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A possible mechanism of biological
silicification in plants
Christopher Exley*
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Plants are significant exponents of biological silicification. While not all plants are
generally considered as biosilicifiers the extent to which all plants deposit biogenic silica
is largely unknown. There are plants which are known as silica accumulators though
even in these plants the extent and degree to which their tissues are silicified is neither
appreciated nor understood. An elucidation of the mechanism of silicification in biota
is complicated by a lack of known bio-organic chemistry of silicic acid, the starting
point in this process. Herein I argue the case that biological silicification is an entirely
passive process. It is passive from the point of view that its underlying mechanisms and
processes do not require us to invoke any as yet undiscovered silicon biochemistry. It is
also passive in that although silicification confers clear biological/ecological advantages
under certain conditions, it is actually non-essential in all plants and potentially, at least,
toxic in some.
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SILICON IS TAKEN UP BY PLANTS AS SILICIC ACID

The only form of silicon in soil waters which is available for entry or uptake into a plant is silicic
acid, Si(OH)4 (Exley, 1998). Its molecular structure is a single atom of silicon surrounded in a
tetrahedral configuration by four hydroxyl (or silanol) groups. The pka for Si(OH)4 is ca. 9.6 which
means that it is neutral under almost all possible soil water milieus and that it does not lose its first
proton from any of the hydroxyl groups at pH below 10. Therefore Si(OH)4 is a very weak acid and
additionally where conditions do allow for its effective deprotonation (pH > 10) any purported
monosilicate species are expected to be unstable and to immediately form disilicate anions (Exley
and Sjöberg, 2014). The disilicate anion, Si2O2(OH)62−

(aq), which is a more stable form of silicate
in aqueous media, is a precursor to ‘cement chemistry’ and through interactions with essential
metal cations including calcium and magnesium would prove to be extremely toxic to plant roots
should it be present in soil solutions or at root surfaces, so it too can be ruled out as a biologically
available form of soil water silicon.

When considering the mechanism of biological silicification in plants it is imperative to
recognize that there are simply no known circumstances where the form of silicon entering
the root, or moving throughout the plant, is expected to be ‘silicate,’ SiO(OH)3−

(aq), and so all
mechanisms which suggest a role for this form of silicon in silicon uptake and movement in plants
should be re-evaluated. There are no known ligands for monosilicate anions in any transporters
or channels that have previously been implicated in the uptake and movement of silicon. If the
movement of silicon across a membrane does not involve any binding of silicon or even other
silicon-specific interactions then this movement of silicon must be entirely passive. The seminal
works by Ma et al. (2006, 2007) and Yamaji et al. (2008) on the movement of silicon in plants
have inadvertently confused this subject by their suggestions that they have identified silicon
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Exley Plant silicification

transporters. These important pieces of research have actually
identified channels or pores through which silicon as Si(OH)4 can
pass by an unidentified but almost certainly passive mechanism.
It is important to emphasize that the subject of biochemistry
differentiates quite clearly between channels and transporters and
it is commonly and widely accepted in biochemical nomenclature
that transporters mediate (or catalyze) the movement of a solute
by physically binding to the solute in facilitating its movement
across a membrane. The binding of Si(OH)4, or any other form
of silicon, has neither been demonstrated nor is known to occur
in its movement across biological membranes. There are no
known silicon transporters, as opposed to channels, in plants and
the question then arises as to whether there are silicon-specific
channels involved in the transmembrane passage of silicon? For
example, experiments in which purported silicon transporters
were expressed in oocytes and different rates of silicon movement
through these channels were demonstrated depending upon the
ambient conditions does not necessarily change such channels
into transporters (Ma et al., 2006, 2007). It is still Si(OH)4 which
moves across the membrane and there are other factors, not
specifically or necessarily related to silicon, which have influenced
its passive movement into oocytes and similarly its uptake and
movement into and throughout plants.We shall visit these special
circumstances throughout this essay. It is important to recognize
at this point that previous research interpreted gradients of
total silicon across biological membranes as evidence for active
transport of silicon (Ma et al., 2006, 2007; Yamaji et al., 2008).
Herein these observations are not discounted but re-interpreted
with an emphasis on how they might be explained by passive
movement of Si(OH)4.

