt crop plants to different
production constraints. Although great progress has been made,
and food production significantly increased, by manipulating
above-ground traits, an estimated 800 million people are still
food insecure, whereas yields, especially in cereal, have reached
their yield potential and are plateauing in certain regions of
the globe. It is therefore time for crop scientists to tap into
un-explored and less exploited diversity within RSA traits to
ensure rapid genetic gains, and stable and enhanced productivity
of agricultural systems for future environmental conditions and
climate change scenarios. Due to the quantitative nature of RSA
traits and complex interaction of several underlying pathways
that control them, response of RSA to multiple individual stresses
or combination of stresses is variable. Modeling of the responses
of root traits to multiple stress scenarios in a combination of
high-throughput root-trait phenotyping techniques, alongside a
robust database and data analytical pipeline, could be a way
to go. This proposed strategy is applicable to all crops, but
is more urgent in RTCs, as the second largest source of food
security after cereals, mainly growing in marginal areas where
many cereals cannot survive. Also, for RTCs, the harvestable
organs are part of the RSA. It is recommended to increase
focus on RSA research by investing more resources. RTCs
can learn from what has been found so far in cereals and
adopt some of their methods, while developing high-throughput
techniques to quantify RSA traits under optimal and stressful
conditions.

AUTHOR CONTRIBUTIONS

Review was conceptualized and written by MK, DG, and AV.

REFERENCES
Asfary, A. F., Wild, A., and Harris, P. M. (1983). Growth, mineral

nutrition and water use by potato crops. J. Agric. Sci. 100, 87–101. doi:
10.1017/S0021859600032470

Balemi, T., and Schenk, M. K. (2009). Genotypic difference of potato in carbon
budgeting as a mechanism of phosphorus utilization efficiency. Plant Soil 322,
91–99. doi: 10.1007/s11104-009-9897-0

Band, L. R., Fozard, J. A., Godin, C., Jensen, O. E., Pridmore, T., Bennett, M. J.,
et al. (2012). Multiscale systems analysis of root growth and development:
modeling beyond the network and cellular scales. Plant Cell 24, 3892–3906. doi:
10.1105/tpc.112.101550

Bao, Y., Aggarwal, P., Robbins, N. E., Sturrock, C. J., Thompson, M. C., Tan, H. Q.,
et al. (2014). Plant roots use a patterning mechanism to position lateral root
branches toward available water. Proc. Natl. Acad. Sci. U.S.A. 111, 9319–9324.
doi: 10.1073/pnas.1400966111

Bonfim, N. N., Graciano-Ribeiro, D., and Nassar, N. M. A. (2011). Genetic diversity
of root anatomy in wild and cultivated Manihot species. Genet. Mol. Res. 10,
544–551. doi: 10.4238/vol10-2gmr1093

Boudolf, V., Vlieghe, K., Beemster, G. T. S., Magyar, Z., Acosta, J. A. T.,
Maes, S., et al. (2004). The plant-specific cyclin-dependent kinase CDKB1;1
and transcription factor E2Fa-DPa control the balance of mitotically dividing
and endoreduplicating cells in Arabidopsis. Plant Cell 16, 2683–2692. doi:
10.1105/tpc.104.024398

Braga, R. A., Dupuy, L., Pasqual, M., and Cardoso, R. R. (2009). Live biospeckle
laser imaging of root tissues. Eur. Biophys. J. 38, 679–686. doi: 10.1007/s00249-
009-0426-0

Busse, J. S., and Palta, J. P. (2006). Investigating the in vivo calcium transport
path to developing potato tuber using 45Ca: a new concept in potato tuber
calcium nutrition. Physiol. Plant. 128, 313–323. doi: 10.1111/j.1399-3054.2006.
00741.x

Casimiro, I., Marchant, A., Bhalerao, R. P., Beeckman, T., Dhooge, S., Swarup, R.,
et al. (2001). Auxin transport promotes Arabidopsis lateral root initiation. Plant
Cell 13, 843–852. doi: 10.2307/3871344

Ceballos, H., Kawuki, R. S., Gracen, V. E., Yencho, G. C., and Hershey, C. H.
(2015). Conventional breeding, marker-assisted selection, genomic selection
and inbreeding in clonally propagated crops: a case study for cassava. Theor.
Appl. Genet. 128, 1647–1667. doi: 10.1007/s00122-015-2555-4

Frontiers in Plant Science | www.frontiersin.org 9 November 2016 | Volume 7 | Article 1584

www.plant-image-analysis.org
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01584 October 28, 2016 Time: 12:48 # 10

Khan et al. Root System Architecture of Root and Tuber Crops

Charles-Dominique, T., Mangenet, T., Rey, H., Jourdan, C., and Edelin, C. (2009).
Architectural analysis of root system of sexually vs vegetated yam (Diocorea
rotundata Poir.), a tuber monocot. Plant Soil 317, 61–77. doi: 10.1007/s11104-
008-9788-9

