
fpls-07-00427 March 30, 2016 Time: 15:44 # 1

REVIEW
published: 31 March 2016

doi: 10.3389/fpls.2016.00427

Edited by:
Ian Moore,

University of Oxford, UK

Reviewed by:
Caiji Gao,

The Chinese University of Hong Kong,
China

Hao Wang,
South China Agricultural University,

China

*Correspondence:
Victoria Fernández

v.fernandez@upm.es;
Paula Guzmán-Delgado

pguzmandelgado@ucdavis.edu

Specialty section:
This article was submitted to

Plant Cell Biology,
a section of the journal

Frontiers in Plant Science

Received: 30 November 2015
Accepted: 18 March 2016
Published: 31 March 2016

Citation:
Fernández V, Guzmán-Delgado P,

Graça J, Santos S and Gil L (2016)
Cuticle Structure in Relation

to Chemical Composition:
Re-assessing the Prevailing Model.

Front. Plant Sci. 7:427.
doi: 10.3389/fpls.2016.00427

Cuticle Structure in Relation to
Chemical Composition:
Re-assessing the Prevailing Model
Victoria Fernández1*, Paula Guzmán-Delgado1,2*, José Graça3, Sara Santos3 and
Luis Gil1

1 Forest Genetics and Ecophysiology Research Group, Plant Physiology and Anatomy Unit, School of Forest Engineering,
Technical University of Madrid, Madrid, Spain, 2 Department of Plant Sciences, University of California, Davis, Davis, CA,
USA, 3 Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal

The surface of most aerial plant organs is covered with a cuticle that provides protection
against multiple stress factors including dehydration. Interest on the nature of this
external layer dates back to the beginning of the 19th century and since then,
several studies facilitated a better understanding of cuticular chemical composition
and structure. The prevailing undertanding of the cuticle as a lipidic, hydrophobic layer
which is independent from the epidermal cell wall underneath stems from the concept
developed by Brongniart and von Mohl during the first half of the 19th century. Such early
investigations on plant cuticles attempted to link chemical composition and structure
with the existing technologies, and have not been directly challenged for decades.
Beginning with a historical overview about the development of cuticular studies, this
review is aimed at critically assessing the information available on cuticle chemical
composition and structure, considering studies performed with cuticles and isolated
cuticular chemical components. The concept of the cuticle as a lipid layer independent
from the cell wall is subsequently challenged, based on the existing literature, and on
new findings pointing toward the cell wall nature of this layer, also providing examples of
different leaf cuticle structures. Finally, the need for a re-assessment of the chemical and
structural nature of the plant cuticle is highlighted, considering its cell wall nature and
variability among organs, species, developmental stages, and biotic and abiotic factors
during plant growth.

Keywords: cuticle, cell wall, cutin, epidermis, plant surfaces, polysaccharides, waxes

INTRODUCTION

Cuticles are the interface between non-woody aerial plant organs and the surrounding atmosphere
(Riederer and Schreiber, 2001). In general, the cuticle is located at the external, periclinal cell wall
of epidermal cells, being also projected between anticlinal walls (Javelle et al., 2011) and sometimes
covering the cell walls bordering substomatal chambers (Osborn and Taylor, 1990). It extends
for example, over leaf (e.g., Bessire et al., 2007; Kosma et al., 2010; Buschhaus and Jetter, 2012),
flower petal (Li-Beisson et al., 2009; Panikashvili et al., 2011; Mazurek et al., 2013; Buschhaus
et al., 2015), primary stem (Xue et al., 2014), fruit (Khanal et al., 2011; Lara et al., 2014, 2015;
Martin and Rose, 2014) and trichome (Fernández et al., 2011, 2014b) surfaces. A protective role of
plant cuticles has been recognized in relation to, for instance, limiting water loss (Kerstiens, 1996;
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Riederer and Schreiber, 2001), pathogen (Serrano et al., 2014) and
insect attack (Eigenbrode and Jetter, 2002), or attenuating UV
irradiation (Krauss et al., 1997).

The multi-functional character of the cuticle is achieved
by a heterogeneous structural and chemical nature (Khayet
and Fernández, 2012) which may additionally vary between
e.g., species, genotypes, organs, developmental stages, plant
physiological status, or environmental conditions during growth
(e.g., Knoche et al., 2004; Szakiel et al., 2012; Nawrath et al., 2013;
Fernández et al., 2014a; Guzmán-Delgado et al., 2016).

From a chemical viewpoint, the cuticle is formed by an array
of compounds with different physico-chemical properties (see
Figure 1 as an example of common cuticle constituents). These
compounds can be waxes, cutin and/or cutan, polysaccharides,
phenolics and mineral elements (España et al., 2014; Guzmán
et al., 2014a; Guzmán-Delgado et al., 2016). Cuticular waxes are a
mixture of compounds, such as long-chain fatty acids, alcohols,
alkanes, esters or triterpenoids (Jetter et al., 2006). Cutin is
defined as a polyester mainly formed by C16 and C18 hydroxy and
hydroxy-epoxy fatty acid monomers (Kolattukudy, 1970), while
other compounds such as glycerol have also been suggested to be
part of the cutin polymer (Graça et al., 2002). The chemical nature
of cutan, an alternative highly insoluble and non-deesterifiable
compound found in the cuticle of many species and organs (e.g.,
Boom et al., 2005; Johnson et al., 2007) is still unclear. Cutan

may be formed by polymethylenic and polysaccharide moieties
linked via non-hydrolyzable bonds (Nip et al., 1986; Tegelaar
et al., 1991), or exclusively by a network of polymethylenic chains
containing double bonds and free carboxylic groups linked by
ether bonds (Villena et al., 1999). Other researchers proposed
that the structure of cutan may be based on aromatic domains
with additional carboxylic functional groups ester-linked to
long-chain alcohols and long-chain carboxylic acids, respectively
(McKinney et al., 1996; Deshmukh et al., 2005).

The prevailing model (as described in, e.g., Evert, 2006
or Albersheim et al., 2011) considers the cuticle as a lipidic
layer whose relationship with the cell wall is restricted to their
adjacent position (see Figure 2A). According to this model, a
cutin matrix with embedded intracuticular waxes and phenolics
extends through the cuticle, while polysaccharides are restricted
to the innermost cuticle region, i.e., that in contact with the cell
wall underneath (Domínguez et al., 2011). An additional layer
of epicuticular waxes is deposited on to the cutin matrix and
constitutes the organ-atmosphere interface (Domínguez et al.,
2011).

