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Neurons receive inputs from thousands of synapses distributed across dendritic trees of
complex morphology. It is known that dendritic integration of excitatory and inhibitory
synapses can be highly non-linear in reality and can heavily depend on the exact location
and spatial arrangement of inhibitory and excitatory synapses on the dendrite. Despite
this known fact, most neuron models used in artificial neural networks today still only
describe the voltage potential of a single somatic compartment and assume a simple linear
summation of all individual synaptic inputs. We here suggest a new biophysical motivated
derivation of a single compartment model that integrates the non-linear effects of shunting
inhibition, where an inhibitory input on the route of an excitatory input to the soma cancels
or “shunts” the excitatory potential. In particular, our integration of non-linear dendritic
processing into the neuron model follows a simple multiplicative rule, suggested recently
by experiments, and allows for strict mathematical treatment of network effects. Using our
new formulation, we further devised a spiking network model where inhibitory neurons
act as global shunting gates, and show that the network exhibits persistent activity in a
low firing regime.
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1. INTRODUCTION
A hallmark of neural computations is the interaction of excitatory
and inhibitory drives (Wilson and Cowan, 1972; Brunel, 2000;
Herz et al., 2006; Vogels and Abbott, 2009). Dendritic integration
of excitatory and inhibitory synaptic potentials is a complicated
biophysical process and involves many non-linearities (Mainen
and Sejnowski, 1996; Borg-Graham et al., 1998; London and
Häusser, 2005). In particular, the position of the presynaptic
inputs to a particular neuron on the dendritic tree is very impor-
tant for signal integration and potential spike initiation (Huang
et al., 2007). For instance, if an excitatory input occurred in the
distal region of the dendritic tree (far away from the soma) it
is possible that a simultaneous inhibitory input to the proximal
region (near to the soma) could effectively “shunt” the excita-
tory pulse on its way to the soma. Accordingly, this effect is
called shunting inhibition [Barrett and Crill, 1974; Blomfield,
1974; Rall, 2011, see also review in Koch (2004)]. On the
other hand, if the position of the two synapses on the den-
dritic tree would be exchanged, a simultaneous input would
have a markedly different outcome, with the excitatory pulse
reaching the soma and potentially causing the generation of a
spike.

While the theoretical basis for the effect of shunting inhibition
has been laid out several decades ago by analyzing passive elec-
tric membrane properties of dendrites (Barrett and Crill, 1974;
Blomfield, 1974; Rall, 2011; Koch, 2004), neural network models
today still often rely on single compartment models (point mod-
els), such as (quadratic) integrate-and-fire model (Gerstner and

Kistler, 2002; Izhikevich, 2006), and thus ignore this potentially
important non-linear integration of synaptic inputs (McLaughlin
et al., 2000; Wang, 2002; Vogels and Abbott, 2009; Rasch et al.,
2011).

Acknowledging this inaccuracy of common network models
already decades ago, it was shown that incorporating non-linear
dendritic effects, such as shunting inhibition, into the mean-field
equations of a network of neurons is indeed possible (Abbott,
1991a,b). These non-linear effects are potential important as they
e.g., explain persistent activity of low firing rates which cannot be
well explained by common models as they typically fire in the sat-
uration regime of the input–output relation with unreasonably
high firing rates (>100 Hz; Gold and Shadlen, 2001). However,
by starting from the full cable equation, the equations in Abbott
(1991b) for incorporating the non-linear dendritic effects are not
of a simple mathematical form.

Indeed, it is known that the effect of shunting inhibition can be
(at least during steady state) mathematically conceptualized sim-
ply as a “dirty multiplication” of excitatory and inhibitory input
conductances (Koch et al., 1982; Koch, 2004) in contrast to the
common form of linear summation of any two inputs in sim-
ple neuron models. Accordingly, a recent study, re-investigating
shunting inhibition experimentally (Hao et al., 2009), found that
indeed the integration of simultaneous excitatory post-synaptic
potentials (EPSP) and inhibitory post-synaptic potentials (IPSP)
could be well described in a multiplicative form:

�VSoma ∝ EPSP + IPSP + κ · EPSP · IPSP, (1)
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where κ is a factor determining the strength of the shunting effect
that depends on the spatial arrangement of the synaptic inputs on
the dendritic tree.

Given the good experimental agreement of this description,
a follow-up study tried to incorporate this abstract formula-
tion of shunting inhibition into a simple single-compartment
neuron model (Zhou et al., 2013), which the authors called
the “DIF”-model (dendritic integrate-and-fire). In fact, incor-
porating non-linear effects of shunting inhibition into simple
neuron models would make neural network simulations based on
point models more realistic while keeping the formulation and
simulation simple and efficient: there would be no need to sim-
ulate complex multi-compartment neuron models instead where
effects of shunting inhibition are very well understood (Hao et al.,
2009).

However, in the study (Zhou et al., 2013), the derivation was
based on phenomenological arguments to describe the effects of
shunting as observed in experiments. Here we suggest a different
derivation of a single compartment model starting from a bio-
physical more realistic conductance-based three-compartment
model. The advantage of our derivation is that the shunting
strength κ can be approximated analytically in biophysical terms.
Moreover, our formulation naturally includes the correct dis-
tance dependence of the shunting strength κ and the experimental
results of Hao et al. (2009) can be captured well.

The usefulness of integrating non-linear dendritic processing
into a simple neuron model is that network effects induced by
shunting inhibition can now be analyzed in much simpler mathe-
matical form. For that, we further extend our model to include
multiple excitatory and inhibitory sites with specific layout on
the dendritic branches and devised a network of mutually con-
nected excitatory and inhibitory groups of neurons. The structure
of our network model is similar to those analyzed earlier (Wilson
and Cowan, 1972; Brunel, 2000), and derivations of its topology
were suggested for many brain areas, such as for memory cir-
cuits (Hopfield, 1984), pre-frontal cortex computations (Machens
et al., 2005), or decision making (Wang, 2002; Wong and Wang,
2006). In contrast to previous models, however, in our net-
work inhibitory neurons act as global shunting gates, and thus
introduce a new multiplicative non-linearity. In fact, this arrange-
ment of inhibitory inputs—specifically targeting the peri-somatic
regions to act as global shunting gates—has been found to be a
common motif for certain basket cell types in the brain (Markram
et al., 2004).

We show that our simplified mathematical form of non-linear
dendritic inputs is capable of generating persistent activity with
relatively low firing rate in simulations of networks of spiking
neuron (around 15 Hz), as has previously been found for fir-
ing rate models using a more detailed incorporation of dendritic
effects (Abbott, 1991a). Moreover, firing levels can be “adjusted”
in a gradual manner by e.g., changing the excitatory drive.

Non-linear dendritic processing might be an important under-
lying mechanism for commonly observed spiking dynamics in the
brain. Our work suggests that non-linear dendritic effects can be
simply incorporated in networks of spiking neurons.

Parts of the results were previously presented on a confer-
ence (Zhang et al., 2011).

