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Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the
consumption of food contaminated with this pathogen. The ability of L. monocytogenes
to survive in extreme conditions and cause food contaminations have become a
major concern. Hence, routine microbiological food testing is necessary to prevent
food contamination and outbreaks of foodborne illness. This review provides insight
into the methods for cultural detection, enumeration, and molecular identification of
L. monocytogenes in various food samples. There are a number of enrichment and
plating media that can be used for the isolation of L. monocytogenes from food
samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth,
and University of Vermont Medium (UVM) Listeria enrichment broth are recommended
by regulatory agencies such as Food and Drug Administration-bacteriological and
analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-
FSIS), and International Organization for Standardization (ISO). Many plating media are
available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-
chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides,
reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are
usually applied for the cultural detection or enumeration of L. monocytogenes. most
probable number technique is applied for the enumeration of L. monocytogenes
in the case of low level contamination. Molecular methods including polymerase
chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase
chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal
amplification, DNA microarray, and next generation sequencing technology for the
detection and identification of L. monocytogenes are discussed in this review. Overall,
molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there
are chances for the development of new techniques for the detection and identification
of foodborne with improved features.
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INTRODUCTION

Listeria monocytogenes has become an important foodborne
pathogen and it can be found in a variety of foods which
include raw foods and processed foods (Gasanov et al., 2005;
Janzten et al., 2006; Liu, 2006; Jeyaletchumi et al., 2010a; Välimaa
et al., 2015). L. monocytogenes has been a serious threat to the
food industry due to its ability to survive the most common
food processing conditions such as extreme pH, high salt
concentration, low water activity, and refrigeration temperatures
(Liu, 2006; Zunabovic et al., 2011; Jadhav et al., 2012). It is
known that L. monocytogenes can be eliminated or reduced by
pasteurization process because it cannot survive pasteurization
temperatures in food processing (Jadhav et al., 2012). For
instance, a study conducted by Murphy et al. (2003) showed
that hot water pasteurization and steam pasteurization resulted
in a 7 log10 (CFU/g) reduction of L. monocytogenes in inoculated
single packaged fully cooked chicken breast fillets, 227 g packaged
fully cooked chicken strips and 454 g packaged fully cooked
chicken strips when pasteurized at 90◦C for 5, 25, and 35 min,
respectively. However, post-processing or post-pasteurization
contamination by L. monocytogenes may occur due to cross-
contamination or biofilms (Jadhav et al., 2012). L. monocytogenes
can attach to food contact surfaces such as stainless steel and
polystyrene during food processing and form biofilms which
is important for their survival in hostile environments (Jadhav
et al., 2012; Da Silva and De Martinis, 2013; Välimaa et al.,
2015). Biofilms may persist for a long period of time and they
can tolerate high concentrations of disinfectants, sanitizers, and
antimicrobials (Välimaa et al., 2015). Hence, this may result in the
contamination of food contact surfaces which then lead to higher
risk of food contamination during and/or after processing. Food
contaminated with L. monocytogenes has posed a great concern
to the food industry as it can cause serious infection known as
listeriosis when ingested and it is also one of the causes of recalls
which may result in large economic losses (Jemmi and Stephan,
2006). Thus, microbiological food testing is important to ensure
the safety of food products (Dwivedi and Jaykus, 2011; Välimaa
et al., 2015).

DETECTION AND IDENTIFICATION OF
Listeria monocytogenes

Enrichment Media and Selectivity
There are various selective enrichment and plating media that
have been developed and utilized for the isolation and detection
of L. monocytogenes in food and environmental samples. As
required by majority of the regulatory agencies, the isolation
methods must be able to detect one Listeria organism per
25 g of food. In order to achieve this sensitivity, enrichment
methods are required to allow the organism to grow and reach
a detectable level of ∼104–105 CFU ml−1, before plating onto
selective media and confirmation of cultures. Antimicrobial
agents are employed in enrichment and plating media to suppress
competing microflora as Listeria cells are slow growing and can be
rapidly out-grown by competitors. The most common selective

agents are acriflavine, nalidixic acid, and cycloheximide (Beumer
and Hazeleger, 2003; Gasanov et al., 2005; Janzten et al., 2006;
Jeyaletchumi et al., 2010a). The function of acriflavine is to inhibit
the growth of other Gram-positive bacteria and it is often used in
combination with other selective agents, for instance, polymyxin
B-sulfate, cycloheximide, potassium thiocyanate, and nalidixic
acid. Nalidixic acid is used for the inhibition of Gram-negative
bacteria while cycloheximide is used for the inhibition of fungi
(Beumer and Hazeleger, 2003; Janzten et al., 2006; Jeyaletchumi
et al., 2010a). Besides, there are other antimicrobials that are
usually added into the media such as broad-spectrum ceftazidime
and moxalactam as well as lithium chloride (Janzten et al.,
2006).

In addition, esculin is an important carbohydrate that is
usually incorporated in Listeria enrichment and plating media
(Bush and Donnelly, 1992; Janzten et al., 2006; Jeyaletchumi et al.,
2010a). All Listeria sp. are capable of esculin hydrolysis and this
process will result in the formation of an intense black color
in the media. This is due to the presence of esculin and ferric
iron in the media, in which the ferric iron forms complex with
6,7-dihidroxycoumarin, the product of esculin cleavage by β-D-
glucosidase, resulting in a black precipitate (Fraser and Sperber,
1988; Janzten et al., 2006; Jeyaletchumi et al., 2010a). Hence,
cultures that produce an intense black color indicate the presence
of Listeria.

