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Pathogenic and mutualistic microbes actively suppress plant defense by secreting
effector proteins to manipulate the host responses for their own benefit. Current
knowledge about fungal effectors has been mainly derived from biotrophic and
hemibiotrophic plant pathogenic fungi and oomycetes with restricted host range. We
studied colonization strategies of the root endophytic basidiomycete Piriformospora
indica that colonizes a wide range of plant species thereby establishing long-term
mutualistic relationships. The release of P. indica’s genome helped to identify hundreds
of genes coding for candidate effectors and provides an opportunity to investigate the
role of those proteins in a mutualistic symbiosis. We demonstrate that the candidate
effector PIIN_08944 plays a crucial role during fungal colonization of Arabidopsis thaliana
roots. PIIN_08944 expression was detected during chlamydospore germination, and
fungal deletion mutants (Pi�08944) showed delayed root colonization. Constitutive over-
expression of PIIN_08944 in Arabidopsis rescued the delayed colonization phenotype of
the deletion mutant. PIIN_08944-expressing Arabidopsis showed a reduced expression
of flg22-induced marker genes of pattern-triggered immunity (PTI) and the salicylic acid
(SA) defense pathway, and expression of PIIN_08944 in barley reduced the burst of
reactive oxygen species (ROS) triggered by flg22 and chitin. These data suggest that
PIIN_08944 contributes to root colonization by P. indica by interfering with SA-mediated
basal immune responses of the host plant. Consistent with this, PIIN_08944-expressing
Arabidopsis also supported the growth of the biotrophic oomycete Hyaloperonospora
arabidopsidis while growth of the necrotrophic fungi Botrytis cinerea on Arabidopsis and
Fusarium graminearum on barley was not affected.
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INTRODUCTION

During their lifecycle, plant roots are constantly exposed to a multitude of microorganisms in the
rhizosphere. These interactions which can either be parasitic or mutualistic have a great impact on
agriculture and forest life (Harrison, 1999; Sanders, 2011). Mycorrhizal symbioses, an association
between plant roots and soil fungi, and the symbiosis of plants with rhizobia have been the main
focus of studies on beneficial plant–microbe interactions. Whereas mycorrhizal symbioses are very
abundant in nature and are formed by more than 90% of plant species with diverse soil fungi,
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rhizobial interactions have a narrow host range. Nevertheless,
both interactions are beneficial to their hosts, resulting in an
increase in phosphorus and/or nitrogen uptake (Parniske, 2008;
Sanders, 2011).

Piriformospora indica, a basidiomycete fungus with an
endophytic life style, colonizes the roots of a wide variety
of monocotyledonous and dicotyledonous plants, including
the model plants Arabidopsis and barley and establishes a
Sebacinalean symbiosis (Varma et al., 1999; Peškan-Berghöfer
et al., 2004; Lee et al., 2011; Qiang et al., 2012a; Glaeser et al.,
2015). P. indica was initially discovered in the Indian Thar desert
in northwest Rajasthan and has been extensively investigated
for its beneficial effects during interaction with plants. Previous
reports have shown that infestation by P. indica spores and/or
culture filtrates leads to growth promotion, enhanced resistance
to biotic and abiotic stresses, increase grain yield, and enhanced
phosphate and nitrate uptake (Peškan-Berghöfer et al., 2004;
Sherameti et al., 2005; Waller et al., 2005; Deshmukh and Kogel,
2007; Achatz et al., 2010; Yadav et al., 2010). The successful
interaction between P. indica with its hosts is achieved through
an active suppression of part of the host defense responses (Jacobs
et al., 2011). The fungus has evolved a dual colonization strategy
whereby it initially colonizes living root cortex cells biotrophically
(3 dpi) and later switches to a cell death-associated colonization
stage (7 and 14 dpi), where it grows mostly on dead plant
material (Jacobs et al., 2011; Qiang et al., 2012b; Lahrmann et al.,
2013). As a consequence, the level of fungal colonization was
influenced by the cell death inhibitor protein BAX INHIBITOR1,
at least during the first 3 weeks after colonization of barley roots
(Deshmukh et al., 2006). Furthermore, several phytohormones
affect plant colonization by P. indica. For example, ethylene
signaling supports the colonization of barley and Arabidopsis
roots by P. indica. In addition, genes involved in the biosynthesis
and signaling of ethylene, auxin, abscisic acid (ABA) and
gibberellic acid (GA) were found to be differentially regulated
during colonization of barley roots by P. indica (Schäfer et al.,
2009; Khatabi et al., 2012). While, it has been reported that
P. indica is indeed capable of producing the auxin indole
acetic acid (IAA) in culture medium and also regulate auxin-
induced genes in roots, this auxin was not required for growth
promotion, but rather supported the biotrophic colonization of
barley (Vadassery et al., 2008; Lee et al., 2011; Hilbert et al., 2012).