Chaweewan, Y., and Taylor, N. (2015). Anatomical assessment of root formation
and tuberization in cassava (Manihot esculenta Crantz). Trop. Plant Biol. 8, 1–8.
doi: 10.1007/s12042-014-9145-5

Chickarmane, V., Roeder, A. H. K., Tarr, P. T., Cunha, A., Tobin, C., and
Meyerowitz, E. M. (2010). Computational morphodynamics: a modeling
framework to understand plant growth. Annu. Rev. Plant Biol. 61, 65–87. doi:
10.1146/annurev-arplant-042809-112213

Clasen, B. M., Stoddard, T. J., Luo, S., Demorest, Z. L., Li, J., Cedrone, F., et al.
(2016). Improving cold storage and processing traits in potato through targeted
gene knockout. Plant Biol. J. 14, 169–176. doi: 10.1111/pbi.12370

Comas, L. H., Becker, S. R., Von Mark, V. C., Byrne, P. F., and Dierig, D. A. (2013).
Root traits contributing to plant productivity under drought. Front. Plant Sci.
4:442. doi: 10.3389/fpls.2013.00442

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex
genome engineering using CRISPR/Cas systems. Science 339, 819–823. doi:
10.1126/science.1231143

De Smet, I., Lau, S., Voß, U., Vanneste, S., Benjamins, R., Rademacher, E. H., et al.
(2010). Bimodular auxin response controls organogenesis in Arabidopsis. Proc.
Natl. Acad. Sci. U.S.A. 107, 2705–2710. doi: 10.1073/pnas.0915001107

de Souza, C. R., Carvalho, L. J., and de Mattos Cascardo, J. C. (2004).
Comparative gene expression study to identify genes possibly related to
storage root formation in cassava. Protein Pept. Lett. 11, 577–582. doi:
10.2174/0929866043406319

Deak, K. I., and Malamy, J. (2005). Osmotic regulation of root system architecture.
Plant J. 43, 17–28. doi: 10.1111/j.1365-313X.2005.02425.x

Dechassa, N., Schenk, M. K., Claassen, N., and Steingrobe, B. (2003). Phosphorus
efficiency of cabbage (Brassica oleracea L. var. capitata), carrot (Daucus
carota L.), and potato (Solanum tuberosum L.). Plant Soil 250, 215–224. doi:
10.1023/A:1022804112388

Dixit, S., Biswal, A. K., Min, A., Henry, A., Oane, R. H., Raorane, M. L., et al.
(2015). Action of multiple intra-QTL genes concerted around a co-localised
transcription factor underpins a large-effect QTL. Sci. Rep. 5:15183. doi:
10.1038/srep15183

Dokken, K. M., and Davis, L. C. (2007). Infrared imaging of sunflower and maize
root anatomy.J. Agric. Food Chem. 55, 10517–10530. doi: 10.1021/jf072052e

Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K., et al.
(1993). Cellular organization of the Arabidopsis thaliana root. Development 119,
71–84.

Donald, C. M. (1968). The breeding of crop ideotypes. Euphytica 17, 385–403. doi:
10.1007/BF00056241

DoVale, J., and Fritsche-Neto, R. (2015). “Root phenomics,” in Phenomics, eds R.
Fritsche-Neto and A. Borém (Cham: Springer International Publishing), 49–66.
doi: 10.1007/978-3-319-13677-6_4

Dufresne, F., Stift, M., Vergilino, R., and Mable, B. K. (2014). Recent progress
and challenges in population genetics of polyploid organisms: an overview of
current state-of-the-art molecular and statistical tools. Mol. Ecol. 23, 40–69. doi:
10.1111/mec.12581

Dunbabin, V. M., Postma, J. A., Schnepf, A., Pagès, L., Javaux, M., Wu, L.,
et al. (2013). Modelling root–soil interactions using three-dimensional models
of root growth, architecture and function. Plant Soil 372, 93–124. doi:
10.1007/s11104-013-1769-y

Eberbach, P. L., Hoffmann, J., Moroni, S. J., Wade, L. J., and Weston, L. A. (2013).
Rhizo-lysimetry: facilities for the simultaneous study of root behavior and
resource use by agricultural crop and pasture systems. Plant Methods 9:3. doi:
10.1186/1746-4811-9-3

El-Sharkawy, M. A. (2004). Cassava biology and physiology. Plant Mol. Biol. 56,
481–501. doi: 10.1007/s11103-005-2270-7

Estrada-Melo, A. C., Ma, C., Reid, M. S., and Jiang, C.-Z. (2015). Overexpression
of an ABA biosynthesis gene using a stress inducible promoter enhances
drought resistance in petunia. Hortc. Res. 2:15013. doi: 10.1038/hortres.
2015.13