SILICIC ACID FOLLOWS WATER INTO
PLANTS

Occam’s razor tells us quite categorically that the biologically
available form of silicon in soil waters is Si(OH)4. Since this is
a small neutral molecule with no known biochemical interactions
with organic ligands and only a very limited inorganic chemistry
there is a strong likelihood that the entry of Si(OH)4 into plant
roots follows water (Raven, 1993; Epstein, 1994). This suggests
two immediate pathways for the entry of Si(OH)4, an apoplastic
or extracellular route, in which Si(OH)4 passes between cells,
and a symplastic or intercellular route which will involve cell to
cell movement of Si(OH)4. While the former may be the major
pathway for the entry of Si(OH)4 into xylem it is also likely
that both this process and the further movement of Si(OH)4
throughout xylem and other conducting tissue will involve some
degree of movement of Si(OH)4 across biological membranes.
If as is suggested herein that Si(OH)4 follows water then it
will also use water channels or aquaporins as gateways across
membranes. Indeed the so-called silicon transporters identified
by Ma et al. (2002) are aquaporins with no specific selectivity
for Si(OH)4 (Mitani et al., 2008). Aquaporins are a diverse
set of water channels; note they are not transporters, with
as many as 30 or more different forms in many plants (Li
et al., 2014). These different forms, through their structural

arrangements in membranes, present a continuum of selectivity
toward the transmembrane passage of dissolved (physical and
chemical) solutes (Ludewig and Dynowski, 2009) and will not
only influence the ease with which Si(OH)4 crosses membranes
but potentially help to establish concentration gradients of
Si(OH)4 between connecting compartments. The flow of water
into and throughout a plant is primarily driven by hydrostatic
pressure and so the entry of Si(OH)4 into a plant and its
movement toward the extremities of a plant will likewise be under
the influence of water flow and not simply osmosis (Knipfer and
Fricke, 2011).While aquaporins do not offer significant resistance
to the movement of water into and throughout a plant they are
likely to be more resistive in the case of the much larger Si(OH)4
molecule (Ludewig and Dynowski, 2009) with some channels
allowing easier passage of this molecule than others. This
selective permeability or resistance of aquaporins (and potentially
other solvent/solute channels) toward the movement of Si(OH)4
presents a mechanism to describe its concentration (relative to
soil water), and potentially its super-saturation (>2 mM), within
specific compartments.

PLANTS ARE PERMEABLE TO SILICIC
ACID

The concentration of Si(OH)4 in soil water will be significantly
below its solubility of ca. 2 mM. As a small neutral solute,
Si(OH)4 will be carried by water across the relatively porous root
cell wall and into the root and plant (Raats, 2007). Water flow,
driven by hydrostatic forces, will enable the further movement
of Si(OH)4 throughout the plant potentially culminating in its
elimination from the plant through guttation (Yamaji et al., 2008).
It is significant that the knockdown of a gene for an aquaporin
involved in the movement of silicon into shoots resulted in the
enhanced elimination of SiOH)4 from rice by guttation (Yamaji
et al., 2008). Apoplastic water flow will ensure a continuous
supply of Si(OH)4 to the plant, primarily via xylem, while osmosis
and symplastic water flow will deliver Si(OH)4 to all regions and
tissues of the plant. The movement of water into and throughout
a plant involves its passage across membranes and these barriers
offer varying degrees of resistance to water flow (Knipfer et al.,
2011). Resistance is lowered by membrane channels known
as aquaporins which are permeable to water. They are also
permeable to the passive movement of solutes of sufficiently
small size including Si(OH)4. The permeability of aquaporins to
different solutes depends upon the relative sizes of the solutes
and the channel pores and, for non-apoplastic flow, additionally
the maintenance of a concentration gradient of some sort across
the membrane. Following such routes Si(OH)4 moves freely
throughout the plant from root to shoot. Theoretically where
water goes, Si(OH)4 has the possibility of going there too. The
absence of biological silicification cannot be construed to infer the
absence of Si(OH)4 only the absence of conditions which would
allow for its auto condensation and precipitation as biogenic
silica. The uptake and movement of Si(OH)4 throughout the
plant does not require silicon transporters per se only membrane
channels to allow for both the hydrostatic (hydraulic) and
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Exley Plant silicification

osmotic movement of Si(OH)4 between adjacent compartments.
Wherever and by which pathways water moves throughout the
plant the neutral solute Si(OH)4 has the potential to follow
without the need to invoke unknown or novel inorganic or
organic chemistry of Si(OH)4.