Similarly to plant pathogenic fungi, mutualistic fungi have also
evolved the ability to deliver molecules, called effectors, inside the
cells to manipulate the host metabolism, and enhance microbial
infection (de Jonge et al., 2010; Kloppholz et al., 2011; Plett et al.,
2011; Rafiqi et al., 2012). Effectors, which can exert their actions
either in the host cytoplasm or apoplast, often lack conserved
domains and are usually under high selective pressure from the
host (Dodds et al., 2009; de Jonge et al., 2010; Rafiqi et al., 2010).
While effectors from pathogenic fungi have been extensively
studied, little is known about effectors secreted by mutualistic
symbionts. Two independent studies, reported the involvement
of mutualistic fungal effector proteins in the establishment and
maintenance of symbiosis in endo- and ectomycorrhiza, allowing
the fungus to manipulate the plant defense response in both
cases (Kloppholz et al., 2011; Plett et al., 2011, 2014). The release

of the P. indica genome (Zuccaro et al., 2011) allowed the
identification of hundreds of genes coding for small secreted
proteins (SSPs< 300 aa). These proteins are considered candidate
effectors. Twenty five of P. indica’s effector candidates contain
a highly conserved pattern of seven amino acid “RSIDELD”
at the C-terminus collectively known as the DELD effectors.
Although it is speculated that the DELD motif could function
in effector translocation in a similar way as the RXLR and
LFLAKmotifs found in oomycete effectors (Whisson et al., 2007;
Schornack et al., 2010) and/or in signaling, the exact function of
the DELDmotifs is still unknown. While several P. indica effector
candidates, including some of the DELD effectors, are induced
exclusively either in Arabidopsis or barley and thus behave host
specifically, a small group were expressed in both Arabidopsis and
barley (i.e., host unspecific; Lahrmann et al., 2013). Despite the
fact that several P. indica effector candidates including some of
the DELD effectors were up-regulated in planta (Zuccaro et al.,
2011) their virulence functions during the interaction between
P. indica with plants are largely unknown, opening new avenues
to investigate their role in the Sebacinalean symbiosis.

In this study, we investigate the function of the P. indica
effector candidate PIIN_08944, a non DELD effector, during the
interaction of plants with P. indica. We show that the candidate
effector contributes to plant colonization by the mutualistic
fungus by suppressing the salicylate (SA)-mediated basal
resistance response. Moreover, we found that PIIN_08944 also
supports growth of the biotrophic oomycete Hyaloperonospora
arabidopsidis, while growth of the necrotrophic fungi Botrytis
cinerea and Fusarium graminearum were unaffected.

MATERIALS AND METHODS

Fungal and Plant Materials and Root
Inoculation
Piriformospora indica (Verma et al., 1998) cultures (DSM11827,
Deutsche Sammlung für Mikroorganismen und Zellkulturen,
DSMZ, Braunschweig, Germany) were propagated at 28◦C in
liquid complete medium (CM; Pham et al., 2004) supplemented
with 2% glucose on a shaker at 140 rpm. For solid medium, 1.5%
agar was added to the CM medium. Hygromycin B (100 μg/ml)
was supplemented for growth of P. indica transformants.

Barley seeds (Hordeum vulgare cv. Golden Promise) were
surface sterilized with 70% ethanol for 2 min, 12% sodium
hypochlorite for 1.5 h, and washed with sterile distilled water for
3 h. Sterilized seeds were kept in the dark for 3 days on sterile wet
filter paper at room temperature. For colonization studies, 3-day-
old barley seedlings were transferred into sterile jars containing
1/10 PNM medium (Basiewicz et al., 2012) supplemented with
0.4% (w/v) GELRITE (Duchefa) and inoculated with P. indica
chlamydospore suspension (500,000 chlamydospore mL−1 in
0.002% TWEEN20). Inoculated plants were transferred to a
growth chamber and grown under a dark/light cycle of 16 h light
(110μmolm−2 s−1) at 24◦C and 8 h dark at 18◦C. Control plants
were treated with water containing 0.002% (v/v) TWEEN20.
Root samples were collected at the indicated time points and
immediately frozen in liquid nitrogen.
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Arabidopsis thaliana seeds (ecotype Columbia-0, col-0) were
surface sterilized with 70% ethanol for 1 min, for 10 min with 6%
sodium hypochlorite, and washed six times for 5 min in sterile
water. Seeds were placed onA. thalianamedium+ sucrose (ATS)
medium (5 mM KNO3, 2.5 mM KH2PO4 2 mM MgSO4, 2 mM
Ca(NO3)2, 50 μM Fe-EDTA 70 μM H 3BO3, 14 μM MnCI2,
0.5 μM CuSO4, 1 μM ZnSO4, 0.2 μM NaMoO4, 10 μM NaCl,
0.01 μM CoCl2; Estelle and Somerville, 1987) containing 0.4%
(w/v) GELRITE (Duchefa) and grown vertically in square petri
dishes under a dark/light cycle of 16 h light (110 μmol m−2

s−1) at 23◦C and 8 h dark at 18◦C. For inoculation, Arabidopsis
roots of 7-day-old seedlings were inoculated with 1 ml of
500,000 chlamydospores mL−1. Root material was harvested and
immediately frozen in liquid nitrogen at 3, 7, 14, and 21 days
post inoculation (dpi). For each time point, roots from 80 to
100 plants were harvested. For all root inoculation experiments,
chlamydospores were collected from 3 to 4-week-old P. indica
cultures grown on solid CM medium using water containing
0.002% (v/v) TWEEN20.

