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The study of local stability has a long tradition in community ecology. Stability describes
whether an ecological system will eventually return to its original steady state after being
perturbed. More recently, the study of the transient dynamics of ecological systems
has been recognized as crucial, given that continuously disturbed systems might never
reach a steady state, and thus the instantaneous response to perturbations could largely
determine species persistence. A stable equilibrium can be non-reactive—all perturbations
decay immediately, or reactive—some perturbations are initially amplified before decaying.
Here we derive analytical criteria for the reactivity of large ecological systems in which
species interact at random. We find that in large ecological systems both stability
and reactivity are governed by the same quantities: number of species, means of
the intra- and inter-specific interaction strengths, variance of inter-specific interactions,
and the correlation of pairwise interactions. We identify two phase transitions, one
from non-reactivity to reactivity and one from stability to instability. As reactivity is an
intermediate state between non-reactivity and instability, it could be used to develop an
early-warning signal for systems approaching instability.
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1. INTRODUCTION
The relationship between complexity and stability of ecologi-
cal communities has been an important driver of theoretical
ecology (e.g., Yodzis, 1981; Pimm, 1984; McCann, 2000; May,
2001; Martinez et al., 2005). This interest was sparked by the
work of Robert May, who in 1972 showed that large random
communities are inevitably unstable (May, 1972). In unstable
communities, even infinitesimal perturbations would drive the
system away from steady-state and potentially lead to the loss
of species. Since May’s work, ecologists have been trying to find
mechanisms that can stabilize natural ecosystems and support the
staggering biodiversity observed empirically (e.g., McNaughton,
1978; Yodzis, 1981; McCann et al., 1998; Emmerson and Yearsley,
2004). Recently, we extended May’s results on randomly assem-
bled systems to communities with certain interaction types, such
as predator-prey (i.e., food webs), mutualistic and competitive
communities (Allesina and Tang, 2012). Starting—as May did—
directly from the “community matrix” (Levins, 1968) describing
the effects of species on each other around an equilibrium point,
we derived stability criteria for large, complex ecosystems, and
showed that a large number of species can coexist at a locally
stable equilibrium if predator-prey interactions are preponderant.

Clearly, stable ecosystems are more likely to persist in time than
unstable ones. However, stability only expresses the long-term
response to small perturbations. Transient dynamics, observed in
many ecological models and communities (Neubert and Caswell,
1997; Chen and Cohen, 2001; Hastings, 2004; Rozdilsky et al.,
2004) as well as in other dynamical systems (Farrell and Ioannou,
1996; Schmid, 2007), can be remarkably different from the long-
term dynamics and thus also play an important role for the
persistence of such systems. In fact, some perturbations of a

stable equilibrium might be initially amplified before decaying.
In ecology, stable equilibria with this property are called “reac-
tive” (Neubert and Caswell, 1997). Such initial amplifications
of the perturbations drive the system even further from the
equilibrium state, and thus increase the risk of stochastic extinc-
tion. The concept of reactivity was first introduced to ecology
by Neubert and Caswell (1997) and it complements that of sta-
bility: stability describes the long-term, asymptotic behavior in
response to perturbations, whereas reactivity describes the imme-
diate response for stable equilibria (Farrell and Ioannou, 1996).
Reactivity quantifies the maximum instantaneous amplification
rate of infinitesimal perturbations. As such, in highly reactive sys-
tems, small perturbations can be initially greatly amplified before
decaying, with potentially important consequences for stochas-
tic extinctions. Reactivity has been studied in many ecological
contexts, including food web models (Chen and Cohen, 2001),
structured population models (Caswell and Neubert, 2005), and
infectious diseases (Hosack et al., 2008).

Here, we study the relationship between stability and reactivity
in randomly assembled ecosystems. After establishing a criterion
for reactivity in large ecosystems, we show that the same quanti-
ties determine both stability and reactivity: both criteria can be
written as inequalities involving the number of species (S), expec-
tations of the intra- and inter-specific interaction strengths (E
and −d, respectively), variance of inter-specific interactions (V),
and correlation between pairs of interactions (ρ).