2. RESULTS
To get an intuitive idea of the non-linearity involved in integrat-
ing two synaptic inputs, let us first consider a conductance-based
neuron model which receives a pair of excitatory and inhibitory
inputs at the soma. The dynamics of the neuron can be written
as Koch (2004)

C
dv

dt
= −g(v − EL) − gE(v − EE) − g I(v − EI), (2)

where v is the membrane potential of the neuron and C the
membrane capacitance. g is the leaky conductance and EL the
resting potential. gE and g I denote, respectively, the excitatory and
inhibitory conductances, and EE and EI the corresponding rever-
sal potentials. One finds from Equation (2) that the membrane
potential in the steady state can be written as

v̄ = EL + gE

γ
(EE − EL) + g I

γ
(EI − EL), (3)

with the factor γ := g + gE + g I. Thus the excitatory conductance
gE, as well as the inhibitory conductance g I is scaled by a factor
(γ) involving both, the inhibitory and excitatory conductances.
Therefore the integration of inhibitory and excitatory currents on
the somatic potential is non-linear rather than an independent
linear summation.

Of course, shunting interaction in reality is more complicated
than this simple case because its effect depends on the spatial con-
figuration of excitatory and inhibitory inputs on the dendrite of a
neuron. In the following, we will derive a simple single compart-
ment neuron model which incorporates the effects of shunting
inhibition via a multiplicative rule. After the derivation, we will
show how different geometric arrangements can be modeled in
a network and finally show how shunting inhibition can lead to
persistent activity in a neural network.

2.1. DERIVATION OF A SINGLE COMPARTMENT MODEL WITH
NON-LINEAR DENDRITIC INTEGRATION

2.1.1. On-path configuration
Let us consider a simple integrate-and-fire neuron model, which
consists of a soma and two dendritic compartments. The neuron
receives an excitatory and an inhibitory input at the locations E
and I on the dendrite, respectively (see Figure 1).

Let us assume that an inhibitory input is on the route from
an excitatory input on its way to the soma, i.e., the position
I is between E and the soma (Figure 1A). This situation was
called the “on-path configuration” (Koch et al., 1983). The sub-
threshold dynamics of this neuron can be written (compare to
the equivalent circuit in Figure 1B):

CS
dvS

dt
= −gS(vS − EL) − g IS(vS − vI), (4)

CD
dvI

dt
= −gD(vI − EL) − gSI(vI − vS) − gEI(vI − vE)

−g I(vI − EI), (5)

CD
dvE

dt
= −gD(vE − EL) − g IE(vE − vI) − gE(vE − EE), (6)
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where vS, vI, and vE denote the local membrane potentials at
the soma and the dendrite locations I and E, respectively. CS
and CD are the membrane capacitances of the soma and the
dendrite locations E and I, respectively. EL is the resting poten-
tial of the neuron. EI and EE are the reversal potentials of the
inhibitory and excitatory currents, respectively. gS and gD are,
respectively, the leaky conductances at the soma and the den-
drite locations. g IS is the transfer conductance from the dendritic
location I to the soma, and gSI the transfer conductance from
the soma to the dendritic location I. g IE and gEI are defined
accordingly.

The excitatory and inhibitory synaptic conductances, gE

and g I, respectively, are describing the opening of correspond-
ing ion channels. If we assume simple exponential activation
curves, the dynamics of the synaptic inputs can be written
as Koch (2004)

τE
dgE

dt
= −gE + τEwE

∑
m

δ(t − tm) (7)

τI
dg I

dt
= −g I + τIwI

∑
m

δ(t − tm). (8)

Thus, synaptic conductances are driven by presynaptic spike
trains which are expressed as a sum of delta-functions,∑

m δ(t − tm), with tm denoting the moment of the m-th spike.
τE and τI are the time constants for the excitatory and inhibitory
synaptic conductances, respectively. wE and wI are the corre-
sponding synaptic connection strengths.

The dynamic of the neuron model of Equations (4–6) is
difficult to analyze because it involves the dynamics of three
membrane voltages. Thus a further simplification is desirable
especially when considering the dynamics of a large net-
work of interacting neurons. In the following, we will fur-
ther simplify the above model by a separation of time-scales
approach.

From Equations (4–6), we note that the magnitudes of the time
constants of the potentials at the soma and the dendrite loca-
tions I and E can be roughly estimated to be τS ≈ CS/(gS + g IS),
τDI ≈ CD/(gD + gSI + gEI) and τDE ≈ CD/(gD + g IE). Since the
capacitance increases linearly with the surface area of the mem-
brane (see e.g., Koch, 2004), the membrane capacitance at the
soma is much larger than that at the dendritic locations E and I,

i.e., CS � CD. Furthermore, we assume that the leak conduc-
tances gS and gD are of the same order and larger than the transfer
conductances, i.e., gS � g IS, gD � gSI and gD � g IE. Therefore,
we have τS � τDI and τS � τDE. In fact, using the parame-
ters from Table 1 it is τDI ≈ 1.7 ms, τDE ≈ 2.3 ms, and τS ≈
13.4 ms and therefore indeed τS � τDE ≈ τDI. This implies that
the dynamics of vI and vE occur much faster than that of vS. Thus,
we can effectively treat vS as a slow time variable, and vI, vE as fast
time variables. The dynamics of the somatic potential can then
be solved approximately by assuming that vI and vE reach their
steady values instantly. This is achieved by setting the left-hand
sides of Equations (5) and (6) to zero and solve for the membrane
potentials. We obtain:

v−I = EL + gSI(vS − EL) + gEI(v−E − EL) + g I(EI − EL)

gD + gSI + gEI + g I
,(9)

v−E = EL + g IE(v−I − EL) + gE(EE − EL)

gD + g IE + gE . (10)

Further, we assume that the input locations, E and I, and the soma
are well separated on the dendritic branch (as this is the experi-
mental condition during which (Hao et al., 2009) obtained their
results). Substituting Equations (9) and (10) into Equation (4),

Table 1 | Parameters used in the main text and numerical calculations.

Description Parameter Values

Somatic reversal potential EL −70 mV

Exc. reversal potential EE 10 mV

Inh. reversal potential EI −80 mV

Somatic membrane capacitance CS 740 pF

Dendritic membrane capacitance CD 50 pF

Somatic leaky conductance gS 30 nS

Dendritic leaky conductance gD 20 nS

Transfer conductance soma to I gSI 5 nS

Transfer conductance I to soma gIS αgSI

Transfer conductance soma to E gSE 10 nS

Transfer conductance E to soma gES αgSE

Transfer conductance I to E gIE 1 nS

Transfer conductance E to I gEI αgIE

Scaling factor α 5

FIGURE 1 | The three-compartment model. (A) The spatial configuration of synaptic inputs on the dendrite, with the inhibitory input being on the path from
the excitatory site to the soma. (B) The equivalent electrical circuit describing the sub-threshold dynamics of the neuron (Equations 4–6).
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we then get a simplified model for the dynamics of the somatic
potential (see section 4.1 for a detailed derivation),

τS
dvS

dt
= −(vS − EL) + fd(gE) + fp(g I)

+ κonfd(gE)fp(g I), (11)

where τS = CS/(gS + g IS), and

fd(gE) = g ISgEIgE(EE − EL)

(gSgD + gSgSI + gSgEI + gDg IS + gEIg IS)

× (gD + gE + g IE),

(12)

fp(g I) = g ISg I(EI − EL)

(gSgD + gSgSI + gDg IS) + g I(gS + g IS)

+ gEI(gS + g IS),

(13)

κon = gS + g IS

g IS(EL − EI)
. (14)

To understand the behavior of the new neuron
model (Equation 11), it is instructive to look at the steady
state of the somatic potential in response to constant synaptic
inputs. The steady state v̄S is obtained by setting the left-hand
side of Equation (11) to be zero:

v̄S = EL + fd(gE) + fp(g I) + κonfd(gE)fp(g I). (15)