Plasmid Construction and Generation of
Transgenic Arabidopsis and Barley
Plants
PIIN_08944 lacking the predicted signal peptide was amplified
from cDNA by PCR using primers GS-08944dSP-F and SmaI-
08944-R (Supplementary Table S1). For cDNA synthesis, total
RNA from P. indica was extracted using TRIzol (Invitrogen);
cDNA was synthesized using the qScript cDNA synthesis kit
(Quanta Biosciences) following the manufacturer’s instructions.
For the generation of GFP-PIIN_08944 fusion construct, GFP
(Green Fluorescence Protein) was amplified using primers
SmaI-GFP-F and ATG-GSGFP-R (Supplementary Table S1)
and the PCR products of PIIN_08944 and GFP were fused by
overlap extension PCR. The fusion construct was ligated at
the SmaI site in the pUBI-AB vector1 (DNA Cloning Service,
Hamburg, Germany) and the entire cassette was inserted at
the SfII restriction site into the binary vector pLH60002 (DNA
Cloning Service, Hamburg, Germany) under the control of the
maize ubiquitin promoter or the SmaI restriction site in the
expression vector pICH (Weber et al., 2011) under the control
of the constitutive CaMV35S promoter. The resulting plasmids
pLH6000 UBI::GFP-8944 and pICH CaMV35S::8944 were
confirmed by sequencing (Sequence Laboratories Göttingen,
Germany) before plant transformation. For Arabidopsis
transformation, the plasmid pICH CaMV35S::8944 was
introduced into Agrobacterium tumefaciens strain GV3101
by electroporation and selected on LB medium containing
kanamycin (25 μg/ml), gentamycin (20 μg/ml), and rifampicin
(15 μg/ml) antibiotics. Transformation and regeneration of
Arabidopsis was performed by floral dip (Clough and Bent,
1998) and transformants were selected on MS (Murashige and
Skoog) medium containing kanamycin (25 μg/ml). For barley
transformation, the pLH6000 UBI::GFP-8944 plasmid was used.

1http://dna-cloning.com/skripte/puc/puc.html
2http://dna-cloning.com/skripte/binaries/bin.html

Transgenic barley plants were generated as described (Imani
et al., 2011).

DNA, RNA Extraction and Quantitative
Real-time PCR
For genomic DNA and total RNA extraction, plant and fungal
materials were powdered under liquid nitrogen using a mortar
and pestle. Genomic DNA was isolated following the method
of Doyle and Doyle (Doyle, 1987). For gene expression studies,
seedlings were grown on solid half strength MS medium for
2 weeks and then transferred in six-well-plates containing liquid
half-strength MS medium. After a recovery phase of 3 days,
flg22 (Davids Biotechnology, Germany) was pipetted to each well
containing MS medium with seedlings in a final concentration
of 100 nM flg22 and harvested after 0, 2, 6, and 12 h. For
all experiments, total RNA was extracted from plant or fungal
materials using TRIzol (Invitrogen), and aliquots were used for
cDNA synthesis with the qScript cDNA synthesis kit (Quanta
Biosciences). Forty nanograms of genomic DNA or cDNA were
used as template for quantitative real-time PCR (qPCR) analysis,
using the SYBRGreen JumpStart Taq ReadyMix (Sigma–Aldrich)
and the 7500 FAST Real-Time PCR System under standard
conditions (Applied Biosystems). For the detection of fungal and
plant DNA, the primers ITS_F/ITS_R and UBQ4_F/UBQ4_R
were used (Supplementary Table S1). The relative fungal
genomic DNA or relative gene expression were calculated using
the 2−�CT method (Livak and Schmittgen, 2001).

Construction of Knockout Vector,
P. indica Transformation
In order to generate a genomic deletion of the PIIN_08944
gene, a hygromycin B resistance cassette was introduced by
homologous recombination at the PIIN_08944 locus. A 180 bp
fragment (5′ UTR region), upstream and a 1000 bp fragment
(3′ UTR region), downstream of PIIN_08944 was amplified by
PCR using the primers KpnI_US_8944F/KpnI_US_8944R and
StuI_DS_8944F/SacI_DS_8944R, respectively. The fragments
were cloned into the flanking KpnI and StuI/SacI restriction sites
of the hygromycin B resistance cassette into the pHSP70 vector
derived from the pbshhn-Tef vector (Kamper, 2004) by replacing
the TEF promoter with the Hsp70 promoter. The constructed
plasmid was confirmed by sequencing (Sequence Laboratories
Göttingen, Germany) and used to transform P. indica following
the PEG mediated transformation protocol (Hilbert et al., 2012).

Southern Blot
To verify integration of the hygromycin resistance cassette
into the nuclear genome of P. indica, Southern blot analysis
was performed. Genomic DNA from 7-day-old cultures grown
on CM medium was extracted; 10–20 μg of extracted DNA
was digested overnight with SacI (NEB). The digested DNA
was separated on 0.9% TAE agarose gel for 5 h at 80 V
and blotted onto a nylon membrane (AmershamBiosciences
Hybond-N+, GE Healthcare) over night. The DNA was UV
cross-linked to the membrane in a GS GENE LINKER UV
chamber (BIO-RAD) using an auto cross-linking program (C2,
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50 mμ Joule). The labeling of the Hygromycin B probe was
performed using the Prime-a-Gene R© Labeling System according
to the manufacturer’s instructions (Promega). Hybridization and
washing steps were performed at 65◦C. The membrane was
exposed on phosphorimaging screens (Bio-Rad) and signals were
detected using a molecular imager and the Quantity One software
(Bio-Rad).

PIIN_8944 Transcript Analysis
To assess the disruption of the PIIN_08944 gene in P. indica,
mRNA expression analysis was performed using reverse
transcriptase-PCR (RT-PCR). RNA was extracted from 7-day-
old P. indica cultures grown on CM medium/plates or from
Arabidopsis roots inoculated with the P. indica deletion mutant,
harvested at 3, 7, 14, and 21 dpi. cDNA was synthesized from
total RNA and 40 ng served as template for RT-PCR in a final
volume of 25 μl, and a thermal cycling period of 30 cycles. The
P. indica ubiquitin gene PIIN_01523 served as a reference.