The regulatory agencies have recommended several selective
enrichment media for L. monocytogenes such as buffered Listeria
enrichment broth (BLEB), Fraser broth, and University of
Vermont Medium (UVM) Listeria enrichment broth. BLEB
is recommended in the US Food and Drug Administration
(FDA) bacteriological and analytical method (BAM) for
the isolation and identification of L. monocytogenes. BLEB
is a modification of the formula by Lovett et al. (1987),
in which disodium phosphate is added into the medium
to increase the buffering capacity of the medium, thus,
resulting in the improvement of enrichment properties.
Selective agents which include acriflavine, cycloheximide,
and nalidixic acid are added into the medium after an
initial 4 h of non-selective pre-enrichment (Magalhães et al.,
2014).

University of Vermont Medium Listeria enrichment broth
is recommended in the US Department of Agriculture-Food
and Safety (USDA-FSIS) method for the isolation and detection
of L. monocytogenes. UVM is based on the formulation of
Donnelly and Baigent (1986). This enrichment broth is suggested
as the primary enrichment broth for the recovery of heat-
injured L. monocytogenes. Nalidixic acid and acriflavine are
the selective agents added into the medium (Magalhães et al.,
2014).

International Organization for Standardization (ISO) 11290
method has suggested the use of Fraser broth for the selective
enrichment of L. monocytogenes in food and environmental
samples. Fraser broth is based on the formulation of Fraser and
Sperber (1988) whereby it is a modification of USDA secondary
enrichment broth by the addition of ferric ammonium citrate
and lithium chloride. The selective agents added into Fraser
broth are nalidixic acid and acriflavine (Magalhães et al., 2014).
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Presumptive L. monocytogenes can be detected within 48 h by
using Fraser broth (Fraser and Sperber, 1988).

The frequently recommended selective differential plating
media by FDA-BAM, ISO, and USDA for the isolation of
Listeria sp. are PALCAM (polymyxin acriflavin lithium-chloride
ceftazidime aesculin mannitol) and Oxford (Zunabovic et al.,
2011). PALCAM and Oxford are both useful for the isolation
of Listeria sp. from food samples with injured Listeria cells
and/or rich in competitive microflora (El Marrakchi et al., 2005).
PALCAM agar was initially developed by Van Netten et al. (1989)
for the detection and enumeration of L. monocytogenes and
other Listeria sp. from food samples. PALCAM agar consists
of Columbia Blood Agar with 23.0 g/L protease peptones,
0.5 g/L glucose, 1.0 g/L starch, 3.0 g/L yeast extract, and
5.0 g/L sodium chloride. The selectivity of this medium is
achieved by the addition of 15 g/L lithium chloride, 0.01 g/L
polymyxin B, 0.005 g/L acriflavine, and 0.02 g/L ceftazidime.
The differentiation on PALCAM agar is based on (1) esculin
hydrolysis, addition of 0.8 g/L esculin and 0.5 g/L ferric salt
and (2) mannitol fermentation, addition of 10 g/L mannitol and
0.08 g/L phenol red (Van Netten et al., 1989; Magalhães et al.,
2014). PALCAM agar plated with bacteria is usually incubated
for 24–48 h at 37◦C (Jamali et al., 2013; Ajay Kumar et al.,
2014; Osman et al., 2014). Since all Listeria sp. can hydrolyze
esculin, they are visually confirmed by a blackening of the
medium and their colonies are about 2 mm diameter, gray-
green in color with a black sunken center and a black halo.
Occasionally, Enterococcus sp. or Staphylococcus sp. may grow
on PALCAM agar. However, they can be distinguished from
Listeria sp. via mannitol fermentation. Mannitol fermentation
causes a color change in the colony and/or surrounding medium
from gray or red to yellow due to the production of acids.
Colonies of these mannitol fermenting organisms are yellow
with a yellow halo or gray with a brown-green halo (Van
Netten et al., 1989; Ajay Kumar et al., 2014; Osman et al.,
2014).

Oxford agar was initially developed by Curtis et al. (1989)
for the isolation of L. monocytogenes from clinical specimens.
Oxford agar has been extensively used in many studies for
the isolation and detection of L. monocytogenes from various
food samples (Pinto et al., 2001; Rudol and Scherer, 2001;
Gudbjörnsdóttir et al., 2004; Mena et al., 2004; Alessandria
et al., 2010). Oxford consists of Columbia Blood Agar with
23 g/L protease peptones, 5.0 g/L sodium chloride, and 1.0 g/L
starch. The selectivity of Oxford is achieved by the addition of
15 g/L lithium chloride, 0.005 g/L acriflavine, 0.02 g/L colistin
sulfate, 0.4 g/L cycloheximide, 0.002 g/L cefotetan, and 0.01 g/L
fosfomycin. The differentiation of Listeria sp. on Oxford agar
is based on esculin hydrolysis which is aided by the addition
of 1 g/L esculin and 0.5 g/L ferric ammonium citrate into the
agar (Curtis et al., 1989; Janzten et al., 2006; Magalhães et al.,
2014). Oxford agar is incubated for 24–48 h at 37◦C after plating
(Curtis et al., 1989; Alessandria et al., 2010). After 24 h of
incubation, L. monocytogenes colonies are olive-green with a
black halo. After 48 h of incubation, L. monocytogenes colonies
are about 2–3mm in diameter, the color turns darker with a black
sunken center and surrounded by black zones. Other Listeria

sp. colonies have a similar appearance to L. monocytogenes
colonies. Colonies of other Listeria sp. are black with a black
halo after 24 h of incubation and they remain the same after
48 h of incubation but with a sunken center (Curtis et al., 1989;
Magalhães et al., 2014). Staphylococcus sp. may grow on Oxford
agar occasionally and their colonies are yellow in color, irregular
in size as well as shape (Curtis et al., 1989). A variation of
Oxford agar has been developed and it is known as Modified
Oxford Agar (MOX). MOX is recommended for the isolation
and identification of L. monocytogenes from processed meat and
poultry products whereas Oxford agar is recommended for the
isolation of L. monocytogenes from enrichment broth cultures
(Magalhães et al., 2014).