By comparing the criteria for stability and reactivity, we find
that for fixed S, V , E, and ρ, making an equilibrium non-reactive
and stable requires stronger intra-specific interaction than that
necessary to achieve stability. Numerical simulations confirm our
findings: starting from an unstable equilibrium, if we gradually
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increase the mean strengths of intra-specific interactions, the
equilibrium of the system first becomes reactively stable, and then
becomes non-reactively stable.

This implies that reactive stability is an intermediate phase
separating non-reactive stability and instability. As such, reactiv-
ity could be exploited as an early-warning signal for catastrophic
regime shifts in ecosystems, an area of ecology that is experienc-
ing rapid growth (May, 1977; Wissel, 1984; Scheffer et al., 2001,
2009, 2012).

2. MATERIAL AND METHODS
2.1. STABILITY ANALYSIS
Consider an ecological community composed of S species, whose
population densities at any time t are denoted as a vector Y(t) of
length S. Species dynamics are typically modeled by a system of
non-linear autonomous ordinary differential equations:

dY(t)

dt
= f(Y) (1)

where f = [
f1, f2, . . . , fS

]T
is a set of functions describing the

dynamics of the S species. A feasible equilibrium point of system

(1) is a non-negative vector Y∗ = [
Y∗

1 , Y∗
2 , . . . , Y∗

S

]T
such that:

f(Y∗) = 0 (2)

The evolution of a small perturbation y0 = �Y(0) applied to the
equilibrium Y∗ can be approximated by the linear equation:

d
(
�Y(t)

)
dt

= M · �Y(t) (3)

where M is the so-called “community matrix” (Levins, 1968; May,
1972, 2001): the Jacobian matrix evaluated at the equilibrium, i.e.,

Mij = ∂fi
∂Yj

∣∣∣∣
Y = Y∗

(4)

An equilibrium is called “(locally asymptotic) stable” if any
infinitesimal perturbation decays to zero eventually: for any
�Y(0) sufficiently small, we have limt → ∞ �Y(t) = 0. Moreover,
if all eigenvalues of M, denoted by λM

i , i = 1, 2, . . . , S, have neg-
ative real parts, the equilibrium point is stable (May, 1972, 2001).
Here we always order the eigenvalues of M such that � (λM

1

) ≤
� (λM

2

) ≤ · · · ≤ � (λM
S

)
. Thus if � (λM

S

)
< 0, the equilibrium is

stable.

2.2. REACTIVITY ANALYSIS
The stability of an equilibrium defines the long-term response to
small perturbations. However, the real parts of M’s eigenvalues do
not provide information on the instantaneous response to per-
turbations. Among stable equilibria, the instantaneous dynamics
can differ dramatically, even if all perturbations will eventually
die out.

Neubert and Caswell (1997) firstly introduced to ecology the
concept of reactivity, which quantifies the maximum ampli-
fication rate of perturbations. For reactive equilibria, some

perturbations will immediately grow in magnitude before eventu-
ally decaying. Conversely, if all small perturbations decay imme-
diately, such equilibria are non-reactive. As such, reactivity is
defined as the maximal initial amplification rate, which can be
calculated from:

Reactivity = max||y0|| �= 0

[{
1

||�Y(t)||
d||�Y(t)||

dt

}∣∣∣∣
t = 0

]

= max
(
λH

i

) = λH
S (5)

where || · || is the norm operator. Neubert and Caswell also
showed that the maximum initial amplification rate is simply λH

S ,
the largest eigenvalue of H, where H is the symmetric part of the

community matrix M, defined as H = M + MT

2 , where MT is the
transpose of M. Note that H is symmetric and therefore all its
eigenvalues are real. An equilibrium is reactive if λH

S > 0 (i.e., pos-
itive instantaneous amplification rate) and non-reactive if λH

S <

0 (i.e., negative instantaneous amplification rate) (Neubert and
Caswell, 1997). For any matrix M, we have that λH

S ≥ � (λM
S

)
(Snyder, 2010): the largest real part for the eigenvalues of M
is bounded from above by the largest eigenvalue of the sym-

metric matrix H = M + MT

2 , and the largest imaginary part is
bounded from above by the largest eigenvalue of the symmet-

ric matrix H′ = M−MT

2 (Wolkowicz and Styan, 1980). As such,
unstable equilibria

(� (λM
S

)
> 0

)
are certainly reactive

(
λH

S > 0
)
,

whereas stable equilibria
(� (λM

S

)
< 0

)
can be either reactive or

non-reactive.