Esvelt, K. M., and Wang, H. H. (2013). Genome-scale engineering for systems and
synthetic biology. Mol. Syst. Biol. 9:641. doi: 10.1038/msb.2012.66

Firon, N., LaBonte, D., Villordon, A., Kfir, Y., Solis, J., Lapis, E., et al. (2013).
Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates
down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis
at an early stage of storage root formation. BMC Genomics 14:460. doi:
10.1186/1471-2164-14-460

Forde, B. G. (2014). Nitrogen signaling pathways shaping root system architecture:
an update. Curr. Opin. Plant Biol. 21, 30–36. doi: 10.1016/j.pbi.2014.
06.004

Fukaki, H., and Tasaka, M. (2009). Hormone interactions during lateral root
formation. Plant Mol. Biol. 69, 437–449. doi: 10.1007/s11103-008-9417-2

Gamuyao, R., Chin, J. H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S.,
Dalid, C., et al. (2012). The protein kinase Pstol1 from traditional rice
confers tolerance of phosphorus deficiency. Nature 488, 535–539. doi: 10.1038/
nature11346

Giehl, R. F., Gruber, B. D., and von Wirén, N. (2014). It’s time to make changes:
modulation of root system architecture by nutrient signals. J. Exp. Bot. 65,
769–778. doi: 10.1093/jxb/ert421

Goh, T., Kasahara, H., Mimura, T., Kamiya, Y., and Fukaki, H. (2012). Multiple
AUX/IAA–ARF modules regulate lateral root formation: the role of Arabidopsis
SHY2/IAA3-mediated auxin signaling. Philos. Trans. R. Soc. Lond. B Biol. Sci.
367, 1461–1468. doi: 10.1098/rstb.2011.0232

Gruber, B. D., Giehl, R. F., Friedel, S., and von Wirén, N. (2013). Plasticity of
the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163,
161–179. doi: 10.1104/pp.113.218453

Gupta, B., and Huang, B. (2014). Mechanism of salinity tolerance in plants:
physiological, biochemical, and molecular characterization. Int. J. Genomics
2014, 701596. doi: 10.1155/2014/701596

Hashizume, T., Suye, S. I., Soeda, T., and Sugiyama, T. (1982). Isolation
and characterization of a new glucopyranosyl derivative of 6-(3-methyl-2-
butenylamino) purine from sweet potato tubers. FEBS Lett. 144, 25–28. doi:
10.1016/0014-5793(82)80561-9

Hayward, H. (ed.). (1938). The Structure of Economic Plants. New York, NY:
McMillan.

Hgaza, V. K., Diby, L. N., Herrera, J. M., Sangakkara, U. R., and Frossard, E.
(2012). Root distribution patterns of white yam (Dioscorea rotundata Poir.):
a field study. Acta Agric. Scand. B Soil Plant Sci. 62, 616–626. doi:
10.1080/09064710.2012.682734

Himanen, K., Boucheron, E., Vanneste, S., De Almeida Engler, J., Inze, D., and
Beeckman, T. (2002). Auxin-mediated cell cycle activation during early lateral
root initiation. Plant Cell 14, 2339–2351. doi: 10.1105/tpc.004960

Hirano, Y., Yamamoto, R., Dannoura, M., Aono, K., Igarashi, T., Ishii, M., et al.
(2012). Detection frequency of Pinus thunbergii roots by ground-penetrating
radar is related to root biomass. Plant Soil 360, 363–373. doi: 10.1007/s11104-
012-1252-1

Hochholdinger, F. (2009). “The Maize Root System: morphology, Anatomy, and
Genetics,” in Handbook of Maize: Its Biology, eds J. L. Bennetzen and S. C. Hake
(New York, NY: Springer), 145–160.

Hochholdinger, F., Guo, L., and Schnable, P. S. (2004). Lateral roots affect the
proteome of the primary root of maize (Zea mays L.). Plant Mol. Biol. 56,
397–412. doi: 10.1007/s11103-004-3476-9

Hufnagel, B., de Sousa, S. M., Assis, L., Guimaraes, C. T., Leiser, W., Azevedo, G. C.,
et al. (2014). Duplicate and conquer: multiple homologs of PHOSPHORUS-
STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum
performance on low-phosphorus soils. Plant Physiol. 166, 659–677. doi:
10.1104/pp.114.243949

Indira, P., and Kurian, T. (1977). A study on the comparative anatomical changes
undergoing tuberization in the roots of cassava and sweet potato. J. Root Crops
3, 29–32.