In recent decades, substantial progress has been made for
characterizing the mechanisms of wax synthesis and export
(Samuels et al., 2008; Kunst and Samuels, 2009), cutin monomer
synthesis and assembly (e.g., Li-Beisson et al., 2009; Domínguez
et al., 2010; McFarlane et al., 2010; Girard et al., 2012; Yeats et al.,

FIGURE 1 | Model chemical compounds commonly found in plant cuticles, organized according to a decreasing gradient of apolarity: (A) Waxes
(predominantly apolar), (B) cutin monomers (with a large apolar component but having some degree of polarity and hydrogen (H)-bonding
interactions due to the presence of functional groups containing oxygen (O)) and (C) Polysaccharides (with a lower apolar component but higher
polarity and very high H-bonding interactions due to the presence of functional groups with O). Modified from Khayet and Fernández (2012).
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FIGURE 2 | (A, left side) Preliminary model of von Mohl (1847) in which the cuticle is restricted to its outermost cellulose-free region (i.e., the cuticle proper), as basis
for (A, right side) the prevailing plant cuticle model in which the cuticle proper is believed to be free of polysaccharides. (B) The cuticle understood as a lipidized,
chemically and structurally heterogeneous region of the epidermal cell wall.

2012), and structural and chemical responses of the cuticle to
biotic and abiotic stress factors (e.g., Bessire et al., 2007; Isaacson
et al., 2009; Kosma et al., 2009), also in relation to different stages
of organ development (e.g., España et al., 2014). However, many
aspects of cuticle structure in relation to chemical composition
(Guzmán et al., 2014a; Guzmán-Delgado et al., 2016) remain
unclear e.g., cuticle genesis, or cuticular component synthesis and
transport (Bird, 2008; Pollard et al., 2008; Khayet and Fernández,
2012; Domínguez et al., 2015).

For improving the current state of knowledge on the nature
of the plant cuticle it is key to recognize that much effort has
been devoted to characterize the plant epidermis and also the
plant cuticle since the 17th century. While some authors (e.g.,
Brongniart, 1830; von Mohl, 1847) believed that the cuticle
was a distinct layer from the epidermal cell wall, an idea that
still prevails nowadays, this concept was already controversial
for some researchers of the 19th century (e.g., Meyen, 1837;
Fremy et Terreil, 1868). Thereby, with the aim of bringing again
into debate the nature of the plant cuticle understood as an
independent and lipidic layer deposited on to the epidermal cell
wall versus a part of the epidermal cell wall in itself, a historical
overview of plant cuticle studies is first provided.

THE PLANT CUTICLE: A RANCID
RESEARCH TOPIC

The term ‘cuticle’ was introduced in the field of plants by Grew
(1672) and Malpighi (1675) for referring to the external part of
the their organs. The concept of the cuticle as a distinct layer
from the epidermis was simultaneously introduced by Brongniart
(1830) and Henslow (1831). Both authors described the cuticle as
a fine, homogeneous and continuous ‘film’ (Brongniart, 1830) or
‘membrane’ (Henslow, 1831) that covered the epidermal cells.

Treviranus (1835) confirmed the existence of the cuticle and
considered it a continued deposition of ‘coagulable matter.’

Meyen (1837) regarded the cuticle as the thickened outer wall
of the epidermal cells. Schleiden (1842) considered the cuticle as
a ‘mass’ secreted by epidermal cells which subsequently hardens
and forms a network.

The occurrence of a layered cuticle was introduced by
von Mohl (1842, 1847), giving rise to the morphological
model that prevails to date (Figure 2A). von Mohl (1847)
stressed that the cuticle should be distinguished from the
subjacent epidermal cells. This author restricted the term
‘cuticle’ to the outermost, cellulose-free region (as depicted
in Figure 2A). The region underneath, was referred to as
‘cuticular layer (of the cell wall).’ The name ‘epicuticular
waxes’ is nowadays used to distinguish the outermost
chemical compounds from those occurring in internal cuticle
regions (i.e., the ‘intracuticular waxes’; Jetter and Riederer,
2016).

During the 20th century, additional terms were also suggested
for the regions referred by von Mohl to as ‘cuticle’ and ‘cuticular
layer.’ The widespread use of terms related to ‘cutin’ (for instance,
‘cutinized’) when referring to the cuticle and its parts provide
evidence for the major role attributed to this polyester (e.g.,
Riederer and Schönherr, 1988; Franke et al., 2005; Pollard et al.,
2008; Domínguez et al., 2015). In various reports, terms such as
‘cutin layer’ or ‘cutinized (cell) wall’ have often been employed
as synonymous of ‘cuticle’ (e.g., Grzegorzewski et al., 2010;
Domínguez et al., 2011; Krajšek et al., 2011; Bellow et al., 2012;
Petit et al., 2014). In addition, some authors considered cutin
as the structural component of the cuticle (Kolattukudy, 1970,
2005).

When analyzing the leaf cuticle of pear (Pyrus communis),
Norris and Bukovac (1968) used the term cuticle to ‘include all
the layers that can be separated from the underlying cellulose cell
wall.’ However, many plant cuticles from different species and
organs cannot be isolated from the underlying tissues as intact
layers of significant size (e.g., Gouret et al., 1993; Fernández et al.,
2014a; Guzmán et al., 2014b).
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From this brief historical overview it can be concluded that
since approximately two centuries several researchers attempted
to characterize the chemical and structural nature of plant cuticles
and cuticular layers, giving rise to multiple concepts and names
such as ‘cuticle,’ ‘cuticular layer,’ ‘cuticle proper’ or ‘epicuticular
waxes.’ However, it is also clear that many controversies remain
open such us using the concept of the cuticle sensu Norris and
Bukovac (1968; i.e., including all the layers that can be separated
from the underlying cellulose cell wall), or the definition of
a ‘cuticle proper’ free from polysaccharides as highlighted by
(Guzmán et al., 2014a,c).