A PREREQUISITE FOR PLANT
SILICIFICATION

Water is both the vehicle (solvent) and the delivery system for
the distribution of Si(OH)4 throughout a plant. Guttation is
conceivably the only mechanism for the exit of Si(OH)4 (as
Si(OH)4) from a plant. Silicon enters a plant as an under-
saturated solution of Si(OH)4 and yet it is found as amorphous
hydrated silica within a plant. Biogenic silica cannot be formed
spontaneously unless the concentration of Si(OH)4 in a plant
exceeds its solubility limit of ca. 2 mM. I have previously defined
biological silicification as:

Biosilicification: the movement of silicic acid from environments
in which its concentration does not exceed its solubility
(<2 mM) to intracellular or systemic compartments in which
it is accumulated for subsequent deposition as amorphous
hydrated silica (Exley, 2009b).

Thus the auto condensation of Si(OH)4 in a plant requires
either a mechanism to concentrate Si(OH)4 above its solubility
limit or a process whereby the barrier to its auto condensation
can be lowered to enable the formation of biogenic silica at under-
saturated concentrations of Si(OH)4. Arguably both of these
mechanisms may be involved in silicification in plants.

Xylem should be considered as the major conduit for the
movement of Si(OH)4 from root to shoot. Measurements of
molybdate-reactive silicon have consistently demonstrated xylem
exudates to be super-saturated with Si(OH)4 (Hartley and Jones,
1972; Casey et al., 2003; Liang et al., 2005, 2006; Mitani et al.,
2005). Some caution is required in interpreting these values
as the reduced molybdosilicic acid complex only obeys Beer’s
law at concentrations up to ca. 0.2 mM and so measurements
of up to 18 mM Si(OH)4 in xylem exudates would have
required significant pre-dilution of samples (Coradin et al.,
2004). However, complementary (Fernández Honaine et al.,
2013) Si NMR studies have confirmed that, whatever the precise
concentration, silicon in xylem exudates is Si(OH)4 and not
biogenic silica or complexes of silicon (Casey et al., 2003; Mitani
et al., 2005). Such super-saturated concentrations of Si(OH)4
in xylem sap should be considered as anomalous as they are
expected to be thermodynamically unstable (Exley and Sjöberg,
2014). However, xylem fluid in situ in a living plant is not a
static system, it is a non-equilibrium system, and its dynamic
nature combined with the relatively slow kinetics of the auto
condensation of Si(OH)4 under in vivo conditions does provide
for an explanation of its super-saturation in planta. This concept
is supported by the experimental observation that when xylem
sap which contained a super-saturated concentration of Si(OH)4
was removed from a plant, thereby creating a static as opposed to
non-equilibrium system, the ex planta concentration of Si(OH)4

rapidly fell toward its solubility maximum of ca. 2 mM (Mitani
et al., 2005). This demonstrated that once the xylem fluid was
outside of the plant it was not possible to maintain it as a
super-saturated solution of Si(OH)4.