2.3. BUILDING COMMUNITY MATRICES
As when studying stability (Tang et al., in press), the diagonal
entries of M are assumed to have a negative expectation E(Mii) <

0; and we denote E(Mii) = −d for some positive number d. The
diagonal entries are sampled independently from a normal distri-
bution with mean −d and finite variance σ 2

d . The off-diagonal
entries of M are sampled as independent pairs according to a
bivariate distribution of (X1, X2) in the following way: (1) with
probability C/2, (Mij, Mji)i > j is sampled from the distribution
of (X1, X2); (2) with probability C/2, (Mij, Mji)i l> j is sampled
from the distribution of (X2, X1); (3) with probability (1 − C),
(Mij, Mji)i > j = (0, 0). The symmetric part of M is computed

from the definition H = M + MT

2 . Note that M constructed in this
way can describe different types of communities when we vary
the underlying bivariate distribution. For example, when (X1, X2)
is chosen to follow a bivariate mean-zero Gaussian distribution,
with two independent components, M can represent the collec-
tion of randomly-assembled communities studied by May (1972).
If the distribution is defined such that the two components X1 and
X2 always have opposite signs, then M can represent a food web,
containing only consumer-resource interactions, as in Allesina
and Tang (2012).

2.4. DERIVATION OF THE REACTIVITY CRITERIA
For a random matrix M whose entries are independently sam-
pled from a statistical distribution, five quantities are essential
for determining the largest real part of its eigenvalues: (1) S, the
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dimension of M, which equals the number of species in the net-
work, (2) E, the expectation of the off-diagonal entries, describing
inter-specific interaction strengths, (3) −d, the expectation of the
diagonal entries, describing intra-specific interaction strengths,
(4) V , the variance of the off-diagonal entries, and (5) ρ, the
pairwise interaction correlation:

E = EM = E(Mij)i �= j, d = dM = −E(Mii) > 0,

V = VM = Var(Mij)i �= j ≥ 0

ρ = ρM = E2 − E2

V
∈ [−1, 1], where

E2 = EM
2 = E(MijMji)i �= j

In Allesina and Tang (2012) and Tang et al. (in press), we showed
that there is always one eigenvalue of M (denoted by λM

R ) whose
real part is close to the expected row sum of M:

� (λM
R

) ≈ (S − 1)E − d (6)

When S is sufficiently large, the other (S − 1) eigenvalues of
M are approximately uniformly distributed on an ellipse cen-
tered at ( − E − d, 0), whose horizontal and vertical axes are
about 2

√
SV(1 + ρ) and 2

√
SV(1 − ρ), respectively. Thus the

rightmost one of these (S − 1) eigenvalues (denoted by �(λM
EL))

can be estimated using the “center” plus the semi-length of the
horizontal axis:

� (λM
EL

) ≈ −E − d + √
SV(1 + ρ) (7)

Depending on the sign and the magnitude of � (λM
R

)
, stability

may be determined by either � (λM
R

)
or � (λM

EL

)
, i.e., the largest

real part for all eigenvalues of M is just the larger one of these two
eigenvalues:

� (λM
S

) = max
{� (λM

R

)
,� (λM

EL

)}
When E > 0, � (λM

R

)
grows linearly in S whereas � (λM

EL

)
grows

only sub-linearly, so if S is sufficiently large, for example, S 
V(1 + ρ)2

E2 , we have:

(S − 1)E − d >
√

SV(1 + ρ) − E − d

In this case, λM
R lies on the right of the ellipse formed by the other

(S − 1) eigenvalues, and the largest real part of the eigenvalues of
M is thus � (λM

R

)
, i.e., for sufficiently large S,

� (λM
S

) = � (λM
R

) ≈ (S − 1)E − d

When E ≤ 0, we always have

(S − 1)E − d <
√

SV(1 + ρ) − E − d,

which means λM
R lies on the left of the ellipse. Hence the rightmost

eigenvalue of M is λM
EL. In this case, for sufficiently large S, we have

� (λM
S

) = � (λM
EL

) ≈ √
SV(1 + ρ) − E − d

A random, symmetric matrix, such as H, is a special case of gen-
eral random matrices. As such, we may use the same approach
to estimate the largest eigenvalue of H. We thus compute the
corresponding statistical quantities for H, namely,