Plant Infection Assays
ForArabidopsis leaf inoculation, B. cinerea strain B05.10 (Rui and
Hahn, 2007) was cultured on HA agar as described (Doehlemann
et al., 2006); conidia concentration was adjusted to 2 × 105
conidia per mL−1 in potato dextrose broth (PDB). Fifteen
rosette leaves were detached from 10 different 4-week-old plants
and transferred into square petri plates containing 1% agar.
Five μl droplets of the conidial suspension was pipetted onto
each side of the middle vein and incubated during a 12 h
photoperiod at 22◦C. Disease symptom progression was analyzed
by measuring the lesion size (in centimeter) at 5 dpi from the
digital images using the Image J free software program3 by
calculating the percentage of leaf area showing disease symptoms
relative to the non-inoculated area. Two week old Arabidopsis
seedlings were sprayed with the H. arabidopsidis isolate Noks1
(Holub and Beynon, 1997) at a spore concentration of 30,000
spores mL−1. Infection development was scored 4 days after
infection by counting sporangiophores on true leaves (Tome
et al., 2014).

For barley leaf inoculation, F. graminearum, Fg-IFA65
(Jansen et al., 2005) was cultured on SNA agar as described
(Koch et al., 2013) and conidia concentration was adjusted
to 5 × 105 mL−1 in 0.02% Tween 20. Leaves of 3-week-
old barley of each transgenic line (T2 generation) and empty
vector (EV) control plants were detached and transferred
into square petri plates containing 1% agar. Each leaf was
inoculated with 20 μl and plates were incubated at 22◦C
with a 16 h photoperiod for up to 6 days. Disease symptoms
were analyzed by measuring the lesion size/area using the
Image J free software program3 and the relative amount of
fungal biomass determined by qPCR after DNA extraction
using the β-tubulin gene (FGSG_09530) as normalization
control.

For barley root infection, roots of 3-day-old seedlings were
dip-inoculated in a F. graminearum conidial suspension for
30 min, then transferred into pots containing a 2:1 mixture of

3http://imagej.nih.gov/ij/

expanded clay (Seramis, Masterfoods, Verden, Germany) and
Oil-Dri (Damolin, Mettmann, Germany) and allowed to grow in
a growth chamber under long day conditions (dark/light cycle of
16 h light (110 μmol m−2 s−1) at 24◦C and 8 h dark at 18◦C) for
up to 2 weeks. Plants were carefully collected, roots washed with
H2O and the root length (in cm) and root fresh weight (in mg)
were determined.

Measurement of ROS
Leaf disks from 3-week-old barley plants (HvPIIN_08944 or EV
control) or 4-week-old Arabidopsis plants (AtPIIN_08944 or WT
control) were cut and pre-incubated overnight in sterile distil
water in 96 well micro-titer plate. Water is carefully discarded
and the leaf disks are treated with luminol (Sigma, A8511-5 g)
40 μl luminol buffer [15 mg/ml], 400 μl horseradish peroxidase
[1 mg/ml] and elicitor [100 nM flg22, 200 mg/ml crab shell chitin
(sigma–aldrich) or water control]. Immediately after treatment,
luminescence was measured in a TECAN infinite R© F200 micro
plate reader (TECAN, Switzerland). The relative light units over
time as a result of the production of oxygen radicals were
measured for 50 min.

Statistical Analysis
All experiments were repeated at least two to three times in each
case as indicated in the figure legends. A student’s two-tailed t test
was used to determine the significance of the data reported in this
study. Differences were considered to be significant at P ≤ 0.05.

RESULTS

In silico Analysis of the P. indica Effector
Candidate PIIN_08944
The genome of P. indica revealed the existence of 543 small
secreted proteins (Zuccaro et al., 2011; Rafiqi et al., 2013).
PIIN_08944 is a small secreted protein containing 120 amino
acids (aa; GenBank:CCA74964.1) that lacks cysteine residues.
The presence of an N-terminal signal peptide has been a
main criterion for selecting fungal genes coding for putative
effectors. Using SignalP 4.0 (Petersen et al., 2011), PIIN_08944
was predicted to contain a 23 aa signal peptide located at the
N-terminal (aa 1–23); the TMHMM software (Krogh et al.,
2001) failed to detect a transmembrane domain. Search for
other conserved domains using the conserved domain database
at NCBI4 and pfam version 27.0 (EMBL-EBI5) did not reveal
any conserved domains. Moreover the protein did not show a
significant sequence similarity to proteins with known functions
of other organisms.

PIIN_08944 is Expressed During
Colonization of Arabidopsis Roots
To confirm previous results and to benchmark our colonization
assay, we investigated the increase in fungal biomass during

4http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
5http://pfam.xfam.org/
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P. indica colonization of Arabidopsis and barley roots by using
qPCR. Similar colonization pattern were observed for both plant
species over a time period of 21 days. The relative amount of
fungal DNA increased in roots from 3 to 21 dpi, with a more
than 20-fold increase in barley (Figure 1A) and 300-fold increase
in Arabidopsis (Figure 1B) relative to plant DNA. This is in
agreement with published results (Pedrotti et al., 2013).