Thus, when no inhibitory input is applied, i.e., g I = 0 and
fp(g I) = 0, then vS − EL = fd(gE) is the voltage change at the
soma due to the excitatory input gE. Analogously, if no exci-
tatory input is applied, i.e., gE = 0 and fd(gE) = 0, then the
voltage change at the soma is given by vS − EL = fp(g I). Thus,
in case of single inputs the multiplicative effects of the dendrite
is reduced to an additive form as in the common formulation
of an integrate-and-fire model. However, if both excitatory

and inhibitory inputs are applied simultaneously, their joint
effect on the somatic potential is given by vS − EL = fd(gE) +
fp(g I) + κonfd(gE)fp(g I), that is a summation of the excitatory
and inhibitory contribution when each of them was applied
separately, and an additional product of their independent con-
tributions, i.e., κonfd(gE)fp(g I). The multiplicative term comes
from the non-linear shunting process, and the coefficient κon

represents the shunting strength.
The new neuron model (Equation 11) describes the sub-

threshold voltage dynamics at the soma if two synaptic sites,
excitatory and inhibitory synapses, are arranged in on-path con-
figuration. The summation of excitatory and inhibitory conduc-
tances agrees with the form found in a recent experiment [Hao
et al. (2009); see also Equation (1)], that is a linear sum of
individual excitatory or inhibitory effects, fd(gE) + fp(g I), and
a multiplicative term involving both, excitatory and inhibitory
currents fd(gE)fp(g I), as well as a shunting strength factor κon.

The functions fd(gE), for the distal excitatory synaptic site, and
fp(g I), for the proximal inhibitory synaptic site, correspond to the
induced voltage change at the soma for a given conductance input
at the respective synaptic sites. If input conductance gE is small,
gE � gD, then fd(gE) is approximately linear (see Figure 2A). For
larger excitatory inputs, the function saturates to a positive value.
Analogously, if the inhibitory conductance g I is small, g I � gS,
then the function fp(g I) is approximately linear (Figure 2B), but
similarly saturates to a negative value for larger inhibitory inputs.

Note that these functions relating the somatic effect of the
synaptic conductances include the transfer conductances from
one site to the other. They are thus dependent on the distance
between the excitatory and inhibitory site, as well as the distance
to the soma. If only passive cable properties are considered, trans-
fer conductances in both directions, e.g., gEI and g IE, would be
equal (Koch, 2004). In practice, however, depolarization of the
membrane potential caused by excitatory currents is amplified
by the existence of voltage-dependent ion-channels (Cook and
Johnston, 1997; Lai and Jan, 2006). Thus transfer conductances
of excitatory input locations to other parts of the dendrite

FIGURE 2 | Somatic response functions. (A) The function fd(gE) of the distal excitatory site. (B) The function fp(gI) of the proximal inhibitory site. For small
values of gE and gI , fd(gE) and fp(gI) can be approximated as linear functions (dotted lines). Parameters as in Table 1.
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is increased in comparison to the transfer conductances from
inhibitory sites. We thus set gEI = αg IE, with α > 1 to reflect
this property. Moreover, since in on-path configuration excitatory
currents will flow pass the inhibitory location, causing similarly
an amplification through active channels, we further set g IS =
αgSI. Note that the setting of α does not affect our qualitative
results but will influence the size of the somatic voltage change
in response to synaptic inputs (see below and Figure 2).

In contrast to the approach of Zhou et al. (2013), in our neu-
ron model (Equation 11) the shunting strength κon is explicitly
given in biophysical terms. From Equation (14) it can be seen
that the shunting strength will be particular prominent if the
resting potential and the inhibitory reversal potentials are simi-
lar EL ≈ EI, in agreement with experimental and early theoretical
findings (Koch, 2004; Hao et al., 2009). Note further that κon

decreases with growing transfer conductance g IS. Thus if loca-
tion I is set farther away from the soma (while still retaining the
on-path configuration), the transfer conductance to the soma g IS

will naturally decrease, and therefore the shunting will increase.
Thus, κon tends to have a larger value if inhibitory inputs are
at a distal site of a dendrite in comparison to inputs at a prox-
imal site, agreeing with experimental observations (Hao et al.,
2009). Moreover, in contrast to earlier two-port analysis (Koch
et al., 1983; Hao et al., 2009; Zhou et al., 2013), our approxima-
tion of κon does not depend on the transfer conductance between
E and I, therefore the shunting strength is approximately con-
stant when the excitatory synapse location is increasingly distal
but the inhibitory location is fixed. This again agrees well with
experimental findings (Hao et al., 2009).

Taken together, we found that in on-path configuration a
single somatic point model can be derived starting from a
three-compartment model when assuming that dendritic pro-
cessing is fast compared to the somatic integration and that
locations E and I are well separated. In this case the arithmetic

rule (Equation 1) as suggested by Hao et al. (2009) is well cap-
tured [compare to Equation (15)]. We tested the accurateness
of the simplifications by comparing the dependence of κon on
the input conductances. Note that in the simplified model (as in
the suggested rule of Hao et al., 2009) κon is independent of gE

and g I. If we instead attempt to compute the shunting strength
directly from the full three-compartment model by assuming that
the arithmetic rule (Equation 1) was correct, we find that κon-full

is indeed almost not dependent on the input conductances. In
detail, we calculated the steady state somatic voltage of the full
three-compartment model, and solve for κ according to the arith-
metic rule (Equation 1). That is, we first subtract both individual
excitatory and inhibitory contributions from the steady state volt-
age [by setting g I = 0 or gE = 0, respectively) and then divide the
result by both individual contributions (compare to Equation (1)]
to get the shunting strength (which might in this case still depend
on the input conductances gE and g I).

As plotted in Figure 3A (solid line), the computed κon-full from
the full model (using the parameters of Table 1) changed very lit-
tle for a large range of g I (or gE, not shown). This indicates that
the suggested arithmetic rule of Hao et al. (2009) (Equation 1)
is applicable and that our single compartment model is a good
approximation to the on-path configuration.

In summary, we derived a new formulation of the sub-
threshold dynamics of an integrate-and-fire model with inte-
grated dendritic processing [Equation (11); note that our form of
the single compartment model is different from the formulation
of Zhou et al. (2013)]. Our model incorporates effects of shunting
inhibition of two synaptic inputs with on-path configuration.

2.1.2. Out-of-path configuration
Analogous to the on-path configuration, we can derive a simpli-
fied model for the out-of-path configuration, that is, when the
excitatory synapse lies on the route of the inhibitory current to

FIGURE 3 | Dependence of shunting strength with input

conductances and distance. (A) Dependence of the shunting strength
with inhibitory input conductance gI for the full three-compartment
model in on-path and out-of-path configuration (gE = 2 nS; dendritic
locations (see plot B), on-path: x(I) = 18, x(E) = 50, out-of-path:
x(I) = 18, x(E) = 15). For out-of-path configuration (dashed line), κ is
heavily dependent on gI . In this case, the arithmetic rule (Equation 1)

and the single compartment model are less useful. (B) Shunting
strength κ depends on the spatial arrangement of locations E and I. The
plot shows the shunting strength computed with the three-compartment
model vs. distance of E from the soma (in arbitrary units), while fixing
I at three different locations, I1, I2, and I3 (dotted lines). Solid lines
show the dependence of κon of our single compartment model: κon is
constant (in E) for the on-path configuration (Equation 14).
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the soma. Formally in (Equation 4–6), excitatory and inhibitory
synapses exchange position, but the equations otherwise remain
the same (that is all labels E and I have to be interchanged in
Equation 4–6).