CUTICULAR ULTRA-STRUCTURE IN
RELATION TO CHEMICAL
COMPOSITION: A DIFFICULT AND
VARIABLE RELATIONSHIP

The number of studies directly devoted to examine the
relationship between internal cuticle structure and chemical
composition are scarce (e.g., Wattendorff and Holloway, 1982;
Riederer and Schönherr, 1988; Gouret et al., 1993; Viougeas
et al., 1995; Krüger et al., 1996; Domínguez and Heredia, 1999a;
Graça and Lamosa, 2010; Guzmán et al., 2014a; Guzmán-Delgado
et al., 2016). In addition, a high proportion of the investigations
performed during the last four decades focused on the cuticle of
Agave americana (e.g., Wattendorff and Holloway, 1982; Villena
et al., 1999; Reina et al., 2007) and Clivia miniata leaves (e.g.,
Schmidt and Schönherr, 1982; Domínguez and Heredia, 1999a;
Fagerström et al., 2013), or tomato fruit (Lycopersicon esculentum;
e.g., Petracek and Bukovac, 1995; Benítez et al., 2004; López-
Casado et al., 2007; Segado et al., 2016).

Transmission electron microscopy (TEM) was especially
employed during the early 1980’s for characterizing internal
cuticle ultra-structure (Holloway, 1982; Jeffree, 2006). According
to the appearance of cuticle internal regions, Holloway (1982)
suggested a morphological classification including six cuticular
types. Nevertheless, the author highlighted the heterogeneity in
plant cuticle structure and the need to consider each species
individually to avoid oversimplifications and generalizations.
Moreover, structural differences can be observed within the same
organ, species and even within a cuticle section analyzed by TEM,
hence making it risky to establish broad conclusions (Figure 3C;
Guzmán et al., 2014b). In this regard, the assignment of the cuticle
of a number of species to one or other morphological type may
vary, for example, according to the interpretation of the authors
(Jeffree, 2006), or to the sample preparation procedure used for
TEM observation (Guzmán et al., 2014b).

In Figure 3 the ultra-structure of the leaf cuticle of three
different plant species is shown as an example of the structural
heterogeneity of plant cuticles. The pear leaf cuticle is much
thicker (∼800 nm) than those of poplar (Populus bolleana,
∼300 nm) and chiefly wheat (Triticum aestivum) leaf (∼40 nm).
This implies a predominance of epicuticular waxes and a tinny
cuticle development in some wheat leaf areas (Figure 3D;
Fernández et al., 2014a), versus a thicker cuticle development

FIGURE 3 | Structural heterogeneity of plant cuticles, exemplified by
transversal TEM leaf cuticle sections of: (A) pear (Pyrus communis;
bar, 200 nm), (B) poplar (Populus bolleana; bar, 200 nm), (C) Magellan’s
beech (Nothofagus betuloides; bar, 2 µm), and (D) wheat (Triticum
aestivum; bar, 50 nm). Letters indicate areas corresponding to epicuticular
waxes (EW), cuticle (C) and cell wall (CW). Micrographs by V. Fernández and
P. Guzmán (2012, 2015).

in deciduous poplar and pear leaves (Guzmán et al., 2014c).
By contrast, the Magellan’s beech (Nothofagus betuloides) leaf
examined had irregular and large electron-dense areas in the
cuticle, similar to those observed in Ficus elastica (Guzmán-
Delgado et al., 2016).

The complex and composite physical and chemical nature
of the cuticle makes it difficult to ascertain the localization
of individual constituents and fractions in cuticle transversal
sections (Guzmán et al., 2014a,b; Guzmán-Delgado et al., 2016).
In addition, the molecular self-assembly and the potential linkage
mechanisms among cuticle constituents are little understood
(Pollard et al., 2008; Kunst and Samuels, 2009). Several factors
may influence cuticle transversal sections as observed by
TEM and also by optical-based techniques. These techniques
have been also used in combination with histochemical stains
and/or chemical extractions to gain information about cuticle
morphology and gross chemical composition (e.g., Roberts et al.,
1948; Norris and Bukovac, 1968; López-Casado et al., 2007; Buda
et al., 2009). For example, the different reactants used for sample
preparation (e.g., organic solvents, resins, or stains) may not
easily infiltrate cuticular nano-pores. This may be even more
difficult for chemicals dissolved in water, a liquid having a high
surface tension as discussed by Guzmán et al. (2014b). Therefore,
it is likely that the zones which are more superficial and accessible
for infiltration in chemical and physical terms will be better fixed,
contrasted and distinguished (Guzmán et al., 2014b). Thus, the
outermost regions of the cuticle, which ontogenically correspond
to its earlier manifestations (Riederer and Schönherr, 1988;
Heide-Jørgensen, 1991; Jeffree, 1996), may have a higher degree
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of packaging as compared to the regions localized below, hence
having a lower degree of reactant infiltration (and labeling of
specific constituents, as described below). In addition, due to
the low specificity of some commonly used stains (Hayat, 1993;
Soukup, 2014), cuticle histochemical analyses should also be
interpreted with caution.

More specific immuno-chemical studies have been applied
for identifying the presence and location of cuticle constituents
such as polysaccharides (Tenberge, 1992; Guzmán et al., 2014c)
and cutin (Domínguez et al., 2010; Kwiatkowska et al., 2014).
However, while immuno-gold particles indicate the presence of
such cuticle chemical constituents, no specific features or degree
of electron-density can be observed in the labeled zones (e.g.,
Guzmán et al., 2014c), the results being of qualitative rather
than structural value. It must be also considered that the absence
of these particles in a labeled cuticle does not directly imply
the absence of the target constituent, which may be masked by
other cuticle chemical compounds, as derived from the results by
Guzmán et al. (2014c versus 2014a).

Various attempts have been made to infer the chemical
composition of alternating electron-lucent and electron-dense
lamellae observed in the outer region of some plant cuticles
(see Jeffree, 2006) and further trials will be required to
examine the nature of such lamellae. Working with cuticles
isolated from two different eucalypt species (Eucalyptus globulus
and E. camaldulensis), Guzmán et al. (2014a) observed the
disappearance of the lamellate structure occurring underneath
the epicuticular wax layer after organic-solvent extraction, while
the same extraction procedure did not affect the appearance of the
lamellae found in F. elastica leaf cuticles (Guzmán-Delgado et al.,
2016). Nevertheless, experimental evidence for the relationship
between individual intracuticular wax compounds and cuticle
ultra-structure has not been provided so far. Selective analyses of
epi- and intra-cuticular waxes obtained by mechanical sampling
followed by solvent extraction (e.g., Jetter and Schäffer, 2001)
showed that cyclic compounds such as triterpenoids tend to
accumulate within the intracuticular wax layer of diverse species
and organs (Buschhaus and Jetter, 2011; Buschhaus et al., 2015).
Trials developed with fruit cuticles of Diospyros kaki var. Fuyu by
Tsubaki et al. (2013) indicate that triterpenoids in the cuticular
matrix construct a nano-composite and provide toughness to
the cuticle by functioning as nano-fillers. A similar intracuticular
filler role has been proposed for flavonoids in tomato fruit by
España et al. (2014).