Iwama, K. (2008). Physiology of the potato: new insights into root system
and repercussions for crop management. Potato Res. 51, 333–353. doi:
10.1007/s11540-008-9120-3

Iwama, K., Nakaseko, K., and Gotoh, K. (1977). Analysis of the root system in
potato (Solanum tuberosum L.). 1. Varietal differences in root dry weight. Crop
Sci. Soc. 17, 28.

Iwama, K., Nakaseko, K., Isoda, A., Gotoh, K., and Nishibe, S. (1981). Relations
between root system and tuber yield in the hybrid population of the potato
plants. Jpn. J. Crop Sci. 50, 233–238. doi: 10.1626/jcs.50.233

Frontiers in Plant Science | www.frontiersin.org 10 November 2016 | Volume 7 | Article 1584

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01584 October 28, 2016 Time: 12:48 # 11

Khan et al. Root System Architecture of Root and Tuber Crops

Izumi, Y., Sunyoto, Y. E., and Iijima, M. (1999). Root system development
including root branching in cuttings of cassava with reference to shoot
growth and tuber bulking. Plant Prod. Sci. 2, 267–272. doi: 10.1626/pps.
2.267

Julkowska, M. M., Hoefsloot, H. C. J., Mol, S., Feron, R., de Boer, G.-J., Haring,
M. A., et al. (2014). Capturing Arabidopsis root architecture dynamics with
ROOT-FIT reveals diversity in responses to salinity. Plant Physiol. 166, 1387–
1402. doi: 10.1104/pp.114.248963

Jung, J. K. H., and McCouch, S. (2013). Getting to the roots of it: genetic
and hormonal control of root architecture. Front. Plant Sci. 4:186. doi:
10.3389/fpls.2013.00186

Kasukabe, Y., He, L., Watakabe, Y., Otani, M., Shimada, T., and Tachibana, S.
(2006). Improvement of environmental stress tolerance of sweet potatoby
introduction of genes for spermidine synthase. Plant Biotechnol. 23, 75–83. doi:
10.5511/plantbiotechnology.23.75

Katori, T., Ikeda, A., Iuchi, S., Kobayashi, M., Shinozaki, K., Maehashi, K.,
et al. (2010). Dissecting the genetic control of natural variation in salt
tolerance of Arabidopsis thaliana accessions. J. Exp. Bot. 61, 1125–1138. doi:
10.1093/jxb/erp376

Khan, G., Declerck, M., and Sorin, C. (2011). MicroRNAs as regulators of root
development and architecture. Plant Mol. Biol. 77, 47–58. doi: 10.1007/s11103-
011-9793-x

Kim, S. H., Mizuno, K., and Fujimura, T. (2002). Isolation of MADS-box
genes from sweet potato (Ipomoea batatas L.) Lam.) expressed specifically
in vegetative tissues. Plant Cell Physiol. 43, 314–322. doi: 10.1093/pcp/
pcf043

Kitomi, Y., Kanno, N., Kawai, S., Mizubayashi, T., Fukuoka, S., and Uga, Y. (2015).
QTLs underlying natural variation of root growth angle among rice cultivars
with the same functional allele of DEEPER ROOTING 1. Rice (N. Y.) 8, 16. doi:
10.1186/s12284-015-0049-2

Koshimizu, T., and Nishida, M. (1949). On the relation between the
distribution of free-auxin in the young sweet potato plant and its root
tuber formation. Bot. Mag. Tokyo. 62, 735–736. doi: 10.15281/jplantres1887.
62.146

Ku, A. T., Huang, Y.-S., Wang, Y.-S., Ma, D., and Yeh, K. W. (2008). IbMADS1
(Ipomoea batatas MADS-box 1 gene) is involved in tuberous root initiation
in sweet potato (Ipomoea batatas). Ann. Bot. 102, 57–67. doi: 10.1093/aob/
mcn067

Leitner, D., Felderer, B., Vontobel, P., and Schnepf, A. (2014). Recovering
root system traits using image analysis exemplified by two-dimensional
neutron radiography images of lupine. Plant Physiol. 164, 24–35. doi:
10.1104/pp.113.227892

Lobet, G., Pound, M. P., Diener, J., Pradal, C., Draye, X., Godin, C., et al. (2015).
Root system markup language: toward a unified root architecture description
language. Plant Physiol. 167, 617–627. doi: 10.1104/pp.114.253625

Lynch, J. (1995). Root architecture and plant productivity. Plant Physiol. 109, 7–13.
doi: 10.1104/pp.109.1.7

Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water
and N acquisition by maize root systems. Ann. Bot. 112, 347–357. doi:
10.1093/aob/mcs293

Lynch, J. P. (2015). Root phenes that reduce the metabolic costs of soil exploration:
opportunities for 21st century agriculture. Plant Cell Environ. 38, 1775–1784.
doi: 10.1111/pce.12451