The resulting equations are similar, except that now fd(gE)

and fp(g I) are replaced by fd(g I) and fp(gE) (with appropriately
adapted labeling):

fp(gE) = gESgE(EE − EL)

(gSgD + gSgSE + gDgES) + gE(gS + gES)

+ g IE(gS + gES)

, (16)

fd(g I) = gESg IEg I(EI − EL)

(gSgD + gSgSE + gSg IE + gDgES + g IEgES)

× (gD + g I + gEI)

, (17)

κout = (gS + gES)

gES(EL − EE)
. (18)

To arrive at these equations we used analogous assumptions as in
the on-path case. In particular, we assumed that both dendritic
locations are well separated. Note, that in out-of-path configu-
ration, the shunting strength is negligible, because the absolute
difference of the somatic reversal potential (EL ≈ −80 mV) and
the excitatory synaptic reversal potential (EE ≈ 0 mV) is very
large, thus κout ≈ 0 mV−1. This result agrees well with previous
theoretical analysis (Koch et al., 1983), where it was found that
the shunting strength in out-of-path configuration is negligible
compared to that in on-path configuration.

In the derivation of the model for the out-of-path configu-
ration we assumed that all synaptic locations are well separated
and found that the arithmetic rule (Equation 1) is approximately
satisfied. However, note that our approximation is less success-
ful than in on-path configuration. In particular, if compared to
the shunting strength derived from the full model in out-of-path
configuration (analogous to the calculation of κon-full as described
above), we find that κout-full is strongly dependent on the input
conductances, specifically on g I. This dependence is plotted in
Figure 3A (dashed line).

Taken together, since both, the arithmetic rule (Equation 1)
and our single compartment model (Equation 16), predict a
constant shunting strength κout in respect to the inputs, they
are both less valid in out-of-path configuration than in on-path
configuration, where κon-full can indeed be regarded as constant.

2.1.3. Shunting strength depends on the distance between the
synaptic sites and the soma

Since we derived our single compartment model (Equation 11)
starting from a three-compartment model, distance dependence
of the shunting strength can be qualitatively assessed by assuming
distance dependence transfer conductances, namely gEI, gEI, g IS,
and gSI. Biophysically, resistance will grow linearly with increas-
ing length of a passive cable (Koch, 2004), thus we assume that
each transfer conductance between two points on the dendrite is
reversely linearly dependent on their distance x.

For estimating the distance dependence of the shunting
strength κ, we follow the experiments of Hao et al. (2009) (their

Figure 3), and first fix the inhibitory location I at three positions,
I1, I2, and I3, and set gSI to 2.2, 3, and 5 nS, respectively. The other
transfer conductances are given by their distance dependence,
gtrf = gmax/(μx + 1). Here, gmax is the conductance when two
points are co-localized together (x = 0), and is much larger than
the leaky conductance, we set gmax = 300 nS. The spatial scaling
factor μ depends on the electrotonic properties of dendrite(Koch,
2004) and determines the spatial scale, we set arbitrarily μ = 3 as
it does not change the qualitative picture. Other transfer conduc-
tances are set according to the spatial arrangement of the input
sites I and E, e.g., for the out-of-path configuration it is 1/gSE +
1/gIE = 1/gSI . The rest of the parameters are set according to
Table 1.

Figure 3B shows the variation of the shunting strength of
the full three-compartment model for the on-path configuration
(Equations 4–6) and the out-of-path configuration as a func-
tion of the distance of the excitatory site from the soma. Note
that when varying this distance, the model switches from out-of-
path to on-path configuration at the site of the inhibitory input
(marked with dashed-dotted lines in Figure 3B). We found that
the shunting strength increases sharply for out-of-path configu-
rations the nearer the excitatory and inhibitory sites are, whereas
the shunting strength remains approximately constant for the
on-path configuration. This distance dependence of our three-
compartment model reproduces the experimental findings as well
as complex model simulations using dendrites having 200 com-
partments (Hao et al., 2009). Our single compartment model
assumed that inhibitory and excitatory sites are well separated and
thus approximates the full model in the asymptotic regime (solid
lines in Figure 3B).

2.2. NEURON HAVING MULTIPLE DENDRITES
Up to now, we analyzed the shunting contributions to a neu-
ron receiving only two inputs, one excitatory and one inhibitory
synapse. However, in real situations as well as in neural net-
work models, a neuron will typically receive hundreds to thou-
sands of input synapses. To investigate the effect of multiple
input synapses, we here analyze three possible configurations of
synapses on dendritic branches exemplifying potential excitatory
and inhibitory interaction patterns (see Figure 4).

2.2.1. Single synapses on individual dendritic branches
In the first configuration, individual excitatory or inhibitory
inputs are scattered on different dendritic branches (as illustrates
in Figure 4A). In this case, the synapses are physically separated
on parallel branches and thus shunting interaction between exci-
tatory and inhibitory currents can be ignored. As shown in the
section 4.2.1, the simplified model for the somatic potential vS is
given by

τS
dvS

dt
= −(vS − EL) +

∑
i

fN(gT
i ), (19)

where gT
i denotes the corresponding synaptic input conductance

of the ith synapse and T is a reminder of the type of the ith
synapse, either inhibitory or excitatory. The time constant of the
somatic voltage is given by τS = CS/(gS + NgTS), where gTS

denotes the transfer conductance from an input site to the soma.
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FIGURE 4 | Three different spatial configurations of multiple synaptic

sites on the dendrite. (A) Individual excitatory and inhibitory inputs are
distributed on individual dendritic branches. (B) Pairs of excitatory and

inhibitory inputs are located on individual dendritic branches. (C) Global
shunting: the inhibitory input is on the path of all excitatory currents to the
soma.

We assume that the transfer conductances from synaptic sites to
the soma are equal for all N dendritic branches. The function
relating the synaptic conductances to the somatic voltage change
is given by

fN(gT
i ) = gTSgT

i (ET
i − EL)

(gS + NgTS)(gD + gT
i )

, (20)

where gT
i is the synaptic conductance on the ith dendritic branch

and ET
i the corresponding reversal potential. Thus, according to

Equation (19), if inhibitory and excitatory synapses are located on
individual branches, their individual somatic contributions can
simply be added.

2.2.2. On-path configuration on each dendritic branch
In the second configuration (Figure 4B), each dendritic branch
has a pair of excitatory and inhibitory synapses in on-path con-
figuration. In this case, the simplified model can be written as (see
section 4.2.2)

τS
dvS

dt
= −(vS − EL)

+
∑

i

[
fNd(gE

i ) + fNp(g I
i) + κN-onfNd(gE

i )fNp(g I
i)

]
,

(21)

where τS = CS/(gS + Ng IS), and

fNd(gE
i ) = g ISgEIgE

i (EE − EL)

gD(gD + gE
i )(gS + Ng IS)

(22)

fNp(g I
i) = g ISg I

i(EI − EL)

(gS + Ng IS)(gD + g I
i + g IE)

(23)

κN-on = gS + Ng IS

g IS(EL − EI)
. (24)

Note that in this configuration, individual shunting components
of each branch can be simply added together.