The super-saturated levels of Si(OH)4 in xylem sap of some
plants have often been used as evidence for silicon transporters
and the active uptake of Si(OH)4 from soil water (Liang et al.,
2005, 2006). If the entry of Si(OH)4 into a plant depended only
upon the establishment of an osmotic gradient, as is the case when
oocytes, for example, are used to measure Si(OH)4 uptake in
model systems, then super-saturation of Si(OH)4 on one side of
a biological membrane would support, if not confirm, the active
uptake of Si(OH)4. However, since the movement of Si(OH)4 into
root and subsequently xylem follows water, and is not dependent
upon an osmotic gradient, the concentration of Si(OH)4 in xylem
will actually reflect differences between rates of movement of
solute [Si(OH)4] and solvent (water) into, within and out of
xylem tissue. For example, consider an under-saturated solution
of Si(OH)4 (e.g., 0.5 mM) being pumped across a membrane
which allowed the passage of water at rate X and the passage of the
much larger Si(OH)4 molecule at a rate of X/10. This would result
in a concentration of Si(OH)4 of ca. 5 mM in the environment
immediately preceding the Si(OH)4-selective membrane. The
combination of hydraulic force and a membrane which resists
the unrestricted passage of Si(OH)4 will result in a soil water
that was under-saturated with respect to the solubility of Si(OH)4
becoming super-saturated within a plant compartment, for
example, xylem tissue. While Si(OH)4 is a small molecule it is
substantially larger than water and the resistance offered to its
movement in planta will subsequently be higher than it is to
the flow of water. The ‘resistors’ in this circuitry will include the
wide variety of plant aquaporins which together with other pores
and channels will contribute significantly to the concentration
of Si(OH)4 within membrane-limited compartments of, for
example, xylem tissue. For any given plant species, and hence
any given combination of resistors including plant aquaporins,
or Si(OH)4 resistors, the concentration of Si(OH)4 in xylem will
be constant for any specific soil water Si(OH)4 level.

The first step toward a plant being classified as a silica
accumulator must be the establishment of a super-saturated
concentration of Si(OH)4 in xylem. The extent to which this is
achieved will depend upon the resistance-free entry of Si(OH)4
into xylem in combination with Si(OH)4 resistors in other areas
of the plant from the root to the shoot. In plants which are not
known as silica accumulators there may be Si(OH)4 resistors
preventing its movement into xylem ( silica may still be deposited
in the root) or the Si(OH)4 resistors throughout the plant do not
offer sufficient resistance to the movement of Si(OH)4 (relative
to water) to support its concentration to a super-saturated level.
Such plants may show significant silica deposition when grown
in soil solutions containing high levels of Si(OH)4 and almost no
evidence of silicification in media which are deficient in Si(OH)4.
So, if a plant has the potential to produce a super-saturated
solution of Si(OH)4 in xylem tissue across a wide concentration
of soil water Si(OH)4 then it is likely to be a known silica
accumulator. Some plantsmay only silicify at high concentrations
of soil water Si(OH)4 and other plants may not deposit silica at all
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or only deposit silica in the roots. It is probably the case that most
plants have the potential for biological silicification and it is the
second step, the templating of the silica deposition process which
discriminates between those which are highly silicified, such as
horsetail, and the rest.

TEMPLATING SILICIFICATION

Once a super-saturated concentration of Si(OH)4 is maintained
in xylem a steady supply of hydraulically and osmotically
driven Si(OH)4 will be available to the rest of the plant
tissues. Hydrostatic and osmotic forces drive the radial and
axial movement of water from xylem and in following water
out of xylem vessels super-saturated Si(OH)4 will encounter
various new compartments some of which will support time-
dependent formation of dimers, trimers, oligomers, and polymers
of Si(OH)4 and eventually the precipitation of silica. These
‘compartments’ are created by various resistors which influence
the relative rates of movement of water and Si(OH)4 (water
faster than Si(OH)4) and will include aquaporin-like channels,
plasmodesmata and various precursors and constituents of plant
tissues, such as those which constitute plant cell walls. The precise
nature and abundance of such compartments will be species-
specific and the degree to which they may become silicified in any
one species will depend upon the soil water content of Si(OH)4
and the extent to which it becomes super-saturated in xylem (and
perhaps analogous water conducting tissues).