Based on microarray expression datasets, several of P. indica’s
effector candidates, including the DELDs are strongly expressed
during symbiosis (Zuccaro et al., 2011). To determine the
expression pattern of PIIN_08944, we reviewed the literature and
a public available dataset from ArrayExpress6(E-GEOD-47775)
for PIIN_08944 and compared it to P. indica’s effector candidates
that contain the DELD motif (DELD effectors; Zuccaro et al.,
2011). PIIN_08944 showed very high levels of expression
(log2 of 11.4) compared to DELD genes and therefore ranked
on the fourth position after candidate effectors PIIN_09226,
PIIN_00561, PIIN_05098, and PIIN_09643. PIIN_08944 is found
in the top 20% of all expressed genes of P. indica grown under

6http://www.ebi.ac.uk/arrayexpress

minimal PNM medium (Lahrmann et al., 2013). Since the
published time-course experiment did not reveal any significant
differential expression at 3 and 14 dpi (Zuccaro et al., 2011;
Lahrmann et al., 2013, Lahrmann, 2014), we expanded our
analysis to 21 dpi and examined the expression profile of
PIIN_08944 by RT-PCR (Figure 1C). PIIN_08944 transcripts
were detected in RNA from in vitro germinated P. indica
chlamydospores as well as colonized Arabidopsis roots. The
increase in transcript abundance from 3 to 21 days is correlated
with the increase in fungal biomass as the ubiquitin reference
gene (PIIN_01523) also increased in abundance over the time
course. This result is in agreement with our analysis of the
public available microarray data where PIIN_08944 did not show
differential regulation.

P. indica Deletion Mutants (Pi�08944)
Show Reduced Colonization of
Arabidopsis Roots
To investigate the impact of PIIN_08944 on root colonization,
deletion mutants of P. indica lacking PIIN_08944 (Pi�08944)

FIGURE 1 | Colonization of plant roots by Piriformospora indica increases over time. (A) Roots of 3-day-old barley grown on 1/10 PNM agar in sterile glass
jars, were inoculated with chlamydospores of P. indica. Colonization levels were determined at 3, 7, 14, and 21 dpi as the relative amount of fungal DNA by qPCR
using barley (HvUBQ-60-Deg) and fungal (ITS) specific primers. Values represent the mean ± SE of two independent experiments. (B) Seven-day-old Arabidopsis
seedlings were inoculated with chlamydospores of P. indica. Colonization levels were determined at 3, 7, 14, and 21 dpi as the relative amount of fungal DNA by
qPCR using Arabidopsis (AtUBQ4) and fungal (ITS) specific primers. Data represents the Ct thresholds of ITS relative to the Ct thresholds of AtUBQ-4 (±SE obtain
from three technical replicates of one biological experiment). Experiments were repeated twice with similar results. Asterisks indicate significance between time
points at ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 analyzed by student’s t-test. (C) Analysis of PIIN_08944 expression by semi-quantitative RT-PCR. Transcripts of
PIIN_08944 were detected in in vitro germinated P. indica chlamydospores (CS) grown in CM liquid medium for 7 days and in planta during colonization of
Arabidopsis roots by P. indica by RT-PCR. Transcript abundance increased over time from 3 to 21 dpi. The P. indica ubiquitin (UBQ) gene served as reference.
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were generated using homologous gene replacement. After
transformation of P. indica protoplasts and selection on
hygromycin containing CM medium, five transformants
were recovered. RT-PCR on RNA extracted from cultures
grown on CM medium confirmed deletion of PIIN_08944
as evident by the absence of transcripts (Supplementary
Figure S4A). To further confirm that PIIN_08944 expression
was not induced in the mutants during root colonization,
Arabidopsis roots were inoculated with all five P. indica
deletion mutants and RT-PCR analysis was performed
after roots were harvested at 3, 7, 14, and 21 dpi. In two
Pi�08944 mutants (strains PiT1 and PiT2), transcripts could
not be detected at all analyzed time points (Figure 2A).
To elucidate the number of insertion of the hygromycin
resistance cassette in the genome of P. indica we performed
southern blot analysis. PiT1 contained two copies and PiT2
contained one copy of T-DNA (Supplementary Figure
S4B).

To assess whether the deletion of PIIN_08944 has any effect
on the growth rate of P. indica, we monitored the progression of
growth of PiT1 and PiT2 on CM plates over a period of 21 days
and compared it to the wild type (wt). The deletion of PIIN_08944
did not affect the colony morphology (Supplementary Figure
S1) and the growth rate of P. indica (data not shown).
However, when Arabidopsis roots were inoculated with Pi�08944
(PiT1), colonization was significantly delayed compared to roots
inoculated with the wt strain over the analyzed period of 21 days
(Figure 2B), demonstrating that PIIN_08944 likely plays a crucial
role in the colonization process of roots by P. indica.