2.2.3. Global shunting
In the third configuration, only excitatory synapses are dis-
tributed on dendritic branches and a single inhibitory synapse is

located in the peri-somatic region (see Figure 4C). In this con-
figuration, the single inhibitory input might shunt all incoming
excitatory currents, and we therefore call it global shunting. For
simplicity, we assume that the inhibitory synapse is located very
close to the soma, so that the inhibitory compartment can be
identified with the somatic compartment. This targeting of the
perisomatic region can be commonly observed for certain types
of basket-cells (Markram et al., 2004). In this case, the following
single compartment model can be derived (see section 4.2.3 for
details)

τS
dvS

dt
= −(vS − EL) +

∑
i

fGd(gE
i ) + fGp(g I)

+ κGfGp(g I)
∑

i

fGd(gE
i ), (25)

were τS ≈ CS/gS and

fGp(g I) = g I(EI − EL)

gS + g I + NgES
, (26)

fGd(gE
i ) = gESgE

i (EE − EL)

(gD + gE
i )(gS + NgES)

(27)

κG = 1

EL − EI
. (28)

Thus, the general multiplicative form of the shunting effect
remains the same as in the on-path configuration of our initial
model (Equation 11), but with the difference that now multiple
excitatory inputs are first added together before being multi-
plied by the inhibitory component. Note that if more than one
inhibitory input is considered (all similarly targeting the peri-
somatic region), all contributions can be simply added up. That is
g I in Equation (25) can then be replaced by a sum of all inhibitory
inputs,

∑
j g I

j .

2.3. NETWORK DYNAMICS WITH GLOBAL SHUNTING INHIBITION
In the above we have developed simple models describing the
sub-threshold dynamics of point-neurons while integrating non-
linear dendritic processing. These simplified single-compartment
models are valuable to analyze the effects of shunting inhibition
on the dynamics of large-scale networks.
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In the following, we will show by using our simplified neu-
ron model that shunting inhibition might lead to persistent
activity in spiking neuron networks as has been suggested pre-
viously for a different type of dendritic non-linearity (Abbott,
1991b). Our network structure of mutually interconnected
groups of inhibitory and excitatory neurons (as illustrated in
Figure 5) follows a common excitation-inhibition-type network
layout (Wilson and Cowan, 1972; Brunel, 2000).

2.3.1. Persistent activity by shunting inhibition
In detail, we built a network model of mutually connected NE

excitatory and NI inhibitory neurons, with NE = 4NI . Each neu-
ron is sparsely connected to others with a small probability
p = 0.1. For simplicity, the connection strengths between neu-
rons are constants, with wE and wI denoting the excitatory and
inhibitory strengths, respectively. We assume that each neuron in
the circuit has pNE branches, one for each excitatory input. All
inhibitory inputs target the per-somatic region. In our model,

Input

E XC

+

+ INH

−

−

FIGURE 5 | A network model for generating persistent activity.

Neurons in excitatory (Exc.) and inhibitory (Inh.) groups are mutually
connected in random and sparse fashion. Inhibitory effect are governed by
a (peri-somatic) global shunting inhibition.

both, excitatory and inhibitory neurons, are governed by non-
linear dendritic processing and thus include shunting inhibition.
Transfer conductances are assumed identical for each branch (for
detailed parameters settings, see Figure 6).

According to Equation (25), the dynamics of the ith neuron in
the network is

τT
S

dvT
i

dt
= −(vT

i − EL) + JT
i + σξi, (29)

JT
i =

pNE∑
j = 1

fGd(gE
ij + gext) + fGp

⎛
⎝pNI∑

j = 1

gI
ij

⎞
⎠

+ κGfGp

⎛
⎝pNI∑

j = 1

gI
ij

⎞
⎠ pNE∑

j = 1

fGd(gE
ij + gext) (30)

Here, the superscript T can either be T = E or I and denoted
the type of the ith neuron. JT

i represents the total synaptic input
received by the neuron, which consists of excitatory, inhibitory
and shunting components. τT

S, T = E or I, are the somatic time
constants of excitatory or inhibitory neurons, receptively, depend-
ing on the corresponding capacitance; we set CE

S = 740 pF and

CI
S = 370 pF. To model background noise, we include a Gaussian

noise term of zero mean and variance σ2. gext refers to a small
external input.

We further assume that a neuron fires a spike if its membrane
potential reaches a threshold of Ethres = −50 mV. After a spike the
membrane potential instantaneously is reset to Ereset = −70 mV.
The dynamics of the excitatory and inhibitory synaptic conduc-
tance are given by Equations (7) and (8), respectively. We adjust

FIGURE 6 | Network showing persistent activity by shunting inhibition.

(A) Raster plot of the spiking activity of a selection of 250 neurons from the
network. The y-axis plots the neuron index, where neurons 1–200 are
excitatory (black color), and 201–250 are inhibitory (red color). After removal
of the input (at t = 250 ms), the network retains persistent firing. The two
vertical lines denote the onset and offset time of the external input,
respectively (see margin plot below). The firing rates during persistent
activity are rE = 12.6 Hz, and rI = 24.8 Hz (obtained by averaging the neural

population over the time interval 400–500 ms). The synaptic weights are set
to wE = 24 nS and wI = 2 nS. (B) The population-averaged firing rates of
excitatory neurons vs. the excitatory connection strength wE . Simulation
results averaged over 10 trials (circles; error bars indicate standard deviations)
and the mean-field approximation (dashed line; Equation 64). Single neuron
parameter as in Table 1. Other parameters: NE = 2000, NI = 500, p = 0.1,
CE

S = 740 pF, CI
S = 370 pF, τE = 100 ms, τI = 10 ms, μE = 3.2, μI = 6.4,

β = 17.5, a = 0.002, b = 0.175, c = −0.113, and d = −0.6218.
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the time constant of excitatory conductance to τE = 100 ms to
account for the prominent role of slow NMDA conductances
in the generation of persistent activity (Wang, 2002; Wong and
Wang, 2006). Inhibitory conductance time scale is set to τI =
10 ms.

When parameters are chosen properly, we found that the
network can retain sustained activity at a low firing rate even
after an external stimulus is removed. An example of the net-
work activity during persistent activity is shown in Figure 6A.
Note that after a brief input (in the range 50–250 ms) the
population firing rate remains high and does not return to
the spontaneous activity level (which is induced by the noise
term in the region 0–50 ms). Remarkably, the average pop-
ulation firing rate of the network does not reach very high
firing rate but instead continuous to fire with a relatively
modest rate of around 15 Hz for our parameter setting. An
increase in the excitatory synaptic weight wE causes the firing
level to gradually increase (from 13 to 18 Hz in our example,
see Figure 6B).

2.3.2. Theoretical analysis of the persistent activity induced by
global shunting inhibition

An intuitive picture for the underlying mechanism of the per-
sistent activity induced by non-linear dendritic processing is as
follows. When the firing rates of excitatory neurons are small,
the self-excitation of excitatory neurons dominates and the fir-
ing rates of all neurons increase; however, with the excitation
increasing further, the effect of shunting inhibition starts to grow
dramatically in a non-linear manner due to its multiplicative
dependence on the excitatory current. In case of persistent activ-
ity these two opposite effects are approximately balanced, so that
neurons fire persistently at relatively low values without the need
of external inputs.