After analyzing cutin monomer composition and the potential
molecular structure adopted by this polymer in the cuticles of
Hedera helix leaves and tomato fruit, Graça and Lamosa (2010)
hypothesized that the linearity of the polymer can account for the
ordered lamellae observed in H. helix cuticle while the branched
polymer of tomato could be the basis of its reticulate structure.
Nonetheless, the differences found in the potential degree of
branching in the cutin of E. globulus and E. camaldulensis
(having similar lamellate structure than H. helix, Viougeas et al.,
1995) could not be assigned to a specific structural pattern,
neither differences in wax composition (Guzmán et al., 2014a).
By contrast, the cell wall observed in these eucalypt cuticles
after successive chemical extractions had diffuse and helicoidal

structural patterns in the outer and inner regions, respectively,
which may lead to the different morphology of such cuticle
regions. However, the possibility that the extraction processes
have disrupted the orientation of the cellulose fibrils should be
considered (Guzmán et al., 2014a).

It has been suggested that the presence of cutan is restricted
to the cuticle region localized below the so-called ‘cuticle proper’
(Schmidt and Schönherr, 1982; Riederer and Schönherr, 1988).
Recent studies (Guzmán et al., 2014a; Guzmán-Delgado et al.,
2016), however, noted that the extraction of cuticle constituents
is likely to be incomplete due to the presence of cutan, and
that the loss of inner cuticle regions (i.e., those located closer to
epidermal cell protoplasts) after cuticle de-esterification reactions
also occurred in cutan-free cuticles. Therefore, the presence of
cutan may further hinder the interpretation of cuticle ultra-
structure in relation to composition due to the limited effect of
chemical removal (Guzmán-Delgado et al., 2016).

Since the 1960’s (e.g., Leyton and Armitage, 1968; Lange,
1969) scanning electron microscopy (SEM) was used as tool
for examining a great number of plant cuticles as compared
with the more limited use of TEM, probably due to the easier
sample preparation procedures. With some exceptions (e.g.,
Hill and Dilcher, 1990), SEM has been generally used for
assessing morphological features of cuticle periclinal surfaces and
especially of epicuticular waxes.

Several reports assessed the relationship between epicuticular
wax morphology (as observed by SEM) and chemical
composition (Baker, 1982; Barthlott et al., 1998; Jeffree,
2006). However, the results available are generally based on
total cuticular wax composition, i.e., comprising both epi-
and intra-cuticular waxes, and the contribution of specific
compounds could only be inferred indirectly (Buschhaus and
Jetter, 2011). Selective extractions and analyses of epicuticular
wax structures can also provide a more accurate assignment of
chemical compounds (Buschhaus and Jetter, 2011).

The application of electron microscopy tomography together
with sample preparation by freeze substitution or high pressure
freezing techniques (e.g., Seguí-Simarro et al., 2004; McIntosh
et al., 2005; Austin, 2014) has not been applied to plant cuticles
in intact or isolated tissues and may provide interesting structural
information.

The allocation of cuticular waxes may be based on the
physico-chemical properties of common cuticular components
(Buschhaus and Jetter, 2011). Taking into account the polar,
apolar and hydrogen (H)-bonding properties of the functional
groups forming common wax types such as alkanes, alcohols,
amyrins or β-diketones, Khayet and Fernández (2012) calculated
the solubility parameter of various model wax compounds.
Alkanes are fully apolar molecules and had the lowest total
solubility parameter (i.e., the lowest surface free energy) values,
whereas molecules containing oxygen in their functional groups
(e.g., alcohols, acids, ketones or ester bonds) had some degree of
polarity and H-bonding interactions and a higher total solubility
parameter as compared to alkanes. The authors suggested that
if there are no physical restrictions, compounds with a low
solubility parameter (i.e., surface free energy) will tend to migrate
from the plant cell wall toward the epicuticular wax layer in order
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to decrease the Gibbs free energy (Khayet et al., 2002). This could
be an alternative and/or complementary hypothesis to explain the
migration of cuticular material (e.g., waxes, cutin monomers or
phenolics) toward the air-plant interface, in contrast to cuticular
transpiration as a driving force (Neinhuis et al., 2001; Koch et al.,
2004; Heredia-Guerrero et al., 2010).

BUILDING THE CUTICLE PUZZLE:
STRUCTURE OF INDIVIDUAL CHEMICAL
CONSTITUENTS

Due to the complexity in interpreting cuticular ultra-structure
in relation to chemical composition, some studies focused on
assessing the potential structure of isolated waxes (e.g., Jeffree
et al., 1975; Matas et al., 2003; Dragota and Riederer, 2007;
Dora and Wandelt, 2011), cutin monomers (e.g., Ray and Stark,
1998; Heredia-Guerrero et al., 2009; Graça and Lamosa, 2010)
and polysaccharides (pectin-lipid nanoparticles, Guzman-Puyol
et al., 2015). Few studies attempted to clarify the contribution
of individual cuticular chemical fractions to the rheological
properties of plant cuticles, e.g., waxes (Tsubaki et al., 2013),
cutin (Round et al., 2000), polysaccharides (López-Casado et al.,
2007) or flavonoids (Domínguez et al., 2009) but it is likely that
the extraction of cuticular fractions (e.g., polysaccharide removal
from cuticular membranes) may have not been complete due to
the dense membrane character of isolated cuticles as observed
by TEM. Trials with waxes and cutin monomers have shown
that such molecules may undergo self-assembly (Domínguez and
Heredia, 1999a; Casado and Heredia, 2001; Koch et al., 2009;
Heredia-Guerrero et al., 2011).

Wax Structure
Using SEM, several classifications were proposed based on
epicuticular wax structure (Amelunxen et al., 1967), and
also considering chemical composition (Baker, 1982; Barthlott
et al., 1998; Jeffree, 2006; Koch et al., 2006a). However, the
methodology commonly used to extract soluble cuticular lipids,
i.e., by organ or cuticle immersion in organic solvents, does not
enable to distinguish between epi- and intra-cuticular waxes.
Thus, various methods for selective isolation of waxes have been
developed (e.g., Buschhaus and Jetter, 2011).