In Planta Expression of PIIN_08944
Rescues the Delayed Growth Phenotype
of Pi�08944
To investigate whether PIIN_08944 is able to rescue the
delayed colonization phenotype of Pi�08944, we generated
Arabidopsis plants expressing PIIN_08944 under the control of
the constitutive 35 s CaMV promoter (AtPIIN_08944OE plants).
The integration of the PIIN_08944 transgene was confirmed
by PCR analysis. Several independent AtPIIN_08944OE
(T1 generation) plants were selected and self-pollinated to
produce T2 generation lines. RT-PCR analysis confirmed
that PIIN_08944 was highly expressed in independent T2
transgenic plants (Supplementary Figure S4C). No difference
in plant growth was observed between AtPIIN_08944OE vs. the
corresponding wt plants (data not shown). To further expand
this finding, transgenic barley plants expressing a fusion between
PIIN_08944 and GFP under the constitutive maize ubiquitin
promoter were generated (HvPIIN_08944OE plants). Genomic
insertion of a construct coding for a GFP:PIIN_08944 fusion
protein was confirmed by PCR analysis and accumulation of
GFP:PIIN_08944 in transgenic barley lines (T2 generation) was
confirmed using western blot analysis. The analysis showed
that GFP:PIIN_08944 was correctly expressed and no truncated
versions were produced except for line 19 (Supplementary
Figure S2). Consistent with the above finding, no difference
in plant growth was observed between HvPIIN_08944OE

vs. the corresponding wt (data not shown). Together these
data show that the expression of PIIN_08944 does not
affect development of barley and Arabidopsis. When roots
of AtPIIN_08944OE plants were inoculated with Pi�08944,
colonization rate was similar in AtPIIN_08944OE vs. wt
plants at 3 and 7 dpi. At 14 and 21 dpi colonization was
higher in AtPIIN_08944OE plants vs. wt (Figure 2C).
Additionally, HvPIIN_08944OE plants showed enhanced
root colonization compared to wt barley, when inoculated by
P. indica (Supplementary Figure S3). These data suggest that

FIGURE 2 | Characterization of P. indica Knockout Strains Pi�08944

(PiT1-PiT5). (A) Roots of 7-day-old Arabidopsis seedlings were inoculated
with chlamydospores of Pi�08944 strains PiT1 or PiT2, respectively. The roots
were harvested at 3, 7, 14, and 21 dpi and PIIN_08944 transcript levels were
determined from extracted RNA by RT-PCR using PIIN_08944 specific primer.
PIIN_08944 transcripts from Pi�08944 strains were not detected in planta. The
P. indica ubiquitin UBQ gene served as reference. (B) Deletion of PIIN_08944
delays colonization of Arabidopsis roots. Roots of 7-day-old Arabidopsis
seedlings were inoculated with Pi�08944 (PiT1) and wt, respectively.
(C) Colonization of PIIN_08944-expressing Arabidopsis with Pi�08944 (PiT1)
mutant. Roots of 7-day-old AtPIIN_08944OE seedlings or wt were inoculated
with Pi�08944. Fungal biomass was determined at 3, 7, 14, and 21 dpi as
relative amount of fungal DNA by qPCR using fungal (ITS) and plant (AtUBQ4)
specific primers. Data displays the Ct thresholds of ITS relative to the Ct
thresholds of AtUBQ- 4 (±SE obtain from three technical replicates of one
biological experiment). Experiments were repeated twice with similar results.
Asterisks indicate significance at ∗P < 0.05, ∗∗P < 0.01 analyzed by
Student’s t-test.
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PIIN_08944 supports P. indica’s colonization during interaction
with plants.

PIIN_08944 Interferes with Basal Defense
Response in Arabidopsis and Barley
Previous reports showed that jasmonic acid (JA) supports
colonization of Arabidopsis roots by P. indica (Jacobs et al.,
2011). The same report showed that P. indica inhibits plant
defense in roots, as evidenced by the strong suppression of the
pattern-triggered immunity (PTI) marker WRKY22 (Colcombet
and Hirt, 2008) and the SA marker CBP60g (Wang et al., 2009).

However, whether P. indica deploys effectors to manipulate host
hormone signaling has not been reported. Since the in planta
expression of PIIN_08944 leads to enhanced colonization by
P. indica, we speculated that PIIN_08944 might suppress the
host immune response to support fungal growth. To address
this question, AtPIIN_08944OE and wt seedlings were treated
with the peptide flg22, a PAMP (pathogen-associated molecular
pattern) derived from bacterial flagellin. After harvesting at 0,
2, 6, and 12 h post treatment (hpt), transcript abundance of
WRKY22 and CBP60g were assessed by qPCR. In agreement with
previous results (Colcombet and Hirt, 2008; Wang et al., 2009;

FIGURE 3 | Assessment of the immune status of AtPIIN_08944OE plants. (A) Two-week-old AtPIIN_08944OE and the respective wt plants were treated with
100 nM flg22 in six well plates. RNA was extracted at 0 (untreated control), 2, 6, and 12 hpt and qPCR was performed. Suppression of flg22-induced transcription
was observed for AtWRKY22 and CBP60g. Arabidopsis UBQ-4 was used for normalization. Values are means ± SE of two independent experiments. (B) Detached
leaves of four to 6-week-old AtPIIN_08944OE (lines #L6, #L10) and the respective wt plants were inoculated with conidia of Botrytis cinerea. Photographs were
taken 5 dpi. (C) Average lesion size of AtPIIN_08944OE (lines #L6 and #L10) and the wt plants after inoculation with B. cinerea. Averages were calculated from 10 to
15 leaves per line. Values are means ± SE of three independent experiments. (D) Two-week-old AtPIIN_08944OE seedlings (lines #4 #L6 #L10) and wt plants were
sprayed with spores of Hyaloperonospora arabidopsidis and sporangiophores development on true leaves determined 4 dpi. For each line at least 100 plants were
analyzed. Values are means ± SE of two independent experiments. Asterisks indicate significant differences at ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 as analyzed by
student’s t-test.
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Jacobs et al., 2011), genes were induced at 2, 6, and/or 12 hpt in
the wt plants (control). In contrast, the flg22-induced expression
of CBP60g and WRKY22 was suppressed in AtPIIN_08944OE
plants (Figure 3A).