To further elucidate these ideas, we carry out mean-field
approximation by considering the average synaptic inputs to the
excitatory and inhibitory populations, and approximate the net-
work dynamics. The mean-field approach has previously been
used to analyze the dynamical processes of neural networks with
integrate-and-fire neurons (Amit and Brunel, 1997a,b; Brunel
and Wang, 2001; Renart et al., 2003; Wong and Wang, 2006).
Basically, as the network is composed of identical neurons, the
synaptic input to each neuron in the network can be treated as
a Gaussian random process. Thus we can use a single variable to
represent population firing rates; let rE and rI denote the firing
rates of excitatory and inhibitory neural populations, respectively.
The population firing rates depend on synaptic currents, which in
turn depends on firing rates. Thus, the population firing rate of
a steady state can be determined by assuming self-consistency. In
the analysis, we only consider the mean synaptic inputs to a neu-
ron and neglect the input variance as it is of no importance in our
setting (Wong and Wang, 2006).

From Equations (7) and (8) we find the dynamics of the
excitatory and inhibitory synaptic conductances in the rate
limit as

τE
dg̃E

dt
= −g̃E + wEτErE (31)

τI
dg̃I

dt
= −g̃I + wIτIrI . (32)

If one then approximates the non-linear spiking mechanism
by a threshold linear function (see e.g., Mongillo et al., 2008),
rT = μT[JT − β]+, with either T = E or T = I, we find from
Equation (30)

rE = μE[JE − β]+, (33)

rI = μI

μE
rE. (34)

If one now uses linear functions to approximate fGd and fGp in
the range of their average inputs according to Equation (30) one
can straightforwardly solve for the population firing rate (see sec-
tion 4.3.1). In our simulations, the mean-field approximation
matched the simulation quite well (see Figure 6B, dashed line).

Finally, the stability of the fixed-point of the population fir-
ing rate can be analyzed (see section 4.3.2). It turns out that both
eigenvalues are negative in our parameter settings, indicating sta-
bility. Moreover, the shunting strength κG has an stabilizing effect:
with increasing κG, eigenvalues will be decreased further. In sum-
mary, we confirm that our form of global shunting inhibition can
cause spiking network models to exhibit persistent firing activity
in a low rate regime.

3. DISCUSSION
In the present study, we have presented a new derivation
of a “dendritic-integrate-and-fire” single compartment neuron
model. We show that the model captures well the non-linear
integration of excitatory and inhibitory inputs at the soma with
an arithmetic rule, where the shunting effect is expressed as a
product between the contributions of excitatory and inhibitory
inputs, as was suggested by recent experimental finding (Hao
et al., 2009). In contrast to attempts relying on phenomenological
modeling (Zhou et al., 2013), we start the derivation from a bio-
physical description of a three-compartment model, which allows
for a biophysical interpretation of the equations. We find that the
dependence of the shunting strength on the distance of the synap-
tic locations is well captured with the three-compartment model.
In particular, in on-path configuration, the shunting strength
decreases with the distance of the inhibitory site from the soma
and stays constant with the distance of the excitatory site to the
soma. These properties are found in experiments (Hao et al.,
2009), but are not well captured by a simple two-port analysis,
where the derived shunting strength is still dependent on a term
related to the transfer conductance between excitatory site and the
soma (Zhou et al., 2013). The reason for this result of a two-port
analysis is that currents from both synaptic inputs are assumed to
reach the soma. However, the real situation of the on-path con-
figuration as captured by our three-compartment model is that
currents from the distant excitatory compartment have to pass
through the inhibitory compartment on its way. Thus there is no
direct connection from excitatory site to soma as assumed by the
simple two-port analysis as derived by Zhou et al. (2013).

In our derivation of the multiplicative rule of dendritic
integration, we made two main assumptions: (1) the trans-
fer conductances between the dendritic compartments in the
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antidromic direction are negligible small and (2) dendritic com-
putations are fast in respect to the soma. The first assumption is
only valid if the inhibitory and excitatory compartments are well
separated on the dendritic tree. Thus the multiplicative rule refers
only to the limit of well separated sites. Note that in the simula-
tion (Figure 3B), the shunting strength is not constant for nearby
input sites and the multiplicative rule is not applicable. Moreover,
because of the depolarization for excitatory inputs, active chan-
nels increase the antidromic transfer to the inhibitory site in
out-of-path configuration (which we modeled with the parame-
ter α). Thus in comparison to on-path configuration, assumption
(1) is less valid in out-of-path configuration (as illustrated in
Figure 3A). Thus we conclude that the multiplicative rule can be
mainly applied in the on-path configuration for well separated
input sites.

Second, we further assumed that time scales of dendritic and
somatic processing are separated, which is a good approximation
because the large area of the soma in comparison to dendritic
compartments. Whether the leak conductances per area of the
somatic and dendritic compartments are on the same order
or somewhat higher in the dendrite [as suggested experimen-
tally (Golding et al., 2005; Omori et al., 2006, 2009)] is of no
consequence to our analysis because the much larger membrane
area of the soma will still ensure that the total leak is larger than
in dendritic compartments. For our parameter setting, the time
constant for the somatic membrane voltage is about 10 times
slower than that of the dendritic compartments. Thus one can
indeed assume that dendritic compartments instantly relax to
steady state. Note that our assumption does not mean that the
dynamics of synaptic conductances has to be fast. The dynamics
of the synaptic input conductances were in fact not approxi-
mated and are still governed by their original form Equations (7)
and (8). Thus our model can accommodate both, fast and slow
ion-channels, such as AMPA and NMDA, respectively.

In a further analysis, we found that the arithmetic rule does
much better apply to the on-path configuration than to the out-
of-path configuration. In fact, in the latter case the shunting
strength itself is dependent on the size of the inhibitory input and
thus the arithmetic rule is only partly valid. This is admitted, but
not further analyzed, also in the experimental study (Hao et al.,
2009) where the authors state that the rule is valid only up to a
certain range of input conductances.

Since our general aim was to derive a simple neuron model
based on biophysical properties to be used for investigating the
effects of shunting inhibition on network dynamics, we included
active properties only as a multiplicative factor for certain trans-
fer conductances to arrive at simple models. To model additional
effects of active channels on shunting inhibition the voltage
dependent dynamics of conductances have to be incorporated has
been attempted in a recent study (Jadi et al., 2012) suggesting that
information processing capabilities of dendritic integration might
be even richer than thought previously for passive dendrites (Vu
and Krasne, 1992).

3.1. PERSISTENT ACTIVITY
Our main aim of this study was to derive a simple model for anal-
ysis of network effects of non-linear dendritic processing. As an

example of this approach, we investigated an simple network con-
sisting of mutual connected groups of inhibitory and excitatory
neurons and show that global shunting inhibition can naturally
induce persistent activity.

Neuronal persistent firing has been widely observed in neu-
ral systems and is believed to play important roles in cognitive
functions. For instance, persistent activity might hold informa-
tion of a memory trace thereby storing information about recent
inputs (Wang, 2001; Machens et al., 2005). It has been observed
that during persistent activity, neurons fire irregularly at low
rates, typically less than 100 Hz (Gold and Shadlen, 2001). From
a dynamical systems point of view, to maintain self-sustained
activity in a network, it needs, on one hand, strong excitatory
interactions between neurons to retain the excitation, and, on
the other hand, inhibitory interactions to avoid the divergence
of neuronal responses. In a firing-rate based network model, one
often assumes a sigmoidal input-output (IO) function to avoid
the explosion of the network activity (e.g., Hopfield, 1984). In
a network model of spiking neurons, the saturation of synaptic
current mediated by NMDA receptor is often assumed to account
for bounded neuronal responses (Wang, 2002). Although these
models are capable of sustained activity, it seems energetically
unlikely that the nervous system maintains activity in a regime
where the saturation of neural properties is essential. Thus it is
probably that other non-linear mechanisms ensure that run-away
excitation does not occur.