The performance and re-crystallization of isolated leaf waxes
from some species grown in an array of artificial substrates have
been examined in several studies (e.g., Reynhardt and Riederer,
1994; Matas et al., 2003; Koch et al., 2004; Ensikat et al., 2006).
Research efforts have focused on analyzing the re-crystallization
mechanisms of waxes with tubular morphology extracted, for
example, from Pinus halepensis, Picea pungens, Nelumbo nucifera
or Tropaeolum majus (Jetter and Riederer, 1994; Matas et al.,
2003; Koch et al., 2006b, 2009). Waxes are generally complex
chemical mixtures and their chemical composition is decisive for
the formation of e.g., a tubular or planar morphology (Jeffree,
2006; Koch et al., 2006b, 2009).

According to Jetter and Riederer (1994) the tubular and
planar crystals regularly found on the same plant surfaces
may be understood as the two modifications of the solid state

of nonacosan-10-ol, with tubules being formed under kinetic
control while thermodynamic control may lead to the planar
modification. Koch et al. (2009) noted that nonacosan-10-ol
and alkanediol fractions led to the formation of tubules which
grew out of an underlying uniform amorphous wax film. This
suggests that crystal growth is due to a self-assembly process as
suggested by several authors (e.g., Casado and Heredia, 2001;
Matas et al., 2003; Koch et al., 2004, 2009). Although several
aspects of the mechanisms of wax formation have been elucidated
through re-crystallization trials, some open questions remain
such as the amount and kind of waxes necessary for the formation
of amorphous versus crystallized structures, the potential effect
of the cuticle matrix on wax crystallization, or the effect of
environmental modifications during growth.

Cutin and Cutan Structure
Cutin can be defined as an insoluble, aliphatic bio-
macromolecule found in the outer walls of epidermal cells.
It is a polyester which upon ester-breaking depolymerization
gives rise to monomeric components with hydroxyl and
carboxylic acid functions. The core backbone of cutin structure
are C16 and/or C18 ω-hydroxyacids, i.e., carboxylic acids with a
hydroxyl group at the opposite end of the (CH2)n hydrocarbon
chain. The C16 ω-hydroxyacids can have a saturated chain, but
predominantly in many cutins, they have a secondary hydroxyl
close to mid-chain. C18 ω-hydroxyacids are also often substituted
at mid-chain, with two vicinal hydroxyl groups (9,10-diol) or
an epoxide (9,10-epoxy). The composition of cutin varies with
e.g., plant species, epidermis location or developmental stage.
As a rule, the C16 ω-hydroxyacids with a mid-chain secondary
hydroxyl are always a significant monomer in the composition
of all cutins, but the type and relative quantity of the C18
ω-hydroxyacids are widely variable. Besides ω-hydroxyacids,
cutin includes other building units, namely glycerol, but only in
relatively minor quantities in the few cases so far analyzed (Graça
et al., 2002).

The variability in monomer composition shows that at
least some structural diversity must exist in cutins. Different
cutin compositions and macromolecular (or supramolecular)
arrangements can be behind the ultrastructural variability that
can be seen by TEM in plant cuticles (Holloway, 1982). In
some cases, a significant quantity of aliphatic material remains
insoluble after the ester-breaking depolymerization of cutin, the
residue named cutan (e.g., Guzmán-Delgado et al., 2016). This
means that other types of linkages alongside ester bonds are
present in cutin, or that cutan might be a structurally different
bio-macromolecule.

The mechanisms by which the C16 and C18 ω-hydroxyacids
and the other cutin building units assemble as a macromolecule
are still poorly understood. The formation of cutinsomes, which
are approximately 50–200 nm spherical nanoparticles resulting
from the self-assembly of cutin hydroxyacid monomers in a
polar environment, has been demonstrated in vitro (Heredia-
Guerrero et al., 2008). Cutinsomes can spontaneously polymerize
or cross-link cutin monomers (Heredia-Guerrero et al., 2008,
2009). They have been suggested as building units of biopolyester
cutin (Heredia-Guerrero et al., 2011) and their presence has been
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detected in planta by cutin immuno-localization (Kwiatkowska
et al., 2014). The interaction of pectin with polyhydroxylated
fatty acids facilitating the formation of nanoparticles has been
recently demonstrated and may be related to an initial step in the
formation of the plant biopolyester cutin (Guzman-Puyol et al.,
2015).

The study of the in situ intact structure of cutin, namely, its
molecular structure at different organizational levels, has been
hampered by its insolubility, the complexity and variability of its
monomer composition, and the difficulty in separating it from
other cuticle components (e.g., polysaccharides and phenolics).
Typically, cutin structural studies are carried out in cutin-
enriched materials, meaning isolated cuticles where waxes were
extracted and polysaccharides were in part removed by enzymatic
or chemical treatments. In these cutin-enriched fractions the
aliphatic (acyclic or cyclic, non-aromatic compound) material
can range from 50 to 80% of their mass. Cutin has been analyzed
in its native (non-depolymerized) form by solid state techniques,
like infra-red (Raman, FTIR) spectroscopy (Heredia-Guerrero
et al., 2014) and a number of biophysical approaches. However,
most of the structural information gathered so far has come
from the application of nuclear magnetic resonance (NMR)
techniques, summarized below.

Three types of NMR approaches have been used to study
cutin as a macromolecule: solid-state NMR techniques based
on magic angle spinning (MAS), high-resolution (HR-MAS)
techniques applied to semi-solid cutin swelled in solvents,
and high-resolution solution-state NMR of oligomer fragments,
obtained by the partial depolymerization of cutin. 13C solid-
state NMR (13C ssNMR), using cross-polarization (CPMAS)
and direct polarization (DPMAS) techniques, together with spin
relaxation studies, allowed a wealth of information regarding
the structural types of carbons present, the estimation of their
relative abundance and their molecular mobility or rigidity
in the context of the intact cutin. Using these techniques,
the pioneering work of Stark et al. (2000) in the lime fruit
(Citrus aurantifolia) cutin, showed the presence of methylene
(CH2)n chains, primary and secondary ester groups, and carbons
assignable to phenolic hydroxycinnamic moieties. Moreover,
shorter relaxation times were found for the majority of the
methylene carbons (ca. 60%) and for the primary head-to-
tail ester carbons, showing a relatively high mobility of the
latter within the macromolecular structure. In contrast, the
remaining methylenes and the esters in secondary mid-chain
hydroxyl positions were much more rigid, as shown by the longer
relaxation times of their characteristic carbons (Zlotnikmazori
and Stark, 1988; Garbow and Stark, 1990). In tomato peel cutin,
the methylene (CH2)n chains showed two signals in the 13C
CPMAS spectra, one at 29 ppm attributed to an amorphous
arrangement of gauche and anti-conformations, and another
(smaller) at 33 ppm attributed to crystalline regions with the
(CH2)n chains in an all-trans conformation (Deshmukh et al.,
2003).