We further analyzed the ability of PIIN_08944 to suppress PTI
in barley by analyzing reactive oxygen species (ROS) production
after flg22 and chitin treatment. In HvPIIN_08944OE plants,
flg22-induced ROS accumulation was reduced to about 50%,
while chitin-induced ROS production was almost completely
suppressed (Figures 4A,B). Notably, however, overexpression of
PIIN_08944 did not suppress flg22-induced ROS production in
Arabidopsis (Figure 4C).

PIIN_08944-enhanced root colonization by P. indica and
at suppression of PTI responses raised the possibility that
plant infection by fungal pathogens could also be affected.
To address this question, we tested PIIN_08944-overexpressing
plants with the necrotrophic ascomycete fungi B. cinerea (Bc)
and F. graminearum (Fg) as well as the obligate biotrophic
oomycete pathogen H. arabidopsidis (Hpa). When leaves of 4-
week-old transgenic plants were inoculated with B. cinerea,
no difference in lesion size or infection rate was observed
in AtPIIN_08944OE vs. wt plants at 5 dpi (Figures 3B,C).
Similarly, when HvPIIN_08944OE plants were inoculated with

F. graminearum, the lesion size and the relative amount of fungal
DNA was similar in transgenic vs. wt plants. Consistent with this
finding, root lengths and root fresh weights were similar between
transgenic and wt plants (Figure 5). However, in clear contrast,
AtPIIN_08944OE plants showed enhanced susceptibility to Hpa
compared to wt plants as observed by a higher number of
sporangiophores on the true leaves of AtPIIN_08944OE vs. wt
plants (Figure 3D). These findings support the hypothesis that
PIIN_08944 plays a critical role in the Sebacinalean symbiosis
by interfering with the plant’s SA-mediated basal resistance
response.

DISCUSSION

In the present work, we have corroborated and extended
previous reports showing that mutualistic fungi, like pathogens,
use effectors to suppress or circumvent host defense. MiSSP7,
an effector of the ectomycorrhizal fungus Laccaria bicolor,
and SP7, an effector of the arbuscular mycorrhizal fungus
Glomus intraradices, suppresses host immunity to promote root
symbiosis. SP7 targets the pathogenesis-related transcription
factor ERF19 in the nucleus, while MiSSP7 targets the repressor

FIGURE 4 | Assessment of flg22 and chitin-induced reactive oxygen species (ROS) accumulation in barley and Arabidopsis tissue. Leaf disks of
3-week-old barley HvPIIN_08944-OE or EV control plants were treated with (A) 100 nM flg22, and (B) 200 mg/ml crab shell chitin. (C) Leaf disks of 4-week-old
AtPIIN_08944-OE or wt Arabidopsis plants were treated with 100 nM flg22. ROS was determined by measuring the relative light unit over time with a
luminol-chemiluminescence assay using a Tecan reader. Error bars represent the mean ± SE of three independent experiments. (RLU, relative light units; EV, empty
vector).
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FIGURE 5 | Characterization of barley HvPIIN_08944OE plants inoculated with macroconidia of Fusarium graminearum. Root length (A) and root fresh
weight (B) of six plants per line inoculated with F. graminearum. Values represent the mean with ± SE of three independent experiments. (C) Detached leaves of
3-week-old HvPIIN_08944OE plants (#4 #8 #14) and EV control were inoculated with F. graminearum. Photographs were taken 6 dpi. The experiment was repeated
three times with similar outcome (D) Relative fungal biomass on detached HvPIIN_08944OE (#4 #8 #14) and EV control leaves by qPCR. Values represent the mean
with ±SE of three independent experiments.

proteins JAZ5 and JAZ6 in the nucleus and therefore inhibits
the expression of JA-induced genes thereby promotes root
colonization by the mycorrhizal fungus (Kloppholz et al., 2011;
Plett et al., 2011; Plett et al., 2014).

The genome of P. indica contains hundreds of putative effector
genes coding for SSPs (Zuccaro et al., 2011). About 123 out of
216 SSPs were responsive to colonization either on Arabidopsis
or barley (Lahrmann et al., 2013), which also may indicate that
colonization on different hosts needs a specialized set of effectors.
Interestingly, 21 SSPs were expressed at similar symbiotic stages
both in Arabidopsis and barley, suggesting that these effector
candidates might target similar cellular processes. Our results
show that PIIN_08944 is a host unspecific effector which is
exploited by P. indica to target conserved molecular processes
in different plants and therefore act as a general determinant of
compatibility during plant root colonization.

The accumulation of PIIN_08944 transcripts in in vitro
germinated chlamydospores shows that PIIN_08944 is induced
before direct contact with a host, which also suggests that
the induction is not dependent on a plant signal. Moreover,
PIIN_08944 was not differentially expressed in the course of
P. indica’s colonization of Arabidopsis roots, which is consistent

with our analysis of public available microarray data (Lahrmann
et al., 2013). However, based on the available microarray data,
PIIN_08944 is among the top 20% of highly expressed P. indica
genes. In support of our finding, the effector AvrM of the rust
fungus Melampsora lini also was not differentially regulated
during colonization of flax, and its expression was independent
of a host-derived signal (Catanzariti et al., 2006). One reason for
the accumulation of PIIN_08944 in germinating spores could be
that this effector is important to counteract the pre-invasive host
defenses and thereby might prepare the host cell for subsequent
hyphal colonization. Therefore it is not surprising that the
expression of effectors can be induced even before host contact
has been established.