EH = E(Hij)i �= j, dH = −E(Hii) > 0,

VH = Var(Hij)i �= j ≥ 0,

ρH = EH
2 − (

EH
)2

VH
∈ [−1, 1], where EH

2 = E(HijHji)i �= j

In particular, we would like to express these five quantities in
terms of the statistics of M. First of all, the expectations of the
diagonal and off-diagonal entries do not change by taking the
symmetric part of M, because

EH = E(Hij)i �= j = E

(
Mij + Mji

2

)
i �= j

= E(Mij)i �= j + E(Mji)i �= j

2
= E

dH = −E(Hii) = −E(Mii) = d

However, the variance, the expectation of the products of pair-
wise interactions, and the pairwise correlation do differ in M
and H. These quantities for H can be computed according to the
relationship between M and H:

VH = Var(Hij)i �= j = Var

(
Mij + Mji

2

)
i �= j

= V

2
+ Cov(Mij, Mji)i �= j

2

= V

2
+ E2 − E2

2
= V

2

(
1 + E2 − E2

V

)
= V

2
(1 + ρ)

EH
2 = E(HijHji)i �= j = E

(
H2

ij

)
i �= j

= Var(Hij)i �= j + E
2(Hij)

= VH + (
EH)2

ρH = EH
2 − (

EH
)2

VH
= VH

VH
= 1

Similar to the case of stability, two eigenvalues of H are essen-
tial in determining the reactivity of the underlying equilibrium,
one corresponding to the expected row sum (denoted by λH

R ), and
the other one corresponding to the largest one among the other
(S − 1) eigenvalues forming an “ellipse.” In the case of symmetric
matrices, since ρH = 1, the vertical axis of the ellipse is zero:

2
√

SVH
(
1 − ρH) = 0

This means the ellipse actually degenerates to a line segment on
the real axis. The density of the eigenvalues of a random sym-
metric matrix is described by Wigner’s semicircle law (Wigner,
1958), so we denote the largest eigenvalue among the S − 1 eigen-
values (excluding λH

R ) by λH
SC , where “SC” stands for “semicircle.”
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Similarly to the computation of � (λM
R

)
and � (λM

EL

)
, λH

R and λH
SC

can be computed as follows:

λH
R ≈ (S − 1)EH − dH = (S − 1)E − d

λH
SC ≈

√
SVH

(
1 + ρH)− EH − dH = √

2SV(1 + ρ) − E − d

These equations are analogous to those determining stability
(Equations 6, 7): the only difference is that instead of using E,
V , and ρ for matrix M, we take the corresponding values for
matrix H.

Again, the largest eigenvalue of H is the larger one of λH
R and

λH
SC :

λH
S = max

(
λH

R , λH
SC

)
If E > 0, for sufficiently large S, namely S  2V(1 + ρ)

E2 , we have

λH
R > λH

SC

λH
S = λH

R ≈ (S − 1)E − d (8)

whereas if E ≤ 0, the largest eigenvalue of H is λH
SC and thus

λH
S = λH

SC ≈ √
2SV(1 + ρ) − E − d (9)

2.5. SIMULATING THE PHASE TRANSITIONS FOR STABILITY AND
REACTIVITY

We use numerical simulations to verify the derivation of the reac-
tivity criteria. We choose S = 250, C = 0.2, and standard normal
distribution N (0, 1) for the marginal distributions of X1 and
X2. We consider three different cases of the joint distribution
(X1, X2). The first case is called the Random case, where X1 and
X2 follow independent N (0, 1) distributions and (Mij, Mji)i > j

can be (+,−), (−, +), (+,+), or (−,−). In this case, we have
E = 0, V = C, and ρ = 0. The second case is called the Predator-
Prey case, where we constrain the two entries in each non-zero
pair (Mij, Mji)i > j to have different signs, either (+, −) or (−,+),
and this also gives E = 0, V = C, but a negative pairwise cor-

relation ρ = E2
V = −CE|X1|E|X2|

C = − 2
π

< 0. The last case is the
Mixture of mutualism and competition case (or “Mixture” case
for short), where each non-zero pair (Mij, Mji)i < j contains two

entries of the same sign, either (+, +) or (−,−). In the Mixture
case, we still have E = 0, V = C, but a positive pairwise corre-
lation ρ = E2