What may not be generally appreciated is that in plants that
are considered as silicon accumulators, for example horsetail
and rice, silicification is extensive (Cooke and Leishman, 2011)
and the degree to which tissues are silicified cannot always be
appreciated using somemethods of biological imaging (Figure 1).
Biogenic silica is extraordinarily stable in acid. When silica-
rich plant tissues are digested using a microwave oven at 180◦C
and 1800W in a 1:1 combination of 15.8M HNO3 and 18.4M
H2SO4 and the resulting clear digests are diluted with ultra
pure water and filtered through 0.10 μm membranes the only
residue collected by the filters is biogenic silica. When the silica
is viewed using the fluor PDMPO and fluorescence microscopy
the images obtained are spectacular and in particular they
emphasize the myriad structures which are silicified (Law and
Exley, 2011). There are structures which appear more heavily
silicified than others and their propensities for silicification are
probably determined by the respective densities of the molecular
structures acting as templates of the precipitation process. We
have identified the hemicellulose callose as one such molecular
template for biological silicification (Law and Exley, 2011) and
others will probably include precursors to and components of
plant cell walls (Fleck et al., 2011; Fernández Honaine and
Osterrieth, 2012; Yamanaka et al., 2012; Fernández Honaine et al.,
2013; Leroux et al., 2013; Zhang et al., 2013).

The mechanism by which callose templates the precipitation
of biogenic silica is likely to be entirely passive. Callose is
as an amorphous gel-like polymer of glucose units linked by
glycosidic bonds and the disorder and flexibility in its structure
in vivo lends itself to its many functions in plants, including

algae, as well as in yeasts, fungi and lichens (Piršelová and
Matušíková, 2013). In plants its intracellular transport is in
vesicles and it is continually synthesized and degraded by callose
synthases and β-1,3-glucanases, respectively. The adaptability
of callose, relative for example, to the more rigid structure of
cellulose, makes it ideal as a building material for example in the
differentiation of stomata or the development of plasmodesmata.
The structure of callose, essentially a loose gel which is rich
in hydroxyl functionalities, also makes it an ideal candidate
material to provide a constrained environment to template the
precipitation of Si(OH)4 as biogenic silica. By way of an example,
the differentiation of stomata is a complex process in which
callose is involved in almost every step. Apostolakos et al. (2009,
2010) have detailed these stages in fern (Asplenium nidus L.),
a known silica accumulator (Leroux et al., 2013) and we have
shown that silica deposition exactly mimics callose deposition in
horsetail (Law and Exley, 2011) and in fern (Figure 2). These
observations not only support a specific role for callose in silica
deposition they demonstrate that the deposition of silica in plants
is not simply a one-way process but must involve the modeling,
dissolution, and remodeling of silica structures.

NATURAL SELECTION AND PLANT
SILICIFICATION

Silicification has conferred a range of advantages on silica
accumulators and specifically structural support (Hodson et al.,
2005), defense against pathogens (Ma, 2004), defense against
herbivory (McNaughton et al., 1985), alleviation of micronutrient
deficiency (Hernandez-Apaolaza, 2014) and amelioration of
metal toxicity (Epstein, 1994). However, the propensity to
support the process of silicification, the conversion of a super-
saturated solution of Si(OH)4 to amorphous hydrated silica, may
also have dictated the success of certain plants to thrive in soil
solutions rich in Si(OH)4. To understand what is meant here
it needs to be appreciated that saturated solutions of Si(OH)4
which are undergoing rapid auto condensation to form silica
nanoparticles are known to be cytotoxic, for example causing
rapid haemolysis of red blood cells (Margolis, 1961). Margolis,
who described this effect, suggested that the mechanism involved
the adsorption and denaturation of a globular protein and
that the effect was size-specific and was only observed when
silica particles exceeded 5 nm in size (Iler, 1979). Generally
the auto condensation of Si(OH)4 is not an issue in biota,
it is simply not occurring, and it is only significant in the
biosilicifiers and theymust achieve the formation of silica without
suffering any cytotoxic effects. This suggests two prerequisites
to achieving successful and toxicity-free biological silicification;
(i) during early stages the size of silica nanoparticles must
be maintained below 5 nm and (ii) the assembly of silica
structures and frameworks involving silica particles larger than
5 nm must involve biomolecular templates which are not prone
to denaturation (perhaps precluding a role for proteins?) or
biomolecules which will be sacrificed as part of the silicification
process. As mentioned previously, the hemicellulose, callose
may be an ideal vehicle for the entrapment of Si(OH)4 and
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FIGURE 1 | Scanning electron microscopy image of silica collected following acid and microwave digestion of rice leaf blade and demonstrating
myriad silicified structures. The silica tube at the center of the image is approximately 100 μm in length and 4 μm in diameter.