Lynch, J. P., and Brown, K. M. (2001). Topsoil foraging-An architectural
adaptation of plants to low phosphorus availability. Plant Soil 237, 225–237.
doi: 10.1023/A:1013324727040

Lynch, J. P., and Brown, K. M. (2012). New roots for agriculture: exploiting the
root phenome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1598–1604. doi:
10.1098/rstb.2011.0243

Lynch, J. P., Chimungu, J. G., and Brown, K. M. (2014). Root anatomical
phenes associated with water acquisition from drying soil: targets
for crop improvement. J. Exp. Bot. 65, 6155–6166. doi: 10.1093/jxb/
eru162

Lynch, J. P., and Wojciechowski, T. (2015). Opportunities and challenges in the
subsoil: pathways to deeper rooted crops. J. Exp. Bot. 66, 2199–2210. doi:
10.1093/jxb/eru508

Maeght, J. L., Rewald, B., and Pierret, A. (2013). How to study deep roots-And why
it matters. Front. Plant Sci. 4:299. doi: 10.3389/fpls.2013.00299

Medina, R. D., Faloci, M. M., Gonzalez, A. M., and Mroginski, L. A. (2007).
In vitro cultured primary roots derived from stem segments of cassava
(Manihot esculenta) can behave like storage organs. Ann. Bot. 99, 409–423. doi:
10.1093/aob/mcl272

Melteras, M., Lebot, V., Asher, C. J., and O’Sullivan, J. N. (2008). Crop development
and root distribution in lesser yam (Dioscorea esculenta): implications for
fertilization. Exp. Agric. 44, 209–221. doi: 10.1017/S0014479708006339

Meng, Y., Ma, X., Chen, D., Wu, P., and Chen, M. (2010). MicroRNA mediated
signaling involved in plant root development. Biochem. Biophys. Res. Commun.
393, 345–349. doi: 10.1016/j.bbrc.2010.01.129

Menzel, M. I., Oros-Peusquens, A., Pohlmeier, A., Shah, N. J., Schurr, U., and
Schneider, U. H. (2007). 1H-NMR imaging and relaxation mapping - a tool to
distinguish the geographical origin of German white asparagus? J. Plant Nutr.
Soil Sci. 170, 24–38. doi: 10.1002/jpln.200625114

Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev.
Plant Biol. 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911

Nielsen, K. L., Bouma, T. J., Lynch, J. P., and Eissenstat, D. M. (1998). Effects of
phosphorus availability and vesicular arbuscular mycorrhizas on the carbon
budget of common bean (Phaseolus vulgaris). New Phytol. 139, 647–656. doi:
10.1046/j.1469-8137.1998.00242.x

Nielsen, K. L., Eshel, A., and Lynch, J. P. (2001). The effect of phosphorus
availability on the carbon economy of contrasting common bean (Phaseolus
vulgaris L.) genotypes. J. Exp. Bot. 52, 329–339. doi: 10.1093/jexbot/52.
355.329

Nieuwland, J., Maughan, S., Dewitte, W., Scofield, S., Sanz, L., and Murray,
J. A. (2009). The D-type cyclin CYCD4;1 modulates lateral root density in
Arabidopsis by affecting the basal meristem region. Proc. Natl. Acad. Sci. U.S.A.
106, 22528–22533. doi: 10.1073/pnas.0906354106

Noh, S. A., Lee, H.-S., Huh, E. J., Huh, G. H., Paek, K.-H., Shin, J. S., et al. (2010).
SRD1 is involved in the auxin-mediated initial thickening growth of storage
root by enhancing proliferation of metaxylem and cambium cells in sweetpotato
(Ipomoea batatas). J. Exp. Bot. 61, 1337–1349. doi: 10.1093/jxb/erp399

Noh, S. A., Lee, H.-S., Kim, Y.-S., Paek, K.-H., Shin, J. S., and Bae, J. M. (2012).
Down-regulation of the IbEXP1 gene enhanced storage rootdevelopment in
sweetpotato. J. Exp. Bot. 63, 695–709. doi: 10.1093/jxb/ers236

Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., and Tasaka, M. (2007). ARF7
and ARF19 regulate lateral root formation via direct activation of LBD/ASL
genes in Arabidopsis. Plant Cell 19, 118–130. doi: 10.1105/tpc.106.047761

Orman-Ligeza, B., Parizot, B., Gantet, P. P., Beeckman, T., Benett, M. J.,
and Draye, X. (2013). Post-embryonic root organogenesis in cereals:
branching out from model plants. Trends Plant Sci. 18, 459–467. doi:
10.1016/j.tplants.2013.04.010

O’Sullivan, J. N. (2008). Root distribution of yam (Dioscorea alata) determined by
strontium tracer. Exp. Agric. 44, 223–233. doi: 10.1017/S0014479708006169