The main limitation of PALCAM and Oxford is the
inability to distinguish between L. monocytogenes from non-
pathogenic Listeria sp. (El Marrakchi et al., 2005; Zunabovic
et al., 2011). Hence, these plating media are not able to
provide a rapid detection of L. monocytogenes from foods.
This has led to the development of chromogenic media
which can improve the isolation of L. monocytogenes as they
are able to differentiate L. monocytogenes and/or pathogenic
Listeria sp. from other non-pathogenic Listeria sp. (Beumer
and Hazeleger, 2003). Chromogenic media detect essential
determinants of pathogenicity of Listeria sp. and majority
of these media are commercially available as ready-to-use
plates (Janzten et al., 2006; Zunabovic et al., 2011). Besides,
presumptive L. monocytogenes can be identified after 24 h by
using chromogenic media (Jeyaletchumi et al., 2010a). Several
studies have demonstrated that chromogenic media such as
Agar Listeria according to Ottaviani and Agosti (ALOA) and
CHROMagarTM Listeria are more sensitive, specific, time and
cost saving in L. monocytogenes detection compared to non-
chromogenic media such as PALCAM and Oxford (Vlaemynck
et al., 2000; Hegde et al., 2007; Jamali et al., 2013).

Agar Listeria according to Ottaviani and Agosti is a
chromogenic medium developed by Ottaviani et al. (1997)
for the isolation of Listeria sp. and specific detection of
L. monocytogenes. The selectivity of ALOA is achieved by
the addition of lithium chloride and antimicrobials such as
ceftazidime, polymyxin B, nalidixic acid, and cycloheximide
(Beumer and Hazeleger, 2003; Magalhães et al., 2014). The
differentiation of Listeria sp. on ALOA is achieved by the
incorporation of chromogenic substrate (5-bromo-4-chloro-3-
indolyl-β-D-glucopyranoside, X-glucoside) in the medium for
the detection of β-D-glucosidase activity, common to all Listeria
sp. The differentiation of L. monocytogenes from other Listeria
sp. is based on the production of phosphatidylinositol-specific
phospholipase C (PI-PLC) which is encoded by the virulence
gene plcA present in L. monocytogenes. ALOA detects PI-PLC
that is present in L. monocytogenes and in some strains of
L. ivanovii through the hydrolysis of L-α-phosphatidylinositol
in the medium by PI-PLC. This results in the production of
water insoluble fatty acids and the formation of an opaque halo
around the colonies. In ALOA, all Listeria sp. produce blue-green
colonies and pathogenic Listeria sp. such as L. monocytogenes
and L. ivanovii produce blue-green colonies with an opaque halo
(Ottaviani et al., 1997; Beumer and Hazeleger, 2003; Janzten et al.,
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2006; Jeyaletchumi et al., 2010a; Zunabovic et al., 2011; Magalhães
et al., 2014; Park et al., 2014).

CHROMagarTM Listeria (Becton Dickson Diagnostics) is one
of the variations of ALOA that have been developed for the
isolation and detection of L. monocytogenes. On CHROMagarTM
Listeria, colonies of L. monocytogenes are blue with a white halo
and colonies of other Listeria sp. are blue without halo. Some
strains of L. ivanovii may grow on CHROMagarTM Listeria and
they also produce blue colonies with a white halo (Magalhães
et al., 2014). Additional variations of ALOA and commercially
available media include Biosynth Chromogenic Medium (BCM)
L. monocytogenes detection system (Biosynth), Compass L. mono
(Biokar Diagnostics), BrillianceTM Listeria Agar (Oxoid) and
chromID Ottaviani Agosti Agar (bioMérieux; Janzten et al., 2006;
Zunabovic et al., 2011).

Rapid’ L. mono agar is a chromogenic medium that operates
differently than ALOA. Rapid’ L. mono agar detects PI-PLC
that is present in L. monocytogenes and L. ivanovii through the
hydrolysis of a different substrate by PI-PLC, which is 5-bromo-
4-chloro-3-indolyl-myo-inositol-1-phospjhate (X-IP). Cleavage
of X-IP by PI-PLC results in the production of blue colonies.
Hence, L. monocytogenes and L. ivanovii appear as blue colonies
on Rapid’ L. mono agar. Furthermore, the addition of xylose into
the medium enables the differentiation of L. monocytogenes from
L. ivanovii. The ability of L. ivanovii to metabolize xylose results
in the production of blue colonies with a yellow halo. As for
L. monocytogenes, the colonies produced are blue without halo
due to the inability to metabolize xylose. Other Listeria sp. that
grow on Rapid’ L. mono agar will appear as white colonies with
or without a yellow halo (Janzten et al., 2006; Zunabovic et al.,
2011; Magalhães et al., 2014).

In general, chromogenic media are able to isolate and
distinguish L. monocytogenes from other Listeria sp. and thus
allowing a more rapid detection of L. monocytogenes. However,
the sensitivity and specificity of the culture media may be affected
by the types of food matrices (Andritsos et al., 2013). For
instance, the study conducted by Aragon-Alegro et al. (2008)
indicated that the sensitivity and specificity of CHROMagarTM
Listeria for the detection of L. monocytogenes in sliced cooked
ham (56.2% sensitivity and 73.6% specificity), minced beef meat
(92.7% sensitivity and 76.8% specificity) and frankfurters (91.2%
sensitivity and 84.2% specificity) were different. Hence, there
are no particular medium which is perfect for the isolation of
L. monocytogenes from various food samples (Churchill et al.,
2006; Andritsos et al., 2013).