ssNMR has the inherent disadvantage of low resolution
with the broad and overlapping signals. This can be in part
overcome using HRMAS techniques, if a viscous phase can
be obtained from the solid cutin material, giving enhanced

molecular mobility, and allowing much higher NMR resolution.
HRMAS permits the use of 2D NMR techniques which can
give crucial structural information, showing direct and long-
range connectivities between specific carbons and hydrogens.
Such an HRMAS approach was followed after swelling in
deuterated DMSO cutin-enriched fractions from lime fruit (Stark
et al., 2000; Fang et al., 2001), tomato peel (Deshmukh et al.,
2003) and A. americana leaves (Deshmukh et al., 2005). Direct
confirmation of the structures presumed from the ssNMR
analyses was thus obtained, namely the presence of esters of
primary and secondary hydroxyl groups. Besides, a number
of further structural features were also found. In tomato and
A. americana cutin, the ramification of the hydrocarbon chain
in the carbon neighboring the carbonyl in ester groups (α-
branching) was proposed, based on the chemical shift of the
involved CH group (44–45 and 2.4 ppm respectively; Deshmukh
et al., 2003, 2005). HRMAS analysis of the cutan residue in
A. americana (ca. 30% of the cutin-enriched fraction) showed
free carboxylic acid and hydroxyl groups, and higher degree of
crystallinity in the methylene (CH2)n chains (from a dominant
peak at 32 ppm for the respective carbons), and ester groups
that could be linked directly to benzene rings (Deshmukh et al.,
2005).

The other approach to obtain structural information is by
partially depolymerizing cutin to get oligomers still carrying the
intramolecular linkages that exist in the intact macromolecule.
These oligomers can eventually be isolated from the
depolymerization mixtures with chromatographic techniques,
allowing their unequivocal structural characterization, applying
mass spectrometry and high-resolution 1D and 2D NMR
techniques. Also, some specific types of intra-molecular linkages
can be more or less specifically targeted, thus adding structural
information. Some issues have, however, to be considered,
namely the representativeness of the oligomers obtained,
and the fact that some intra-molecular linkages can be more
accessible than others to the partial degradative techniques
employed. A number of such studies were applied to lime
cutin: oligomers up to tetramers made of C16 ω-hydroxyacids
linearly linked head-to-tail through esterification of their
primary hydroxyls were found, after an iodotrimethylsilane
hydrolysis that attacks sterically hindered esters of secondary
hydroxyls (Ray et al., 1998), and after a degradative treatment
made by low-temperature hydrogen fluoride (Tian et al.,
2008). Alternatively, a pentamer also including mostly C16
ω-hydroxyacids, but this time esterified through the secondary
hydroxyls, was obtained after an enzyme treatment that
specifically cleaved the esters of primary hydroxyls (Ray and
Stark, 1998). A larger set of oligomers was obtained after
the partial depolymerization of tomato fruit cutin, by a mild
methanolysis reaction (Graça and Lamosa, 2010). Oligomers
up to heptamers, built from the C16 ω-hydroxyacids with a
mid-chain secondary hydroxyl, the dominant monomer in
tomato cutin were found. As proved by solution-state 2D NMR
techniques, esters of both the primary (ω-) and secondary
(mid-chain) hydroxyl groups were present, but the later were
largely dominant, in a proportion of 4.5 to 1 (Graça and Lamosa,
2010).
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What conclusions can be drawn from the information
above regarding the in situ macromolecular structure of cutin
within the cuticle? The cutin macromolecule certainly grows
through the linear esterification of successive ω-hydroxyacids
by their primary ω-hydroxyls. However, the observed extensive
esterification of the mid-chain secondary hydroxyls shows a
high degree of branching, which would become even denser by
the local branching of the hydrocarbon chain itself. Somehow
in contradiction, at least the primary ester positions and a
significant part of the methylene chains, show a relatively
high molecular mobility, suggesting that they are part of a
not too much cross-linked network. Part of the methylene
(CH2)n chains might be part of orderly packed regions, which
would answer for the molecular rigidity some of them show.
These supposed crystalline-like regions were proposed to be
the core of cutan (Deshmukh et al., 2005). Tentative working
models were proposed for the cutin macromolecule showing a
reticulate arrangement of the ω-hydroxyacids (Stark and Tian,
2006) or its growth in a more dendritic manner (Graça and
Lamosa, 2010). Not much is known about the role of other
cutin monomers, such as glycerol, or the linkages between
the aliphatic cutin and phenolic moieties or the neighboring
polysaccharides. A lot of research work is surely needed, using
NMR and other techniques, before we can get an accurate picture
of the cutin macromolecular architecture and its structural
variability.

BACK TO THE BEGINNING: A CRITICAL
EXAMINATION OF THE PREVAILING
CUTICLE MODEL

Studies developed during the last 50 years enabled a better
understanding of cuticle composition, chiefly concerning cutin
and waxes and, to a lesser extent, of the cuticle structure of some
plant species and organs. However, as noted by Buschhaus and
Jetter (2012): – ‘The contribution of various cuticle constituents
to each cuticle function is currently unclear. Similarly, the
contribution of the different substructures to the different roles
the cuticle plays remains uncertain. Our understanding is mainly
hampered by the fact that the previous investigations aimed
at chemically and biologically characterizing the cuticles from
different species, and then searching for structure-function
correlations based on species comparisons. Nevertheless, such
descriptive comparisons were necessarily confounded by the
multitude of cuticle differences found between species, rather
than just the one factor being assessed’ –.