In an earlier study, it was shown that a non-linear form of
dendritic processing is indeed enough to generate persistent fir-
ing (Abbott, 1991b). Similar to our findings, the author accounted
for non-linear dendritic processing in a network model and
analyzed the resulting dynamics with a mean-field approach, con-
cluding that persistent activity can occur in the low firing regime.
The difference to our analysis is that the author starts from an
even more biophysical detailed view (from the full cable equation)
resulting in more detailed equations. The derivation thus does
not yield the intuitive picture of a multiplicative rule weighted
with a shunting strength parameter κ, as suggested experimen-
tally. We here focused on the biophysically meaning of this rule
and thus provided a different derivation starting from a three-
compartment model and investigated its validity for different
input configurations. The advantage of this rule [in contrast to
equations suggested by Abbott (1991b)] is that two different
non-linear effects of dendritic processing are clearly separated:
First, the non-linear somatic response functions (see Figure 2),
which comprise non-linear effects related to the leaky signal
transduction of dendrites. Second, the multiplicative term of exci-
tatory and inhibitory currents describing the shunting inhibition.
By explicit weighting of the multiplicative term by a shunting
strength κ both non-linearities can be individually analyzed.

We show that the multiplicative non-linearity of the shunting
inhibition is needed to generate sustained activity without sat-
uration. Note that the persistent activity found in our network
does not rely on the non-linear form of the functions relating
the input conductances to the somatic voltage change Figure 2,
because further analysis shows that this saturation occurs at a fir-
ing rate much larger than 100 Hz and hence is not relevant (not
shown).

Frontiers in Computational Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 56 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zhang et al. Multiplicative dendritic integration

In our formulation we used a factor α to effectively incorpo-
rate active channels. For global shunting, α mainly regulates the
slope of the inhibitory somatic response equation (Equation 26)
through the transfer conductance gES, while the total excitatory
response (summed over all N dendritic branches) is approxi-
mately independent of gES (see Equations 27 and 25). Although
synaptic weights may need to be adjusted for a given persistent
firing rate when α is varied, the qualitative picture of the network
dynamics does not change.

Besides generating a sustained population activity of low fir-
ing rate, activity levels could also gradually adjusted by changing
excitatory synaptic weights. Note that this graded change of activ-
ity level is not directly related to the “graded persistent activity”
as found e.g., in the entorhinal cortex (Egorov et al., 2002). In
the latter case, persistent activity level is changed by the amount
of input given during a brief period. The underlying mechanism
remains largely unknown (Brody et al., 2003). In contrast, in
our case firing rate levels are adjusted by changing the recurrent
synaptic weights.

This property of gradual adjustment of firing rates by varying
the excitatory weight is induced by the strong multiplicative non-
linearity during shunting. Note that the inhibitory effect medi-
ated through shunting inhibition is multiplicative in both the
excitatory and inhibitory rates. This square dependence induces
a strong and robust change in the activity level when the synap-
tic weight is varied. On the other hand, if persistent activity is
induced by a saturation of the firing rate IO-function, a change
of the synaptic weight will have very little effect because the
IO-function will be flat in the saturation limit.

In summary, our results suggest that shunting inhibition might
be an important underlying mechanism in the dynamics of neural
networks.

4. MATERIALS AND METHODS
4.1. THE SIMPLIFIED NEURON MODEL
We consider first there is only excitatory synaptic input. By setting
g I = 0 in Equation (5), we have

vI − EL = gSI(vS − EL) + gEI(vE − EL)

gD + gSI + gEI
. (35)

Substituting Equation (6) into (35), we obtain

vI − EL = gSI(vS − EL)

gD + gSI + gEI
+ gEI

gD + gSI + gEI

× g IE(vI − EL) + gE(EE − EL)

gD + gE + g IE . (36)

Re-organizing the above equation, we get

[
1 − g IEgEI

(gD + gSI + gEI)(gD + gE + g IE)

]
(vI − EL)

= gSI(vS − EL)

gD + gSI + gEI
+ gEIgE(EE − EL)

(gD + gSI + gEI)(gD + gE + g IE)
. (37)

Assuming g IEgEI � (gD)2, we get

vI − EL ≈ gSI(vS − EL)

gD + gSI + gEI

+ gEIgE(EE − EL)

(gD + gSI + gEI)(gD + gE + g IE)
. (38)

Substituting Equation (38) into (4), we obtain

τS
dvS

dt
= −(vS − EL) + fd(gE), (39)

where fd(gE) is given by Equation (12).
Similarly, we can calculate the case when there is only an

inhibitory synaptic input by setting gE = 0, and the result is

τS
dvS

dt
= −(vS − EL) + fp(g I), (40)

where fp(g I) is given by Equation (13).
Finally, by combing the above results, we obtain the dynam-

ics of the somatic potential when both excitatory and inhibitory
synaptic inputs are applied (see Equation 11)

τS
dvS

dt
= −(vS − EL) + fd(gE) + fp(g I) + κfd(gE)fp(g I), (41)

where κ is given by Equation (14).
The key algebraic insight in the derivation of the multiplica-

tive rule for the integration of the synaptic input conductances,
Equation (41), is the following. We exemplify the key step in
a simplified system. Note first that dendritic processing in the
inhibitory compartment is linearly transmitted into the somatic
compartment, given by Equation (4). We thus can focus on the
steady state equation of the inhibitory compartment, as given by
Equation (9) and set for now gSI = 0. If we assume that the trans-
fer conductance back to the excitatory compartment is negligible
[that is g IEgEI � (gD)2 as above], the excitatory voltage is not
dependent on the inhibitory voltage. Thus it is

v−I − EL ≈ gEI(v−E − EL) + g I(EI − EL)

gD + gSI + gEI + g I
(42)

= h(gE) + βg I

γ + g I (43)

where we set h(gE) ≡ gEI(v−E − EL), γ ≡ gD + gSI + gEI, and
β ≡ EI − EL, for the time being. Crucially, inhibition and exci-
tation terms in Equation (43) are mixed due to the g I in the
denominator. The key insight is that the term (Equation 43) can
be expressed as a multiplicative rule separating the effects of g I

and gE:

h(gE) + βg I

γ + g I = βg I

γ + g I + h(gE)

γ + g I (44)
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= βg I

γ + g I + h(gE)

γ + g I − h(gE)

γ
+ h(gE)

γ
(45)

= βg I

γ + g I + h(gE)

γ
+ h(gE)

(
1

γ + g I − 1

γ

)
(46)

= βg I

γ + g I + h(gE)

γ
− h(gE)g I

γ(γ + g I)
(47)

= βg I

γ + g I + h(gE)

γ
− 1

β

βg I

γ + g I

h(gE)

γ
(48)

≡ f1(g I) + f2(gE) − 1

β
f1(g I)f2(gE) (49)

which has the desired multiplicative form with f1(g I) ≡ βg I/

(γ + g I) and f2(gE) ≡ h(gE)/γ. The derivation of Equation (41)
was done analogously albeit starting from the full model (includ-
ing the somatic compartment).