Overvoorde, P., Fukaki, H., and Beeckman, T. (2010). Auxin control of
root development. Cold Spring Harb. Perspect. Biol. 2010:a001537. doi:
10.1101/cshperspect.a001537

Paez-Garcia, A., Motes, C. M., Scheible, W., Chen, R., Blancaflor, E. B., and
Monteros, M. J. (2015). Root traits and phenotyping strategies for plant
improvement. Plants 4, 334–355. doi: 10.3390/plants4020334

Palta, J. P. (2010). Improving potato tuber quality and production by targeted
calcium nutrition: the discovery of tuber roots leading to a new concept
in potato nutrition. Potato Res. 53, 267–275. doi: 10.1007/s11540-010-
9163-0

Pardales, J. R., Baiioc, D. M., Yamauchi, A., Iijima, M., and Kono, Y. (1999).
Root system development of cassava and sweetpotato during early growth stage
as affected by high root zone temperature. Plant Prod. Sci. 2, 247–251. doi:
10.1626/pps.2.247

Pardales, J. R., and Esquibel, C. B. (1996). Effect of drought at different time during
establishment period on the root system development of cassava. Jpn. J. Crop
Sci. 65, 93–97. doi: 10.1626/jcs.65.93

Pardales, J. R., and Yamauchi, A. (2003). Regulation of root development in
sweetpotato and cassava by soil moisture during their establishment period.
Plant Soil 255, 201–208. doi: 10.1023/A:1026160309816

Parker, C. J., Carr, M. K. V., Jarvis, N. J., Evans, M. T. B., and Lee, V. H. (1989).
Effects of subsoil loosening and irrigation on soil physical properties, root
distribution and water uptake of potatoes (Solanum tuberosum). Soil Tillage Res.
13, 267–285. doi: 10.1016/0167-1987(89)90003-2

Frontiers in Plant Science | www.frontiersin.org 11 November 2016 | Volume 7 | Article 1584

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01584 October 28, 2016 Time: 12:48 # 12

Khan et al. Root System Architecture of Root and Tuber Crops

Porter, G. A., Opena, G. B., Bradbury, W. B., McBurnie, J. C., and Sisson, J. A.
(1999). Soil management and supplemental irrigation effects on potato: I. Soil
properties, tuber yield, and quality. Agron. J. 91, 416–425.

Postma, J. A., Dathe, A., and Lynch, J. P. (2014). The optimal lateral root branching
density for maize depends on nitrogen and phosphorus availability. Plant
Physiol. 166, 590–602. doi: 10.1104/pp.113.233916

Postma, J. A., and Lynch, J. P. (2011). Root cortical aerenchyma enhances the
growth of maize on soils with suboptimal availability of nitrogen, phosphorus,
and potassium. Plant Physiol. 156, 1190–1201. doi: 10.1104/pp.111.175489

Rasmusson, D. C. (1987). An evaluation of ideotype breeding. Crop Sci. 27,
1140–1146. doi: 10.2135/cropsci1987.0011183X002700060011x

Ravi, V., Chakrabarti, S. K., Makeshkumar, T., and Saravanan, R. (2014). Molecular
regulation of storage root formation and development in sweet potato. Hortic.
Rev. 42, 157–208. doi: 10.1002/9781118916827.ch03

Ravi, V., Naskar, S. K., Makeshkumar, T., Babu, B., and Prakash Krishnan, B. S.
(2009). Molecular physiology of storage root formation and development in
sweet potato (Ipomoea batatas (L.) Lam.). J. Root Crops 35, 1–27.

Rich, S. M., and Watt, M. (2013). Soil conditions and cereal root system
architecture: review and considerations for linking Darwin and Weaver. J. Exp.
Bot. 64, 1193–1208. doi: 10.1093/jxb/ert043

Richardson, A. E., Hocking, P. J., Simpson, R. J., and George, T. S. (2009).
Plant mechanisms to optimize access to soil phosphorus. Crop Pasture Sci. 60,
124–143. doi: 10.1071/CP07125

Roumeliotis, E., Kloosterman, B., Oortwijn, M., Kohlen, W., Bouwmeester, H. J.,
Visser, R. G., et al. (2012). The effects of auxin and strigolactones on tuber
initiation and stolon architecture in potato. J. Expt. Bot. 63, 4539–4547. doi:
10.1093/jxb/ers132

Roy, S. J., Huang, W., Wang, X. J., Evrard, A., Schmöckel, S. M., Zafar, Z. U.,
et al. (2013). A novel protein kinase involved in Na(+) exclusion revealed
from positional cloning. Plant Cell Environ. 36, 553–568. doi: 10.1111/j.1365-
3040.2012.02595.x