V = CE|X1|E|X2|
C = 2

π
> 0. The joint distributions of

(X1, X2) for the three cases are illustrated in Figure 1. To simu-
late the phase transition for stability and reactivity, we increase d
from 0 to 15 (i.e., E(Mii) is between 0 and −15), for three lev-
els of the variances of the diagonal entries σ 2

d = 0, 0.52 and 12.
For each combination of d and σd, we construct 1000 community
matrices for each of the three cases, and for each matrix, we check
stability and reactivity and estimate the probabilities of stability
and reactivity, respectively.

3. RESULTS
3.1. STABILITY AND REACTIVITY CRITERIA
Similar to the derivation for the stability criterion, in which the
goal is to estimate the largest real part of the eigenvalues of M,
the derivation of the reactivity criterion relies on estimating the
largest eigenvalue of H when S is sufficiently large. The reactivity
criteria are summarized and compared to their stability counter-
parts in Table 1. We see that the five quantities affect the largest
eigenvalue of H in the same direction as they affect the largest
real part of the eigenvalues of M: if changing one quantity while
the others are held constant increases (or reduces) � (λM

S

)
, such

change also increases (or reduces) λH
S .

If E > 0, for sufficiently large S, � (λM
S

)
and λH

S are both of
the order (S − 1)E − d, implying that the critical point defin-
ing the stability-instability boundary (i.e., when � (λM

S

) = 0) is
asymptotically the same as that for the non-reactivity-reactivity
boundary (i.e., when λH

S = 0). If E ≤ 0 and S is sufficiently

Table 1 | Stability and Reactivity Criteria for sufficiently large

ecological communities.

Stability criteria Reactivity criteria

E > 0 (S − 1)E < d (S − 1)E > d

E ≤ 0
√

SV (1 + ρ) − E < d
√

2SV (1 + ρ) − E > d

max
{
(S − 1)E, max

{
(S − 1)E,√

SV (1 + ρ) − E
}

< d
√

2SV (1 + ρ) − E
}

> d

FIGURE 1 | Joint density contour for the bivariate distribution of (X1, X2) for three different types of ecological networks. In all three cases, the
marginal distributions for both X1 and X2 are standard normal distributions.
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large, � (λM
S

)
and λH

S are approximately
√

SV(1 + ρ) − E − d
and

√
2SV(1 + ρ) − E − d, respectively. Note that, in this case,

since −1 ≤ ρ ≤ 1, we have

� (λM
S

)− λH
S ≈ √

SV(1 + ρ) −√
2SV(1 + ρ)

= √
SV(1 + ρ)

[√
1 + ρ − √

2
]

≤ 0

which yields � (λM
S

) ≤ λH
S . It means we necessarily have

� (λM
S

)
< 0 (“stable”) whenever λH

S < 0 (“non-reactive”). Our
estimate for � (λM

S

)
and λM

S are consistent with the fact that a
non-reactive equilibrium is always stable (Snyder, 2010).

The assumption of large S is important in determining the
rightmost eigenvalue when E > 0. Similar to the study of stabil-
ity, the reason here is that although λH

R grows linearly in S and is
eventually larger than λH

SC , which grows only sub-linearly, if E is
small and S is not sufficiently large, we may still have λH

R < λH
SC

and thus the largest eigenvalue of H is then λH
SC instead of λH

R .
In practice, for a system of a given size S and mean interaction
strength E, we need to consider the estimates for both eigenval-
ues, λH

R and λH
SC . Similar to the stability criteria derived in Tang

et al. (in press), we thus combine the criteria for both E > 0 and
E ≤ 0 cases and state the criteria in terms of the maximum of λH

R
and λH

SC (Table 1, row 3).
Note that the expressions for � (λM

S

)
and λH

S obtained above
are the estimates for their average values. In other words, for fixed
S, C, d, and the underlying bivariate distribution (X1, X2) (which
determines E, E2, V , and ρ), if one constructs random commu-
nity matrices M repeatedly, Equations (6–9) provide estimates
for the average positions of � (λM