4.2. THE DYNAMICS OF A NEURON HAVING MULTIPLE DENDRITES
4.2.1. Single synapses on individual dendritic branches
We first consider that single synaptic inputs are distributed on
parallel dendritic branches, i.e., each branch receives only one
type of synaptic input (see Figure 4A). In this case, the dynamics
of the neural compartments can be written as

CS
dvS

dt
= −gS(vS − EL) −

∑
i

gTS(vS − vT
i ) (50)

CD
dvT

i

dt
= −gD(vT

i − EL) − gST(vT
i − vS) − gT

i (vT
i − ET

i ),

i = 1, 2, . . . N. (51)

Here, we use T = E or I to denote the type of an input synapse.
vT

i represent the potential at the location of the T-type input on

the ith dendrite. gST is the transfer conductance from the soma
to an input site, which we assume equal for different dendritic
branches. gTS is defined analogously.

Given that the dynamics of the voltage of the synaptic com-
partments, vT

i , happens on much faster time scale than the

somatic voltage vS, we can assume that they instantaneously
relax to the steady state. By thus setting the left-hand side of
Equation (51) to zero, we get

vT
i − EL = gST(vS − EL) + gT

i (ET
i − EL)

gD + gST + gT
i

. (52)

Substituting Equation (52) into (50) and assuming that
gTSgST � (gS)2 leads to the model as stated in the main text
(Equation 19).

4.2.2. On-path configuration on each dendritic branch
We now consider the second configuration in which each dendrite
branch comprises of a pair of excitatory and inhibitory inputs
in on-path arrangement, that is the inhibitory synapse is located
proximal and the excitatory synapse distal (in respect to the soma;

see Figure 4B). The voltage dynamics of all compartments is then
given by

CS
dvS

dt
= −gS(vS − EL) −

∑
i

g IS(vS − vI
i) (53)

CD
dvI

i

dt
= −gD(vI

i − EL) − gSI(vI
i − vS)

− gEI(vI
i − vE

i ) − g I
i(vI

i − EI) (54)

CD
dvE

i

dt
= −gD(vE

i − EL) − g IE(vE
i − vI

i) − gE
i (vE

i − EE),

i = 1, 2, . . . N (55)

where vE
i and vI

i are the membrane potentials at the locations E
and I, and gE

i and g I
i are the excitatory and inhibitory synaptic

conductances of the ith dendritic branch, respectively.
Consider again that the voltages at the dendritic locations, vE

i

and vI
i , can be regarded as fast variables, Equations (54) and (55)

can be solved for the stationary state of vE
i and vI

i , respectively.
Substituting the results into Equation (53), and again assuming
that the product of the transfer conductances are much smaller
than the leaks, gSIg IS � (gS)2 and g IEgEI � (gD)2, we find the
final form of the model as given in the main text (Equation 21).

4.2.3. Global shunting
In the third configuration, we consider that an inhibitory input
targets the soma directly and excitatory inputs are distributed on
parallel dendritic branches (see Figure 4C). The dynamics of the
compartments can be written as

CS
dvS

dt
= −gS(vS − EL) − g I(vS − EI)

−
∑

i

gES(vS − vE
i ), (56)

CD
dvE

i

dt
= −gD(vE

i − EL) − gSE(vE
i − vS)

− gE
i (vE

i − EE), i = 1, 2, . . . N. (57)

Note that we do not need to explicitly model an inhibitory com-
partment here because the inhibitory input directly affects the
somatic potential. Thus the somatic time constant, given by τS =
CS/(gS + g IS) when explicitly modeling the inhibitory compart-
ment, is now approximated by τS ≈ CS/gS since the transfer
conductance from inhibitory compartment to the soma g IS is
neglected. Following analogous assumptions as above we get the
Equation (25) in the main text.

4.3. PERSISTENT ACTIVITY IN A NETWORK OF GLOBAL SHUNTING
GATES

4.3.1. Fixed point of population firing rates
We first approximate the functions fGd and fGp in the range
of their average inputs, that is g̃E and NIpg̃I [compare to
Equation (30)]. This yields fGd(g̃E) ≈ ag̃E + b and fGp(NIpg̃I) ≈
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cNI pg̃I + d, where a > 0, b ≥ 0, c < 0, d ≤ 0 are constants (see
Figure 6 for the numerical values). Now we find for the inputs:

JT = NEp(ag̃E + b) + cNIpg̃I + d (58)

+ κGNEp(ag̃E + b)(cNIpg̃I + d)

Since the conductances and population rates have to match dur-
ing a steady state (self-consistency), we can in the following
calculate the fixed point of the population rates, r̄E and r̄I . Using
Equation (58) together with the steady states of Equations (31)
and (32), we find first for the inputs

JT = A1r̄E + A2r̄I + A3 r̄Er̄I + A4, (59)

with the shortcuts

A1 = awEτEpNE (1 + dκG) (60)

A2 = cwIτIpNI (1 + bκGpNE) (61)

A3 = κG awEτEpNE cwIτIpNI (62)

A4 = bpNE (1 + dκG) + d. (63)

Combining Equation (59) with Equations (33) and (34) finally
yields the fixed point of the population firing rates

r̄E = 2B1

−B2 +
√

B2
2 − 4B1B3

, (64)

r̄I = μI

μE
r̄E, (65)

where B1 = μEA4 − μEβ, B2 = μEA1 + μIA2 − 1, and B3 =
μI A3.

4.3.2. Stability
Let us analyze the stability of the stationary states, Equations 64
and (65). We thus have to consider the following dynamical
equations

τE
dg̃E

dt
= −g̃E + wEτErE =: G1(g̃E, g̃I) (66)

τI
dg̃I

dt
= −g̃I + wIτIrI =: G2(g̃E, g̃I) (67)

The fixed points of the above equations are

¯̃gE = r̄EwEτE (68)

¯̃gI = r̄EwIτIμI

μE
(69)

The stability of the population activity is determined by the eigen-
values of the Jacobian matrix J at the fixed points. The Jacobian
matrix is given by

J =

⎡
⎢⎢⎢⎣

∂G1

∂ g̃E

∂G1

∂ g̃I

∂G2

∂ g̃E

∂G2

∂ g̃I

⎤
⎥⎥⎥⎦

( ¯̃gE, ¯̃gI)

(70)

=

⎡
⎢⎢⎢⎣

−1 + NEpwEτEμEa(1 + κGd + κGcNI p ¯̃gI)

NIpwEτEμEc(1 + κGNEpb + κGNEpa ¯̃gE)

NEpwIτIμI a(1 + κGd + κGcNI p ¯̃gI)

−1 + NI pcwIτIμI(1 + κGNEpb + κGNEpa ¯̃gE)

⎤
⎥⎥⎥⎦ (71)

whose eigenvalues are calculated to be

λ1 = −1, (72)

λ2 = NEpwEτEμEa(1 + κGd + κGNI pc ¯̃gI)

+ NIpcwIτIμI(1 + κGNEpb + κGNEpa ¯̃gE) − 1.

(73)

Thus, when λ2 < 0 the solution is stable. Note that since only
c < 0 and d ≤ 0 the increasing shunting strength κG will decrease
λ2 and thus tend to stabilizing the system.
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