Cultural Detection and Enumeration of
Listeria monocytogenes
Traditionally, the detection and identification of pathogens in
foods involve the use of culture methods followed by phenotypic
confirmation based on standard culture (e.g., haemolysis and
phospholipase C), biochemical and immunological identification
(Gasanov et al., 2005; Janzten et al., 2006). The conventional
methods are simple, sensitive, inexpensive, and important when
bacterial culture is required as the end result from positive
samples (Churchill et al., 2006; Janzten et al., 2006; Law

et al., 2015). Generally, the culture methods involve a two-
stage enrichment process followed by plating on a selective
differential agar (Beumer and Hazeleger, 2003; Janzten et al.,
2006). The procedures may vary depending on the number of
cells expected in a sample and/or the official culture reference
methods used. The success of culture methods depends on several
factors. For instance, the amount and state of the bacteria in the
sample, the selectivity of the media (balance between inhibition
of competitors and inhibition of the target bacteria), electivity of
the isolation medium (difference between the target bacteria and
competitive microflora) and the conditions of incubation (e.g.,
temperature, time, and oxygen; Beumer and Hazeleger, 2003).

The food samples are homogenized prior to the two-stage
enrichment process which is divided into pre-enrichment stage
and selective enrichment stage that involve incubation for ∼24–
72 h at 30–37◦C (Churchill et al., 2006; Janzten et al., 2006). Pre-
enrichment is carried out in non- or half-selective enrichment
medium in order to revive the injured target pathogen and to
increase the amount of the target pathogen. In addition, pre-
enrichment allows the dilution of inhibitory compounds present
in foods such as preservatives and rehydration of bacterial cells
sampled from dried or processed food matrices (Gasanov et al.,
2005; Dwivedi and Jaykus, 2011; Jadhav et al., 2012; Välimaa
et al., 2015). As for selective enrichment, it involves the use
of selective medium that will increase the amount of target
pathogen while suppress the growth of competing background
microflora, thus, enabling the isolation and detection of the
target pathogen (Dwivedi and Jaykus, 2011; Välimaa et al., 2015).
Selective and differential plating is carried out after the two-stage
enrichment process. The analysis is completed if there are no
typical colonies can be observed on the selective differential agar
and the results are reported as negative. If presumptive positive
colonies are isolated, further tests are required to confirm the
isolated pathogen such is described below (Jeyaletchumi et al.,
2010a; Dwivedi and Jaykus, 2011; Välimaa et al., 2015).

The well-known culture reference methods for the isolation
and detection of L. monocytogenes in foods are the FDA-BAM,
ISO 11290 method, and USDA-FSIS method. These methods
are recommended for the detection of L. monocytogenes from
different food matrices and they utilize different enrichment
media as well as plating media. Besides, the incubation time
and temperature employed by each culture reference method
are slightly different (Gasanov et al., 2005; Churchill et al.,
2006; Janzten et al., 2006; Jeyaletchumi et al., 2010a; Välimaa
et al., 2015). Numerous researchers have employed these culture
reference methods for the investigation of L. monocytogenes in
foods (Jeyaletchumi et al., 2010a; Goh et al., 2012; Lambertz et al.,
2012; Jamali et al., 2013; Kramarenko et al., 2013; Wang et al.,
2013; Osman et al., 2014). The culture reference methods are
summarized in Table 1.

The qualitative information of the pathogen is provided by
conventional methods. As for the quantitative information of
the pathogen, it is required if the pathogen is detected in the
food sample. The enumeration of the level of L. monocytogenes
contamination in food sample can be done according to the
ISO 11290-2 method (ISO, 2004b) and the protocols mentioned
in FDA-BAM as well as USDA-FSIS method (Table 1). Besides,
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TABLE 1 | Summary of each culture reference method for the isolation and detection of L. monocytogenes in foods and the detection limit of each
method.

Method Food
matrices

Summary of method Detection limit Reference

FDA-BAM Seafood, fruits,
vegetables, and
dairy products

(1) A 25 g of food sample stomached in 225 mL of BLEB and then incubate at
30◦C for 4 h

(2) After 4 h of incubation, add selective agents such as acriflavine, nalidixic
acid, and cycloheximide into enrichment broth, incubate at 30◦C for 48 h

(3) Streak enrichment culture onto one of the prescribed selective differential
agar plate (Oxford, MOX, or PALCAM) at 24 and 48 h

(4) Incubate agar plate at 35◦C for 24–48 h
(5) Determine the presumptive colonies and then proceed to confirmation of

Listeria sp. and L. monocytogenes

<1 CFU/mL Hitchins and Jinneman,
2013; Välimaa et al.,
2015

ISO 11290-1 All types of
foods

(1) For primary enrichment, add X g or X mL of food sample to 9X mL of half
Fraser broth, incubate at 30◦C for 24 ± 2 h

(2) Streak primary enrichment culture onto ALOA and second selective medium
(Oxford or PALCAM), incubate at 37◦C for 24 ± 2 h. If necessary, further
24 ± 2 h

(3) For secondary enrichment, add 0.1 mL of primary enrichment culture to
10 mL of Fraser broth, incubate at 35 or 37◦C for 48 ± 2 h