S

)
and λH

S among all construc-
tions. For one single realization of M and H, the actual values
of � (λM

S

)
and λH

S will deviate from their mean estimates due to
the randomness. Furthermore, the variations of � (λM

S

)
and λH

S
around their means decrease with the size of the network: when
S is larger, the estimates given in Equations (6–9) are more accu-
rate. Finally, if S  1 and E is small compared to

√
SV(1 + ρ),

we may simplify the expressions in Table 1 accounting for these
facts (1) S − 1 ≈ S, (2)

√
SV(1 + ρ) − E ≈ √

SV(1 + ρ), and (3)√
2SV(1 + ρ) − E ≈ √

2SV(1 + ρ).

3.2. THE RELATION BETWEEN STABILITY AND REACTIVITY
From Table 1, we see that the inequalities define the boundary
conditions for stability and reactivity. Intuitively, since non-
reactive equilibria are necessarily stable but not vice versa, we
may think non-reactivity as a stronger form of stability in the
sense that all infinitesimal perturbations not only decrease to zero
eventually, but also do so immediately.

For fixed S, V, E, and ρ, the negative mean intra-specific inter-
action d may be viewed as an internal source to stabilize the equi-
librium. If d = 0, implying that the eigenvalues of M are centered
at zero, we always have unstable and hence reactive equilibrium.
When we increase d, which is equivalent to moving the center of
the eigenvalues to the left, it is possible to achieve stability and
non-reactivity. We denote by dcrit,1 and dcrit,2 the minimum (i.e.,
critical) average strengths of intra-specific interactions needed to
achieve stability and non-reactivity, respectively. When E > 0 and
S is sufficiently large so that � (λM

R

)
and λH

R determine stability

and reactivity, respectively, the minimum d required to stabilize or
make the equilibrium non-reactive is dcrit,1 = dcrit,2 = (S − 1)E.
However, in real ecological networks, the case E < 0 is more com-
mon (Tang et al., in press), especially when consumer-resource
interactions are preponderant. This is because the positive effects
of resources on consumers are usually smaller in magnitude than
the negative effects of consumers on resources due to imperfect
conversion efficiency. Moreover, adding a higher proportion of
competitive interactions compared to mutualistic interaction can
make the mean interaction strength even more negative. For this
case, the minimum average strength of intra-specific interaction
required to stabilize the equilibrium is dcrit,1 = √

SV(1 + ρ) − E,
whereas to make the equilibrium non-reactive we need aver-
age strength of inter-specific interaction being at least dcrit,2 =√

2SV(1 + ρ) − E, greater than dcrit,1.
Our criteria are quite accurate even for communities of mod-

erate sizes (Figure 2), as confirmed by numerical simulations. In
our simulations, when we increase the mean intra-specific inter-
action strength d, we observe two sequential phase transitions as
d passes through the two critical points. First, near d = dcrit,1,
the probability of stability rapidly increases from 0 to 1, mark-
ing the first phase transition from instability to stability (Figure 2,
upward triangles). After that, as d continues to increase, the prob-
ability of reactivity rapidly drops from 1 to 0 near d = dcrit,2,
marking the second phase transition from reactivity to non-
reactivity (Figure 2, downward triangles). As S becomes larger,
the behavior for the eigenvalues of M and H will be closer and
closer to that estimated according to random matrix theory, and,
consequently, the � (λM

S

)
and λH

S will be closer and closer to their
mean positions (Tang et al., in press). These phase transitions
will be sharper for larger S, and the behaviors of the transitions
will be more like sudden jumps occurring at dcrit,1 and dcrit,2,
respectively. The critical points predicted using our criteria, i.e.,
dcrit,1 and dcrit,2, are marked by the dashed vertical lines in each
case in Figure 2. Conversely, if we start with a non-reactively sta-
ble network and gradually push it toward the unstable region,
for example, by reducing the mean strength of the intra-specific
interactions, the network will first become reactively stable and
then unstable. This makes intuitively sense, since if all small per-
turbations would decay immediately (i.e., non-reactive, stable),
then any small perturbation is equivalent to a smaller pertur-
bation in a slightly different direction, which will also decay
immediately. Therefore, if a network has a non-reactive, stable
equilibrium, it has to first cross the “reactively stable” phase
before reaching the unstable phase, assuming its state is changing
continuously. Thus, if reactivity were to be detectable in empiri-
cal data, it would be an excellent candidate for an early-warning
signal for the approach of a bifurcation.