Several studies used Arabidopsis thaliana (L) Heynh as model
for cutin biosynthesis (e.g., Nawrath et al., 2013; Go et al., 2014;
Fabre et al., 2016; Li et al., 2016), but its cuticle composition is
atypical and not representative for most plant species (Franke
et al., 2005; Pollard et al., 2008; Domínguez et al., 2011). Due
to the increased availability of tomato (Solanum lycopersicum L.)
genomic resources, this fruit is also being used as model for
analyzing the mechanisms of cuticle formation (e.g., Martin
and Rose, 2014; Petit et al., 2014). The commercial importance
and ease in isolating the cuticle of tomato fruit (Petit et al.,

2014) yields this species interesting for carrying out cuticular
studies (Petit et al., 2014). However, there is evidence that
tomato originated in the Andes region of South America, was
domesticated in Mexico and cultivated in Europe since the
16th century, the domestication and selection processes being
focused on improving fruit appearance and quality (Paran and
van der Knaap, 2007). As a result of such breeding and selection
efforts, an array of tomato varieties with different sizes, quality
traits and colors are available in the market, many of which
are susceptible to cracking (Domínguez et al., 2012). Hence,
the intensive breeding and selection for quality attributes (e.g.,
larger sizes and improved red color) tomato fruit has undergone
over the years, may limit the significance this cuticle as model
for a wide range of plant organs and species, since it may
rather be an example of a somehow artificial and singular
cuticle.

The current situation is such that little is known about
the relationship between cuticle chemical composition and
structure and about the potential cross-links within and among
cuticle constituents (Pollard et al., 2008; Guzmán et al.,
2014a). Furthermore, when revising the existing literature, it
can be observed a tendency toward developing sometimes
detailed chemical analyses of plant cuticles (e.g., López-Casado
et al., 2007; Jetter and Riederer, 2016) without considering
the structure and localization of cuticle constituents which
hinders the significance of the results in physiological and
anatomical terms. Similarly, most molecular biology studies
developed with plant cuticles (largely tomato and Arabidopsis)
do not consider key chemical and structural features, hence
limiting their overall interpretation. In summary, it can be
said that there are many studies focusing on certain aspects of
plant cuticles, but there is a need for an integrative approach
that may help us understand their formation, structure and
function.

Additionally, most researchers still understand the cuticle
as a lipidic, hydrophobic layer which is independent from the
epidermal cell wall underneath, a concept developed more than
150 years ago which has not been critically examined for decades.
As stated in the historical overview provided above, the prevailing
cuticle interpretation has been brought recently into question
(Guzmán et al., 2014a,c).

The terms ‘hydrophobic’ and ‘lipophilic’ are widely used in
reference to plant cuticles, while they are merely qualitative
and inadequate in physico-chemical terms. Hydrophobic and
hydrophilic mean that a substance has low or high affinity
for water, respectively. The majority of existing molecules are
formed by functional groups which provide apolarity, polarity
or H-bonding interactions (Khayet and Fernández, 2012). Hence,
waxes are largely apolar (strictly apolar in the case of alkanes) but
will have some degree of polarity and H-bonding interactions,
should they contain functional groups having oxygen (e.g.,
acids, alcohols or ketones; Figure 1). This will also hold
true for cutin monomers (esterification decreases polarity and
H-bonding interactions), phenolics and polysaccharides (Khayet
and Fernández, 2012). Thereby, it is more accurate to discuss
about the apolarity, polarity or potential H-bonding properties
of plant surfaces than referring to their hydrophobic or lipophilic
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character. While such qualitative terms which are broadly used
imply that a compound or material has significant polar or
apolar components, respectively (Khayet and Fernández, 2012;
Fernández and Khayet, 2015) they do definitely not reflect the
physico-chemical properties of cuticle chemical constituents and
should be used and interpreted with caution.

The prevailing understanding of the plant cuticle as an
independent, lipidic layer, is largely based on Brongniart
(1830) and von Mohl’s (1847) hypotheses, which were
already controversial at that time. Such model was later
supported by TEM observations of cutan-containing cuticles of
A. americana (Wattendorff and Holloway, 1982) and C. miniata
(Schmidt and Schönherr, 1982) which are little susceptible
to chemical degradation due to the highly insoluble, and
non-deesterifiable nature of cutan (Villena et al., 1999; Guzmán-
Delgado et al., 2016). The methodological constraints associated
with microscopic and analytical techniques as described above
may additionally lead to misleading results and interpretations
concerning for example, the location, quality, quantity and role
of cuticle chemical constituents.

Moreover, the intimate relationship between the cell wall and
the cuticle since early stages of organ ontogeny (Schieferstein
and Loomis, 1959; Tenberge, 1992; Segado et al., 2016), and
the permeability properties of the cuticle to water and solutes
(Fernández and Eichert, 2009; Fernández and Brown, 2013)
cannot be fully justified with the prevailing cuticle concept. For
example, the view that the cuticle was a lipidic and hydrophobic
layer, is not easily reconciled with the rates of permeability of
water and electrolytes (Schreiber and Schönherr, 2009), and the
existence of ‘aqueous-’ or ‘polar pores’ has been hypothesized
(e.g., Schönherr, 1976, 2000, 2006). Concerning the mechanisms
of water permeability, cuticle hydration capacity (Chamel et al.,
1991; Luque et al., 1995a,b; Domínguez and Heredia, 1999b)
theoretically reflects the occurrence of polar domains in the
cuticle. These domains have been mainly ascribed to cutin
(Schönherr and Huber, 1977; Becker et al., 1986), phenolic
compounds (Luque et al., 1995a) or polysaccharides (Chamel
et al., 1991; Domínguez and Heredia, 1999b). The supposed
localization of polysaccharides only in inner cuticle regions
led to the suggestion that ‘polar pores’ cross the cuticle to
explain the transport of polar substances and electrolytes through
the cuticle (Hull, 1970; Schönherr, 1976, 2000; Schönherr and
Schreiber, 2004; Schreiber, 2005; Niemann et al., 2013). However,
the existence of such ‘pores’ has not been demonstrated by
microscopic means so far and the occurrence of pores as such
seems unlikely given the ultrastructure of the cuticle as observed
by TEM (Figure 3 and see TEM micrograph compilation by
Jeffree, 2006) of many plant cuticles reported so far (Fernández
and Eichert, 2009).

In addition, the drastic reduction of cuticle water absorption
capacity after polysaccharide extraction (Chamel et al., 1991;
Reina et al., 2001; Domínguez et al., 2011) or the relatively low
abundance of polysaccharides in the cuticle as compared to other
chemical fractions (Schreiber and Schönherr, 2009), led us to
hypothesize that both the amount and role of polysaccharides
may be underestimated (Guzmán et al., 2014a,c), as previously
suggested in the review by Domínguez et al. (2011).