The observation that deletion of PIIN_08944 impaired the
ability of P. indica to colonize Arabidopsis roots suggests that the
effector contributes to fungal colonization during the interaction
of P. indica with its host plant. The loss of virulence was
rescued by the in planta expression of PIIN_08944. This finding
also raises the possibility that PIIN_08944 is secreted and
operates inside host cells. Furthermore, barley plants expressing
PIIN_08944, showed enhanced colonization when inoculated
with the P. indica wt strain, indicating that the protein also
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contributes to colonization on barley root (Supplementary
Figure S3).

The ability of PIIN_08944 to suppress flg22-induced defense
responses, which was observed by the dampened expression of
the marker gene WRKY22, suggests that the effector interferes
with early PTI signaling. Suppression of the SA marker CBP60g
is most likely an indirect result of early PTI suppression
(Tsuda et al., 2013). This hypothesis is further supported in
that AtPIIN_08944OE and HvPIIN_08944OE plants did not
resist the necrotrophic fungal pathogens F. graminearum and
B. cinerea as these fungi are highly sensitive to JA-mediated
defense responses (Gottwald et al., 2012; Aubert et al., 2015).
The phytohormone SA is widely accepted to be involved in
resistance against biotrophic pathogens (Glazebrook, 2005). The
suppression of the SA marker gene CBP60g, might also explain
the enhanced susceptibility observed for AtPIIN_08944 plants to
Hpa. Earlier reports suggested that P. indica recruits JA signaling
to counter SA associated defense as showed by the up-regulation
of VEGETATIVE STORAGE PROTEIN 2 (VSP2), a marker gene
for JA on P. indica colonized plants (Jacobs et al., 2011). We
speculate that PIIN_08944 is unlikely to affect the JA response
as necrotrophic Bc infection on Arabidopsis AtPIIN_08944OE
plants and Fg infection on barley HvPIIN_08944OE plants were
similar to wt.

Interestingly, flg22- and chitin-mediated ROS production
was reduced on HvPIIN_08944OE plants but not in transgenic
Arabidopsis. This finding might indicate that P. indica can exploit
PIIN_08944 to suppress early PTI responses triggered by chitin
perception during fungal colonization of roots. At present it
remains unclear whether there are differences in early PTI
signaling events in barley vs. Arabidopsis. The differential ROS
response mediated by PIIN_08944 in barley vs. Arabidopsis may
hint to such difference. However, whether PIIN_08944 is able
to suppress chitin-induced ROS burst in Arabidopsis still needs
further investigation.

Taken together, our results show that P. indica has evolved
effectors such as PIIN_08944 as important determinants
that contribute to the establishment and/or maintenance of
a mutualistic relationship during interaction with plants.
Moreover, the suppressive activity of PIIN_08944 in a dicot
(Arabidopsis) and a monocot (barley) might give a first hint
on our understanding at the molecular level, how P. indica
can colonize a broad spectrum of different plant species.
It is plausible that several other effector candidates may
contribute in shaping the colonization process of P. indica.
Therefore it would be important to investigate the role

played by other P. indica effector candidates during root
colonization.
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FIGURE S1 | Phenotypic analysis of Piriformospora indica Pi�08944

mutants (PiT1 and PiT2) and wt. Fungal growth rates and morphology was
similar between Pi�08944 mutants (PiT1 and PiT2) and the wt fungus.

FIGURE S2 | Analysis of HvPIIN_08944OE in barley plants. Western blot
analysis of transgenic barley expressing GFP: PIIN_08944 fusion protein using anti
GFP antibody. No band was observed in wt plants (c), a lower GFP band
(∼27 kDa) was observed in the GFP control, and a 39 KDa band corresponding to
GFP: PIIN_08944 was observed in HvPIIN_08944OE plants.

FIGURE S3 | Enhanced colonization by P. indica of barley expressing
PIIN_08944. Roots of 3-day-old transgenic barley seedlings or the EV control
were inoculated with P. indica chlamydospore. Root material was harvested at 3,
7, 14, and 21 dpi; genomic DNA was extracted and the relative amount of fungal
biomass was determined by qPCR using plant and fungal specific primers. Data
represent the mean with ±SD of two independent experiments. Asterisks indicate
significance at ∗P < 0.05 analyzed using student’s t-test.

FIGURE S4 | Analysis of P. indica transgenic mutants and transgenic
Arabidopsis. (A) Relative expression of PIIN_08944 in in vitro germinated spores
of the five Pi�08944 strains vs. wt by RT-PCR. PIIN_08944 transcripts accumulated
only in wt. The P. indica ubiquitin UBQ gene served as reference. (B)
Determination of T-DNA copy numbers in Pi�08944 transformants by Southern blot
analysis. Genomic DNA from transformants and wt was digested with SacI,
separated on 0.9% TAE agarose gel, transferred to a nylon membrane, and
hybridized with a 32P radio-labeled 32P-dCTP 600 bp fragment of hygromycin B
(hph). Three out of the five transformants have one copy of T-DNA inserted in the
genome, while two have two copies. Lanes 1–5: PiT1 to PiT5. (C) Expression
analysis of Arabidopsis expressing PIIN_08944 (upper panel) and ubiquitin UBQ
(lower panel) by RT-PCR. #1–#17: independent AtPIIN_08944OE, C: Wt.

TABLE S1 | List of primers used.
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