FIGURE 2 | Fluorescent imaging of silica collected following acid and microwave digestion of fern leaf (Asplenium nidus L.) and showing multiple
stomata in silicified leaf tissue undergoing differentiation. In particular this image, magnified in the insert, demonstrates how closely silica deposition mimics
the deposition of radial fibrillar callose arrays (for example, indicated by star) in stomata in fern (Apostolakos et al., 2009).

the subsequent control of its auto condensation and growth
toward nanoparticles (<5 nm) of silica. It has the approximate
structure of a sponge being able to soak up Si(OH)4 into myriad

constrained spaces each dense with hydroxyl functionality from
its constituent glucose units. While the formation of silica may
be allowed within these spaces its growth will probably be
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significantly delayed or constrained. As was alluded to earlier
the extremely detailed way in which silica deposition appears
to mirror the role of callose in the differentiation of stomata,
cytokinesis and the structure of plasmodesmata (Law and Exley,
2011) would suggest significant plasticity within the callose-silica
system with silica both forming and dissolving to mimic the role
of callose in these processes. Biological silicification is not a one-
way process as it is known to be reversible to a significant extent
when the source of Si(OH)4 to the organism is removed (Law and
Exley, 2011; Yamada et al., 2014). It is a highly dynamic process
and the processes which underlie callose biochemistry may also
underlie biological silicification but only in those plants where
a super-saturated concentration of Si(OH)4 is maintained in
xylem and, perhaps, other conducting tissues. By way of contrast
those plants which maintained a super-saturated concentration
of Si(OH)4 in xylem tissue but did not also utilize callose (or
equivalent biomolecule) have already been selected out of those
environments which today support biosilicifiers.

STEP BY STEP GUIDE TO BIOLOGICAL
SILICIFICATION IN PLANTS

The biologically available form of silicon in soil waters is Si(OH)4
and it follows water into the plant root.

The relative rates of movement of solute [Si(OH)4] and
solvent (water) into xylem and other conducting tissues under
hydrostatic pressure are governed by water channels, such as
aquaporins, and not transporters. Where these channels present
significant resistance to the movement of Si(OH)4, relative to
water, the solute is progressively concentrated with the result that
some plants maintain a super-saturated concentration of Si(OH)4
in these tissues, the degree of super-saturation being governed by
the concentration of Si(OH)4 in soil water.

Super-saturated Si(OH)4 in the vascular system acts as a
source of Si(OH)4 to all other tissues. Some of this Si(OH)4
leaves the plant through guttation. Transcellular movement
of Si(OH)4 following concentration gradients will result in
auto condensation of Si(OH)4 upon entering constrained
environments, for example, such as those presented by the
vesicular transport of callose. Silicification piggy-backing the
metabolism and deposition of callose presents sophisticated
cellular machinery for the controlled and specific deposition
of biogenic silica. This is evident in the highly specialized
silicification seen in horsetail and other biosilicifiers. However,
silicification is significantly more widespread throughout plant
tissues than is generally appreciated and other constrained
environments, usually created by biomolecules involved
in structures associated with cell walls, will also promote
biological silicification to differing extents and degrees of
sophistication depending upon the substrate and the delivery
of Si(OH)4.

Silicification is a passive process in that it occurs simply
as a consequence of biochemistry and cellular machinery
which evolved to fulfill entirely different requirements, such
as the movement of water and the differentiation of cell
walls. We know that this is true as while silicification does
confer advantage on some organisms it is not essential for
any organism. For example, horsetail grows perfectly well in
the complete absence of silica deposition in its tissues though
such silica-free plants are more prone to fungal infection
(Fauteux et al., 2005; Law and Exley, 2011). There is no
known silicon biochemistry (Exley, 1998) and there is a simple
reason for this in that the biologically available form of
silicon, Si(OH)4, has no organic chemistry and an extremely
limited inorganic chemistry. These simple facts explain the
non-selection of silicon in the biochemistry of life (Exley,
2009a).
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