3.3. STABILITY, REACTIVITY, AND PAIRWISE CORRELATION
From the inequalities in Table 1, we see that negative pairwise cor-
relation is beneficial for both stability and non-reactivity. Given
the potential of reactivity for signaling the approach of a bifurca-
tion, it is important to know how “early” reactivity can warn us
when the system is approaching the unstable state. This is actually
measured by the distance between the phase transitions for reac-
tivity and stability, i.e., the absolute difference δ = λH

S − � (λM
S

)
.
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FIGURE 2 | Numerical simulations for the phase transitions of stability

and reactivity in three types of ecological networks. The y -axis
represents the probability of stability (red) and reactivity (blue) computed
from 1000 random community matrices for each case. We built matrices
choosing the joint density of (X1, X2) as shown in Figure 1. For each type
of matrix, we fixed S = 250, C = 0.2, and E = 0. The critical points
(dcrit,1, dcrit,2) for the stability-instability and reactivity–non-reactivity

transitions are marked by vertical dashed lines. The three regions from left
to right correspond to the ranges of d in which the equilibria are unstable,
reactively stable, and non-reactively stable. We varied d from 0 to 15, with
finer sampling in the regions around the expected phase transition (x-axis).
The standard deviation of the intra-specific interaction strengths, σd , was
set to 0, 0.5, and 1, shown as different shaded curves in each plot, from
the lightest to the darkest.

When E > 0 and S is sufficiently large, �(λS) ≈ λH
S and reac-

tivity is asymptotically equivalent to instability. In other cases,
either E ≤ 0 or E > 0 but S is not large enough so that we have
� (λM

S

) ≈ √
SV(1 + ρ) − E − d and λH

S ≈ √
2SV(1 + ρ) − E −

d, the difference is

δ = λH
S − � (λM

S

) = √
SV(1 + ρ)

(√
2 −√

1 + ρ
)

depending on S, V , and ρ only. Here, we can see that the abso-
lute distance δ changes monotonically with S and V , indicating
that a higher biodiversity results in a larger distance between the
two phase transitions. However, δ does not change monotonically
with ρ. Computing the first derivative of δ with respect to ρ and
equating it to zero, we get:

∂δ

∂ρ

∣∣∣∣
ρ = ρ∗

= √
SV

( √
2

2
√

1 + ρ∗ − 1

)
= 0 ⇒ ρ∗ = −1

2

The second derivative at ρ∗ is negative, which implies δ reaches
its maximum when ρ = − 1

2 . Thus, for fixed S and V , the dis-
tance from the non-reactivity-reactivity phase transition to the
stability-instability is large when the interactions between pairs of
species maintain a moderate negative correlation (Figure 3).

4. DISCUSSION
The stability and reactivity criteria are derived for ecological
networks with random (i.e., Erdős-Rényi) structure. Thus, they

FIGURE 3 | The distance between the two phase transitions (δ) as a

function of the pairwise interaction correlation ρ for S = 250 and

C = 0.2. The maximum distance and the corresponding pairwise correlation
are indicated using blue dashed lines, and the correlations for the three
numerical simulations in Figure 2 are marked by black dashed lines.

cannot directly predict the stability and reactivity of empirical sys-
tems, which display markedly non-random structure. However,
they can be used as null models to establish an expectation for
the ensemble of matrices whose coefficients are distributed as in
the empirical system, but have random structure. This effectively
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serves as a way to determine the influence of network structure on
stability and reactivity.