(4) Streak secondary enrichment culture onto ALOA plate and second selective
medium (Oxford or PALCAM), incubate at 37◦C for 24 ± 2 h. If necessary,
further 24 ± 2 h

(5) Determine the presumptive colonies and then proceed to Confirmation of
Listeria sp. and L. monocytogenes

<1 CFU/g in 25 g ISO, 2004a; Zunabovic
et al., 2011; Välimaa
et al., 2015

USDA-FSIS Red meat,
poultry
products, and
egg products

(1) A 25 g of food sample stomached in 225 mL UVM broth and then incubate
at 30 ± 2◦C for 20–26 h

(2) Streak primary enrichment culture onto MOX plate and then incubate at
35 ± 2◦C for 26 ± 2 h. Determine the presumptive colonies from MOX
plate. Proceed to confirmation of Listeria sp. and L. monocytogenes

(3) For secondary enrichment, add 0.1 mL of primary enrichment culture to
10 mL of Fraser broth or MOPS-BLEB

(4) For Fraser broth, incubate at 35 ± 2◦C for 26 ± 2 h. After incubation,
observe the broth for the presence of L. monocytogenes (darkening of
medium due to esculin hydrolysis)

(i) If positive, streak 0.1 mL of the Fraser broth onto MOX plate. Incubate
MOX plate at 35 ± 2◦C for 26 ± 2 h. Determine the presumptive
colonies from MOX plate. Proceed to confirmation of Listeria sp. and
L. monocytogenes

(ii) If negative, reincubate Fraser broth for further 24 h. Re-examine the
Fraser broth for confirmation of darkening. The sample is considered
negative for L. monocytogenes if no darkening of Fraser broth and no
suspected colonies on MOX are observed

(5) For MOPS-BLEB, incubate at 35 ± 2◦C for 18–24 h
(i) After incubation, streak 0.1 mL of the MOPS-BLEB onto MOX plate.

Incubate MOX plate at 35 ± 2◦C for 26 ± 2 h
(ii) Determine the presumptive colonies from MOX plate and proceed to

confirmation of Listeria sp. and L. monocytogenes

<1 CFU/g USDA-FSIS, 2013;
Välimaa et al., 2015

the FDA and USDA have issued Compliance Policy Guides for
food industry regarding the appropriate measures required to
control L. monocytogenes in food and prevent contamination
of food with L. monocytogenes (Kraiss, 2008). Enumeration
of L. monocytogenes in food is important because an initial
contamination as few as 1 CFU/100 g L. monocytogenes
can cause the food unsafe in 32 days, while 10 CFU/g
L. monocytogenes can cause the food unsafe in 8 days (Salvat
and Fravalo, 2004). L. monocytogenes is able to grow over a
wide range of temperatures, from around −0.4 to 45◦C with
an optimum temperature of 37◦C (International Commission
on Microbiological Specifications for Foods [ICMSF], 1996).
Hence, this may cause the prevalence of L. monocytogenes

in food to increase and reach unsafe levels during storage
periods or long holding time before retailing. The infectious
dose of L. monocytogenes for healthy or susceptible individuals
has not been established, however, it is estimated to be
∼107–109 CFU in healthy individuals and 105–107 CFU in
susceptible individuals such as immunocompromised people or
pregnant women (Farber et al., 1996; Smith et al., 2003). In
order to enumerate the level of food sample contamination
by presumptive L. monocytogenes, the primary enrichment
broth is quantified prior to incubation, by direct spread plate
count on chromogenic media (Hitchins and Jinneman, 2013).
If the level of contamination is low, the enumeration of
L. monocytogenes is done by the most probable number (MPN)
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technique (Janzten et al., 2006; Jeyaletchumi et al., 2010a;
Hitchins and Jinneman, 2013). Besides, some samples may
contain particulate material that will interfere with plate count
enumeration methods. Hence, MPN technique is applied for
these types of samples (Sutton, 2010). MPN technique allows the
estimation of population density of viable microorganisms in a
sample through replicate liquid broth growth in 10-fold dilutions
(Sutton, 2010; Letchumanan et al., 2014). The theoretical basis
for MPN technique is to dilute the sample to some extent that
inocula in the tubes will occasionally contain viable organisms.
A reasonably accurate estimation of the most probable number
of cells in the sample can thus be achieved by replicates and
dilution series (Sutton, 2010). The FDA-BAM has described 10-
fold serial dilution of sample in BLEB with the use of three or
more tube MPN culture procedure on each dilution. The samples
are incubated at 30◦C for 48 h, followed by streaking on selective
agar medium (Hitchins and Jinneman, 2013). L. monocytogenes
can be directly enumerated if chromogenic media is used after
MPN enrichment (Janzten et al., 2006; Jeyaletchumi et al., 2010a).

Most probable number technique is more sensitive as
compared to direct plating, however, it is more labor intensive
and it requires ∼7 days to complete the identification (Janzten
et al., 2006; Jeyaletchumi et al., 2010a; Dwivedi and Jaykus,
2011). In MPN technique, the use of selective agar media or
chromogenic media may not be selective enough as they may
allow the growth of other competitive background microflora,
thereby causing difficulties in determining presumptive
L. monocytogenes (Jeyaletchumi et al., 2010a). MPN technique
combined with polymerase chain reaction (PCR) technique is
developed in order to overcome these limitations. MPN-PCR
technique involves the detection of a particular gene in the target
bacteria by PCR instead of isolation of the target bacteria for the
enumeration of the bacteria in a sample (Letchumanan et al.,
2014). Hence, this technique allows the direct enumeration of
L. monocytogenes in food without interference of background
microflora. The enumeration of L. monocytogenes by MPN-PCR
technique can be completed in 2 days and this method has higher
sensitivity than the standard MPN technique (Jeyaletchumi
et al., 2010a). Several researchers have reported the success of
MPN-PCR technique for the enumeration of L. monocytogenes
in various food samples such as fermented sausages (Martín
et al., 2004), salad vegetables (Jeyaletchumi et al., 2010b), and
raw chicken (Goh et al., 2012).