A RE-INTERPRETATION OF THE PLANT
CUTICLE AS A LIPIDIZED EPIDERMAL
CELL WALL REGION

The intimate linkage between polysaccharides and lipid cuticle
constituents was suggested during the second half of the 19th
century and at the beginning of the 20th century (e.g., Fremy
et Terreil, 1868; Cross and Bevan, 1916). The lipidized cell
wall nature of the cuticle has been noted by Yeats and Rose
(2013), and was structurally and chemically observed for the
leaf cuticle of two eucalypt species by Guzmán et al. (2014a).
The cell wall structure of these eucalypt cuticles after chemical
extractions differed between the outer and inner cuticle regions
of both species, with diffuse and helicoidal cellulose patterns
associated with the so-called ‘cuticle proper’ and the ‘cuticular
layer,’ respectively (Guzmán et al., 2014a). The presence of
cellulose and pectins along cuticle transversal sections, i.e., from
the innermost cuticle surface up to the epicuticular wax layer, was
also demonstrated for the leaf cuticles of E. globulus, pear and
Populus x canescens by enzymatic-gold labeling (Guzmán et al.,
2014c).

We hence suggest a re-interpretation of the cuticle as a lipidic
region (or regions) of the cell wall as depicted in Figure 3B,
versus the cuticle understood as free of polysaccharides (e.g.,
von Mohl, 1847) or having minor (or more significant) amounts
of polysaccharides stemming from the subjacent epidermal cell
wall (e.g., Jeffree, 2006; Domínguez et al., 2011), as reflected in
Figure 2A. Additionally, the concept of the cuticle as a cutinized
cell wall as suggested by some authors (e.g. Domínguez et al.,
2011, 2015; Segado et al., 2016) seems too narrow given the
potential significance of intracuticular waxes as shown in studies
developed with various species and organs (e.g., Buschhaus
and Jetter, 2011, 2012; Tsubaki et al., 2013) and the potential
overestimation of cutin content at the expense of other chemical
fractions (Guzmán et al., 2014a).

The interpretation suggested in Figure 2B implies that the
epidermal cell wall provides the framework for the cuticle,
which may contain waxes, cutin, or cutan, phenolics and
further common cell wall components (e.g., mineral elements).
We would emphasize the potential within this model for
modifications in relation to e.g., different species, growing
conditions or organs. By TEM the cuticle of an organ is often
observed as a gray to whitish layer of approximately constant
thickness (see pear and poplar leaf cuticles as an example,
Figures 3A,B), but deviations from this pattern may be found
such as e.g., a thicker epicuticular wax layer (e.g., wheat leaf
cuticle on Figure 3D) or an irregular cuticle (e.g., Magellan’s
beech leaf cuticle, Figure 3C).

Thus, the use of the terms ‘cuticle’ (or ‘cuticle proper’)
and ‘cuticular layer’ (e.g., Jeffree, 2006; Nawrath et al., 2013;
Serrano et al., 2014), which were introduced to distinguish the
cuticle from the underlying cell wall (with cellulose being absent
or present, respectively, von Mohl, 1847) may be misleading
and fails to reflect the actual chemical and structural nature
of the cuticle. Consequently, we understand that it is more
suitable to simply refer to the epicuticular waxes, cuticle and

Frontiers in Plant Science | www.frontiersin.org 9 March 2016 | Volume 7 | Article 427

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00427 March 30, 2016 Time: 15:44 # 10

Fernández et al. Re-assessing Cuticle Structure and Chemical Composition

subjacent epidermal cell wall regions. Epicuticular waxes can
be considered a layer that is located over the cuticle and may
contain minor phenolic amounts. As proposed in Figure 2B,
we interpret the cuticle as an epidermal cell wall region that
contains significant lipid proportions (e.g., cutin, cutan, waxes
or phenolics) in addition to typical cell wall components, in
contrast to the subjacent cell wall regions which are largely made
of polysaccharides (i.e., cellulose, pectins and hemicelluloses).
This also implies a potentially major role for polysaccharides
as structural framework for the cuticle, a role that has been
often assigned to cutin (e.g., Kolattukudy, 1970, 2005; Nawrath,
2002).

Cuticular transversal sections may potentially have different
regions and, in case there are two, they could be differentiated
by calling them e.g., ‘outer region’ and ‘inner region’ (Guzmán-
Delgado et al., 2016). Parts with different patterns are sometimes
clearly distinguishable in the cuticle of some species and organs.
However, some cuticles do not show this layout and hence a
general cuticle structure model which may reflect the nature
of different e.g., species cannot be provided nowadays (see
Figure 3 as an example; with emphasis on Magellan’s beech).
The structural and chemical nature of the cuticle from different
organs and species can be expected to affect, for example, the bi-
directional transport of matter (e.g., gasses or liquids) between
plant surfaces and the surrounding environment, the mechanical
properties of plant surfaces or their performance under biotic and
abiotic stress factors.

In summary, for improving the state of knowledge of
cuticle structure, chemical composition and function, further
integrative studies with different species, organs, under variable
environmental conditions or using isolated cuticular chemical
fractions should be developed. The majority of the plant cuticle
investigations performed to date have been focused on chemical,

structural, ecophysiological or molecular biology aspects, and
there is a need for integrating such knowledge as prerequisite for
improving our understanding of cuticle formation, structure and
function.

New findings on cell wall composition, structure, development
and response to environmental stress (e.g., Xia et al., 2014; Endler
et al., 2015; Bidhendi and Geitmann, 2016; Cosgrove, 2016; Sorek
and Turner, 2016; Wang et al., 2016) should be considered since
they may be enlightening for interpreting cuticle development,
structure and composition in relation to different developmental
stages, organs or growing conditions.

For the proper interpretation of cuticle structure, composition
and barrier characteristics, the polarity, apolarity and hydrogen-
bonding interactions of cuticle chemical constituents must be
taken into consideration. Furthermore, efforts should be made
to shed light on, among other factors, the physico-chemical
role, location and chemical binding (if) and/or self-assembly
mechanisms between cutin monomers, polysaccharides, waxes
and phenolics, also in relation to epidermal cell wall development
as affected by potential biotic and abiotic stimuli.
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