The criteria are to be interpreted in a probabilistic sense. We
have shown that the stability and reactivity criteria are derived
based on the estimates of the average positions of � (λM

S

)
and

λH
S , obtained repeatedly constructing the community matrix M

and its symmetric part H using the same parameters, underlying
bivariate distribution, and algorithm. For each realization of M
and H, � (λM

S

)
and λH

S are around their predicted positions, with
smaller variation when S is larger. Therefore, using the five quan-
tities of a randomly constructed community matrix M, we obtain
estimates from Equations (6–9) for � (λM

S

)
and λH

S , and if both
of them are, for example, negative, then with high probability the
underlying equilibrium for this random community is stable and
non-reactive. Such probability will grow to 1 as S becomes larger.
For positive estimates of � (λM

S

)
or λH

S , the argument is similar.
It has been shown that if any of the diagonal entries of M is

non-negative, the equilibrium is reactive (Neubert et al., 2004).
Therefore, if there is one non-negative diagonal entry in M, there
is no need to compute or estimate λH

S , as one can immediately
conclude that the equilibrium is reactive. In our simulations,
having non-negative diagonal entries is not an issue. This is
because, even in the simulation of Predator-Prey case, where
the phase transition to non-reactivity is expected to occur at
E(Mii) = −d < −6, the least negative one among the three cases,
and even with the largest variance σ 2

d = 1 (comparable to the
variance of the off-diagonal entries), the probability of sampling
one non-negative value from N ( − 6, 1) is only 9.87 × 10−10.

Our criteria for stability and reactivity involve five quantities,
S, V, E, d, and ρ, measured for the community matrix M. The
inequalities define two phase transitions, one from instability to
stability and the other from non-reactivity to reactivity, respec-
tively. Such phase transitions are sharper as S gets larger. The
diagonal entries of M determine the center of the eigenvalue dis-
tribution. When all diagonal entries Mii are constant −d < 0, the
contribution of the diagonal entries is equivalent to shifting the
eigenvalues of the zero-diagonal case to the left by an amount of
d. The variation in the diagonal entries (σd) only introduces more
randomness to the eigenvalues of M and H and thus makes the
phase transition smoother. The effect of σd on the phase transi-
tion is negligible when S is large, as confirmed by our simulations
(Figure 2).

Interestingly, the stability and reactivity criteria do not depend
on the exact shape of the distribution of the coefficients in
the matrix. As long as the five critical quantities are the same,
two matrices whose coefficients are sampled from two different
distribution will yield approximately the same eigenvalue distri-
bution. This phenomenon is known in the random matrix theory
literature as “universality” (Tao et al., 2010; Naumov, 2012).

The fact that reactivity precedes instability holds true for all
systems composed of more than one equation. As we have shown,
we expect large ecological systems, those with high variability in
the coefficients (large V), and those in which predator-prey dom-
inate (ρ < 0) to have an intermediate phase of reactive stability
that spans a larger parameter space, compared to other systems.

Recently, the study of systems approaching a bifurcation has
become a focus of ecology (Scheffer et al., 2001, 2009, 2012).

In particular, a set of generic “early-warning” signals for the
approach of a transition have been developed (e.g., increase in
temporal or spatial autocorrelation) (reviewed in Scheffer et al.,
2012). Currently, these indicators are being probed experimen-
tally (Dai et al., 2012, 2013; Veraart et al., 2012).

Most of these indicators are based on tracking � (λM
S

)
using

time series analysis. In fact, the bifurcation is reached for
� (λM

S

) = 0, and, given that � (λM
S

)
measures the return rate of

the system after perturbation, the system effectively “slows down”
before reaching a tipping point. We have shown that � (λM

S

) ≤
λH

S , and therefore any way to measure reactivity in time series
would provide the basis for an “earlier”-early-warning signal.
Interestingly, reactivity can be measured in time series, provided
that the system is perturbed around a stable equilibrium. In
particular, Neubert et al. (2009) provide both a vector autoregres-
sive model that can measure reactivity in time-series data, and a
statistical test to probe the significance of the result.

The reactivity criteria have been derived using the same tech-
niques from random matrix theory we introduced for studying
stability (Sommers et al., 1988; Allesina and Tang, 2012; Tang
et al., in press). To make these results more general and applica-
ble to a wider range of ecological systems, the necessary next steps
are to extend these methods to networks in which interactions
are not drawn at random, but rather follow models for ecologi-
cal structure (Cohen and Newman, 1985; Williams and Martinez,
2000; Cattin et al., 2004; Allesina and Pascual, 2008). Moreover,
other measures of transient dynamics, such as the amplification
envelope and the maximum possible amplification (Neubert and
Caswell, 1997) could be described using similar methods.
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