MOLECULAR DETECTION OF Listeria
monocytogenes

The detection of L. monocytogenes in food samples by
conventional methods is simple, sensitive, and inexpensive if
compared with molecular methods (Janzten et al., 2006; Law
et al., 2015). However, conventional methods are laborious and
time consuming as they require more than a week for the
detection and confirmation of pathogen (Dwivedi and Jaykus,
2011; Law et al., 2015; Letchumanan et al., 2015b). Due to the
recent advances in molecular technology, molecular methods
have been used as an alternative to culture and serological

methods for food testing (Gasanov et al., 2005). The detection
of a pathogen present in food by nucleic-acid based molecular
methods is based on the detection of specific DNA or RNA
sequences in the target pathogen. Hence, these genetic methods
can provide highly accurate and reliable results as compared to
phenotypic methods. Nevertheless, molecular methods require
specialized instruments and highly trained personnel (Gasanov
et al., 2005; Jadhav et al., 2012; Law et al., 2015). There are various
molecular methods available for the detection and identification
of L. monocytogenes, for instance, PCR, multiplex polymerase
chain reaction (mPCR), real-time/quantitative polymerase chain
reaction (qPCR), nucleic acid sequence-based amplification
(NASBA), loop-mediated isothermal amplification (LAMP),
DNA microarray as well as next generation sequencing (NGS)
technology.

Polymerase chain reaction has been widely used for the
detection of various foodborne bacterial pathogens. This method
requires two single-stranded synthetic oligonucleotides or
specific primers for the amplification of a specific target DNA
sequence in a cyclic three steps process involving the use of a
thermal cycler. The PCR amplification products are separated by
agarose gel electrophoresis and visualized on the gel as bands
with a DNA stain. The specific detection of the genus Listeria
by PCR involves PCR primers based on the highly conserved
16S rRNA sequence present in all Listeria sp. with a resulting
938 bp amplification product (Levin, 2003; Burbano et al., 2006;
Goh et al., 2012; Jamali et al., 2013). L. monocytogenes can be
differentiated from other Listeria sp. by exploiting the molecular
differences within the PCR amplified 16S rRNA gene, 23S rRNA
gene and 16S–23S rRNA intergenic spacer regions (Wang et al.,
1992; Graham et al., 1996, 1997; Sallen et al., 1996). In addition,
PCR method also detects L. monocytogenes at the species level
by targeting the virulence genes of the organism (Levin, 2003).
Several virulence genes have been identified in L. monocytogenes
and targeted for the PCR detection of the organism, for example,
hly (hlyA) gene codes for listeriolysin O (LLO; Deneer and
Boychuk, 1991; Johnson et al., 1992; Agersborg et al., 1997;
Aznar and Alarcón, 2003; Amagliani et al., 2004; Burbano et al.,
2006), iap gene codes for an invasion-associated protein known
as p60 (Agersborg et al., 1997; Aznar and Alarcón, 2003; Swetha
et al., 2012), actA gene codes for a surface protein known as
ActA which is required for intracellular bacterial propulsion and
cell to cell invasion (Moriishi et al., 1998; Levin, 2003), lmaA
gene codes for L. monocytogenes antigen (lmaA), which also
known as Dth-18 gene codes for delayed-type hypersensitivity
protein (DTH-18 factor; Wernars et al., 1991; Johnson et al.,
1992; Levin, 2003), inlA gene codes for internalin A (Almeida
and Almeida, 2000; Ingianni et al., 2001; Jung et al., 2003), inlB
gene codes for internalin B (Pangallo et al., 2001; Jung et al.,
2003), prfA gene codes for positive regulator factor A (PrFA;
Simon et al., 1996), pepC codes for aminopeptidase C (Winters
et al., 1999), fbp gene codes for fibronectin-binding protein (Gilot
and Content, 2002) and plcB Phospholipase C protein (Volokhov
et al., 2002). Among these targeted genes, the hlyA gene is the
most frequently chosen target gene for the PCR detection of
L. monocytogenes (Aznar and Alarcón, 2003; Jadhav et al., 2012).
The hlyA gene codes for a protein with pore forming activity,
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which is known as listeriolysin O. This protein is found to be
essential for the virulence of L. monocytogenes as it is responsible
for the lysis of phagocyte vacuole and followed by the escape
of L. monocytogenes from the vacuole (Kathariou et al., 1987;
Cossart et al., 1989; Levin, 2003; Liu, 2006). Besides, it has been
discovered that all clinical isolates of L. monocytogenes have
hemolytic activity due to listeriolysin O and thus the hlyA gene
is a relevant marker for the identification of L. monocytogenes
(Groves and Welshimer, 1977; Golsteyn-Thomas et al., 1990).