Rus, A., Baxter, I., Muthukumar, B., Gustin, J., Lahner, B., Yakubova, E.,
et al. (2006). Natural variants of AtHKT1 enhance Na+ accumulation
in two wild populations of Arabidopsis. PLoS Genet. 2:e210. doi:
10.1371/journal.pgen.0020210

Smith, S., and De Smet, I. (2012). Root system architecture: insights from
Arabidopsis and cereal crops. Philos. Trans. R. Soc. B. Biol. Sci. 367, 1441–1452.
doi: 10.1098/rstb.2011.0234

Sojikul, P., Saithong, T., Kalapanulak, S., Pisuttinusart, N., Limsirichaikul, S.,
Tanaka, M., et al. (2015). Genome-wide analysis reveals phytohormone action
during cassava storage root initiation. Plant Mol. Biol. 88, 531–543. doi:
10.1007/s11103-015-0340-z

Subere, J. O., Bolatete, D., Bergantin, R., Pardales, A., Belmonte, J. J., Mariscal, A.,
et al. (2009). Genotypic variation in responses of cassava (Manihot esculenta
Crantz) to drought and rewatering: root system development. Plant Prod. Sci.
12, 462–474. doi: 10.1626/pps.12.462

Tanaka, M., Kato, N., Nakayama, H., Nakatani, M., and Takahata, Y. (2008).
Expression of class I knotted1-like homeobox genes in the storage roots of sweet
potato. J. Plant Physiol. 165, 1726–1735. doi: 10.1016/j.jplph.2007.11.009

Tanaka, M., Takahata, Y., and Nakatani, M. (2005). Analysis of genes
developmentally regulated during storage root formation of sweetpotato.
J. Plant Physiol. 162, 91–102. doi: 10.1016/j.jplph.2004.06.003

Tanaka, N., Kato, M., Tomioka, R., Kurata, R., Fukao, Y., Aoyama, T.,
et al. (2014). Characteristics of a root hair-less line of Arabidopsis thaliana
under physiological stresses. J. Exp. Bot. 65, 1497–1512. doi: 10.1093/jxb/
eru014

Tardieu, F., and Tuberosa, R. (2010). Dissection and modelling of abiotic
stress tolerance in plants. Curr. Opin. Plant Biol. 13, 206–212. doi:
10.1016/j.pbi.2009.12.012

Tirlapur, U. K., and König, K. (1999). Near-infrared femtosecond laser pulses as
a novel non-invasive means for dye-permeation and 3D imaging of localised
dye-coupling in the Arabidopsis root meristem. Plant J. 20, 363–370. doi:
10.1046/j.1365-313X.1999.t01-1-00603.x

Togari, Y. (1950). A study of tuberous root formation in sweet potato. Bul. Nat.
Agr. Expt. Sta. Tokyo 68, 1–96.

Trachsel, S., Kaeppler, S. M., Brown, K. M., and Lynch, J. P. (2011). Shovelomics:
high throughput phenotyping of maize (Zea mays L.) root architecture in the
field. Plant Soil 341, 75–87. doi: 10.1007/s11104-010-0623-8

Tracy, S. R., Roberts, J. A., Black, C. R., McNeill, A., Davidson, R., and Mooney, S. J.
(2010). The X-factor: visualizing undisturbed root architecture in soils using
X-ray computed tomography. J. Exp. Bot. 61, 311–313. doi: 10.1093/jxb/erp386

Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., et al. (2013).
Control of root system architecture by DEEPER ROOTING 1 increases rice
yield under drought conditions. Nat. Genet. 45, 1097–1102.

Vanneste, S., De Rybel, B., Beemster, G. T., Ljung, K., De Smet, I., Van
Isterdael, G., et al. (2005). Cell cycle progression in the pericycle is not sufficient
for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis
thaliana. Plant Cell 17, 3035–3050. doi: 10.1105/tpc.105.035493

Villordon, A., LaBonte, D., Firon, N., and Carey, E. (2013). Variation in nitrogen
rate and local availability alter root architecture attributes at the onset of
storage root initiation in ‘Beauregard’ sweetpotato. HortScience 48, 808–815.
doi: 10.1371/journal.pone.0107384

Villordon, A., LaBonte, D., Solis, J., and Firon, N. (2012). Characterization of
lateral root development at the onset of storage root initiation in ‘Beauregard’
sweetpotato adventitious roots. HortScience 47, 961–968.

Villordon, A. Q., and Clark, C. A. (2014). Variation in virus symptom development
and root architecture attributes at the onset of storage root initiation in
‘Beauregard’ sweetpotato plants grown with or without nitrogen. PLoS ONE
9:e107384. doi: 10.1371/journal.pone.0107384

Villordon, A. Q., Firon, N., Clark, C. A., and Smith, A. (2014a). Manipulating
Root System Architecture in Sweetpotato for Global Food Security: Progress
Prospects And Applications. Paper Presented at the Society for Experimental
Biology meeting, Roots for Global Food Security session, Manchester. doi:
10.6084/m9.figshare.1462655

Villordon, A. Q., Ginzberg, I., and Firon, N. (2014b). Root architecture and
root and tuber crop productivity. Trend. Plant Sci. 19, 419–425. doi:
10.1016/j.tplants.2014.02.002

Vos, J., and Groenwold, J. (1986). Root growth of potato crops on a marine-clay
soil. Plant Soil 94, 17–33. doi: 10.1007/BF02380587

Voytas, D. F. (2013). Plant genome engineering with sequence-specific nucleases.
Annu. Rev. Plant Biol. 64, 327–350. doi: 10.1146/annurev-arplant-042811-
105552

Walch-Liu, P., Ivanov, I. I., Filleur, S., Gan, Y., Remans, T., and Forde, B. G.
(2006). Nitrogen regulation of root branching. Ann. Bot. 97, 875–881. doi:
10.1093/aob/mcj601

Wasson, A., Rebetzke, G., Kirkegaard, J., Christopher, J., Richards, R., and Watt, M.
(2014). Soil coring at multiple field environments can directly quantify variation
in deep root traits to select wheat genotypes for breeding. J. Exp. Bot. 65,
6231–6249. doi: 10.1093/jxb/eru250

Wasson, A., Richards, R., Chatrath, R., Misra, S., Prasad, S. S., Rebetzke, G.,
et al. (2012). Traits and selection strategies to improve root systems and
water uptake in water-limited wheat crops. J. Exp. Bot. 63, 3485–3498. doi:
10.1093/jxb/ers111

Weaver, J. E., and Bruner, W.E. (eds) (1927). Root Development of Vegetable Crops.
New York, NY: McGraw-Hill Book Company.

Wilson, L. A., and Lowe, S. B. (1973). The anatomy of the root system in
West Indian sweet potato [Ipomoea batatas (L.) Lam.] cultivars. Ann. Bot. 37,
633–643.

Wishart, J., George, T. S., Brown, L. K., Ramsay, G., Bradshaw, J. E., White, P. J.,
et al. (2013). Measuring variation in potato roots in both field and glasshouse:
the search for useful yield predictors and a simple screen for root traits. Plant
Soil 368, 231–249. doi: 10.1007/s11104-012-1483-1

Wishart, J., George, T. S., Brown, L. K., White, P. J., Ramsay, G., Jones, H., et al.
(2014). Field phenotyping of potato to assess root and shoot characteristics
associated with drought tolerance. Plant Soil 378, 351–363. doi: 10.1007/s11104-
014-2029-5

Xie, F., Frazier, T. P., and Zhang, B. (2011). Identification, characterization and
expression analysis of microRNAs and their targets in the potato (Solanum
tuberosum). Gene 473, 8–22. doi: 10.1016/j.gene.2010.09.007

Yasui, K. (1944). Notes on the propagation of sweet potato, Ipomoea batatas Lam. I.
The adventives bud formation in the root-tuber. Proc. Imperial Acad. 20, 41–44.

York, L. M., Nord, E. A., and Lynch, J. P. (2013). Integration of root phenes for soil
resource acquisition. Front. Plant Sci. 4:355. doi: 10.3389/fpls.2013.00355

Zhan, A., and Lynch, J. P. (2015). Reduced frequency of lateral root branching
improves N capture from low-N soils in maize. J. Exp. Bot. 66, 2055–2065. doi:
10.1093/jxb/erv007

Frontiers in Plant Science | www.frontiersin.org 12 November 2016 | Volume 7 | Article 1584

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01584 October 28, 2016 Time: 12:48 # 13

Khan et al. Root System Architecture of Root and Tuber Crops

Zhan, A., Schneider, H., and Lynch, J. (2015). Reduced lateral root branching
density improves drought tolerance in maize. Plant Physiol. 168, 1603–1615.
doi: 10.1104/pp.15.00187

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Khan, Gemenet and Villordon. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Plant Science | www.frontiersin.org 13 November 2016 | Volume 7 | Article 1584

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops
	Introduction To Roots And Root System Architecture
	Root System Architecture In Root And Tuber Crops
	Root Architecture in Root and Tuber Crops: The Current State of Knowledge
	The Link between Root Architecture and Yield in Root and Tuber Crops

	Hormonal And Genetic Control Pathways For Root System Architecture
	The Relationship Between Root System Architecture And Abiotic Stresses
	Manipulating Root System Architecture For Abiotic Stress Tolerance
	Combined-Stress versus Single-Stress Selection
	Model-Assisted Phenotyping
	Genomics-Based Approaches

	Phenotyping Root System Architecture Traits: Available Technologies/Challenges
	Conclusion
	Author Contributions
	References