Other than simple PCR, multiplex PCR (mPCR) is available
for a more rapid detection of L. monocytogenes. Multiplex PCR
is a variant of simple PCR in which multiple gene targets
are simultaneously amplified by using several sets of specific
primers in a single reaction (Liu et al., 2007). The primer design,
concentration of primers, PCR buffer concentrations, quantities
of DNA template, Taq DNA polymerase, balance between
magnesium chloride and deoxynucleotide concentrations and
cycling temperatures are very important for a successful mPCR
assay (Markoulatos et al., 2002; Zhao et al., 2014; Law
et al., 2015). Multiplex PCR is capable of detecting multiple
virulence-associated genes of L. monocytogenes in a single
PCR mixture. Hence, the possible failure in the detection of
virulent L. monocytogenes can be prevented (Cooray et al.,
1994). In the study conducted by Cooray et al. (1994),
L. monocytogenes in milk samples was successfully detected
by mPCR with primers targeting three virulence-associated
genes, prfA, hlyA, and plcB. Liu et al. (2007) had developed
an mPCR assay targeting inlA, inlC, and inlJ genes for the
rapid species-specific and virulence-specific determination of
L. monocytogenes. Besides, mPCR is employed for simultaneous
detection of L. monocytogenes, Listeria sp. and other foodborne
pathogens such as Salmonella sp., Escherichia coli O175:H7,
Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus as
well as Campylobacter jejuni in various food samples (Lawrence
and Gilmour, 1994; Gilbert et al., 2003; Jofré et al., 2005;
Germini et al., 2009; Kumar et al., 2009; Yuan et al., 2009;
Zhang et al., 2009; Zarei et al., 2012; Yang et al., 2013). A novel
mPCR assay that can simultaneously detect and discriminate six
Listeria species including L. monocytogenes, L. grayi, L. ivanovii,
L. innocua, L. welshimeri, and L. seeligeri was first developed
by Ryu et al. (2013). A rapid mPCR assay for simultaneous
detection of L. monocytogenes, S. aureus, E. coli O157:H7,
Salmonella Enteritidis, and Shigella flexneri in meat samples was
developed by Chen et al. (2012). Lee et al. (2014) had carried out
mPCR assay that can simultaneously detect L. monocytogenes,
B. cereus, E. coli O157:H7, V. parahaemolyticus, Salmonella sp.,
and S. aureus in ready-to-eat food samples. Furthermore, the
major L. monocytogenes serovars such as 1/2a, 1/2b, 1/2c, and 4b
can be differentiated by mPCR targeting marker genes Imo0730,
Imo1118, ORF2819, and ORF2110 (Doumith et al., 2004; Hamdi
et al., 2007; Erol and Ayaz, 2011).

The development of real-time or quantitative PCR (qPCR)
provides high-throughput analysis and low risk of cross-
contamination since post-PCR processing for the detection of
PCR products is not required (Fricker et al., 2007). Fluorescent
dye such as SYBR green, hydrolysis probe such as TaqMan assays
and oligonucleotide hybridization probes such as molecular

beacons are used to monitor the PCR products in qPCR (Law
et al., 2015). Recently, qPCR is widely used for the detection of
foodborne pathogens and multiplex qPCR is also developed for
this purpose. This method offers rapid and specific identification
as well as quantification of L. monocytogenes in a variety of food
samples such as soft cheese, fruit juice, fish, vegetables, salads,
milk, meat, and crustaceans (Berrada et al., 2006; O’Grady et al.,
2008; Kim and Cho, 2010; Garrido et al., 2013; Gianfranceschi
et al., 2014). Oravcová et al. (2005) had developed a real-
time 5′-nuclease PCR targeting a sequence of the gene actA
for the identification and quantification of L. monocytogenes.
In this study, TaqMan probe was used for the detection and
quantification of qPCR products. Besides, Barbau-Piednoir et al.
(2013) developed a combination of four qualitative SYBRgreen
qPCR assays for the detection and discrimination of Listeria
sp. and L. monocytogenes with high accuracy. In these assays,
the iap and prs genes were targeted for detection of Listeria sp.
and hlyA gene was targeted for detection of L. monocytogenes.
The successful detection of L. monocytogenes in fresh produce
using molecular beacon-qPCR targeting the hlyA gene was
first reported by Liming et al. (2004). Furthermore, a novel 5′
exonuclease multiplex qPCR assay for the identification of six
Listeria sp. including L. monocytogenes, L. seeligeri, L. ivanovii,
L. welshimeri, L. grayi, and L. innocua was developed by Hage
et al. (2014). In this study, two sets of triplex PCR were
designed with one set identifying L. seeligeri, L. welshimeri,
and L. monocytogenes and another set identifying L. ivanovii,
L. grayi, and L. innocua. The Listeria species were differentiated
by targeting their respective species-specific target genes and
TaqMan probe was used to monitor the multiplex qPCR
products.

Additionally, commercial qPCR kits for the detection of
L. monocytogenes are available and this allows laboratories in
food industry to adapt qPCR testing easily (Janzten et al., 2006).
The examples of these commercial qPCR kits include BAX R©

System Real-time PCR Assay Listeria monocytogenes (DuPont-
Qualicon), Probelia R© Listeria monocytogenes PCR System
(Bio-Rad), LightCycler R© Listeria monocytogenes Detection Kit
(Roche/Biotecon), TaqMan R© Listeria monocytogenes Detection
Kit (Applied Biosystems), GeneVision R© Rapid Pathogen
Detection System for Listeria monocytogenes (Warnex),
ADIAFOOD rapid pathogen detection system for Listeria
monocytogenes (AES Chemunex), CycleavePCR R© Listeria
monocytogenes (inlA gene) Detection Kit (TaKaRa Bio, Inc.) and
iQ-Check L. monocytogenes kit (Bio-Rad Laboratories; Liming
et al., 2004; Rodríguez-Lázaro et al., 2004; Becker et al., 2005;
Janzten et al., 2006; Liu et al., 2012).

There is no doubt that PCR-based detection methods are
rapid, highly sensitive, and specific. However, these methods
require thermocycling system. Alternative methods have been
developed for the amplification of nucleic acids under isothermal
conditions. Two of the most commonly used isothermal nucleic
acid amplification methods for the detection of foodborne
pathogens are LAMP and NASBA.

Several types of LAMP assays such as multiplex LAMP, real-
time LAMP, in situ LAMP and reverse-transcription LAMP have
been developed and utilized for the detection of foodborne
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pathogens (Ye et al., 2011; Law et al., 2015). Studies have shown
that LAMP assay has high specificity and it exhibits higher
sensitivity than PCR assays in the detection of L. monocytogenes.
For example, Tang et al. (2011) conducted a sensitive and
specific LAMP assay for the detection of L. monocytogenes with
primers that target the hlyA gene region. In this study, the
LAMP assay was evaluated against conventional PCR method
for the detection of L. monocytogenes in food. The results
indicated that LAMP assay was 100 times more sensitive than
the conventional PCR assay. Besides, a real-time quantitative
LAMP that amplifies the hlyA gene of L. monocytogenes was
designed by Shan et al. (2012). This LAMP assay was then used
to detect L. monocytogenes in four different types of retail food
samples such as raw meat, vegetables, deli, and seafood. The
study also proven that LAMP assay was more sensitive than
PCR in the detection of L. monocytogenes. A double LAMP
(dLAMP) assay was first conducted by Wu et al. (2014) for the
detection of L. monocytogenes in food samples including pork,
beef, chicken, mutton, shrimp, fish, and quick-frozen rice flour
products. LAMP primers targeting the hlyA and iap genes of
L. monocytogenes were used to ensure the dLAMP assay is more
rapid, sensitive and specific. The results of this study showed
that dLAMP assay was more sensitive and less time consuming
as compared to normal LAMP assay. Recently, LAMP has been
commercialized as kits for the detection of L. monocytogenes, for

instance, LoopampR© Listeria monocytogenes Detection Kit (Eiken
Chemical, Co., Ltd.) and Isothermal Master Mix (OptiGene;
Wang et al., 2015).

In general, NASBA often involves in the amplification of
mRNA targets under isothermal conditions (Leone et al., 1998).
NASBA selectively amplifies the mRNA targets even in the
presence of genomic DNA and it has been used to detect
various foodborne pathogens (Simpkins et al., 2000). The
main advantage of NASBA over other molecular detection
methods is its ability to detect viable bacterial cells that are
present in environmental samples and food samples (Simpkins
et al., 2000; Cook, 2003). A highly specific NASBA system
was developed by Blais et al. (1997) for the detection of
L. monocytogenes with primers targeting the hlyA mRNA
sequences. The NASBA system was capable of detecting low
numbers of L. monocytogenes (<10 CFU/g) in artificially
contaminated dairy and egg products after 48 h enrichment
period. Nevertheless, false-positive results were reported and
the researchers suggested that the reason for this could be due
to cross-contamination of NASBA reactions with amplicons
from previous amplifications performed at the same site. The
post-NASBA product detection steps involving agarose gel
electrophoresis, enzyme-linked gel assay, enzymatic bead-based
detection and numerous probing and/or blotting techniques
can be laborious. Hence, homogenous real-time NASBA that

TABLE 2 | Application of molecular methods for the detection and identification of L. monocytogenes in various food samples.

Detection method Gene target Food matrix Reference

Simple PCR hlyA, iap Naturally contaminated fish samples Swetha et al., 2012

hlyA Naturally contaminated raw meat (chicken, beef, and fish), milk and milk
products (raw milk, cheese, and curd)

Khan et al., 2013

actA Artificially contaminated milk, pork, and water Zhou and Jiao, 2005

Multiplex PCR iap,hly Artificially contaminated milk Zeng et al., 2006

plcA, hlyA, actA, iap Artificially contaminated milk Rawool et al., 2007

16S rRNA, iap Naturally contaminated deli meat samples: pork and chicken products Liu et al., 2015

Real-
time/quantitative
PCR

prfA Artificially contaminated raw milk, salmon, pâté, and green-veined cheese
Naturally contaminated fish, meat, meat products, and dairy products

Rossmanith et al., 2006

Iap Artificially contaminated milk Hein et al., 2001

Hly Artificially contaminated pork meat Gattuso et al., 2014

16S-23S rRNA intergenic
spacer regions

Artificially contaminated soft cheese, fermented sausage, cured ham, and
ready-to-eat salad
Naturally contaminated fresh meat, fresh sausages, fermented sausages,
fresh cheeses, and ripened cheeses

Rantsiou et al., 2008

16S rRNA Leafy vegetables: collard green, cabbage, lettuce, mixed parsley, chinese
cabbage, spring onion bunches, spinach, wild chicory, arugula, and
watercress

De Oliveira et al., 2010

inlA Artificially contaminated chicken meat Navas et al., 2006

LAMP prfA Artificially contaminated milk Cho et al., 2014

hlyA Artificially contaminated chicken, pork, ground beef, and milk powder Wan et al., 2012

iap Artificially and naturally contaminated raw milk Wang et al., 2011

NASBA 16S rRNA Artificially contaminated chicken breast meat, soft cheese, shrimps, dry
sausage, minced meat (pork and beef), radish and mushrooms

Uyttendaele et al., 1995

DNA microarray Genomic DNA of
L. monocytogenes

Artificially contaminated milk Bang et al., 2013

NGS Whole genome of
L. monocytogenes

Deli turkey meat
Ready to eat meat
Quargel cheese

Orsi et al., 2008
Gilmour et al., 2010
Rychli et al., 2014
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utilizes fluorescently labeled probes (e.g., molecular beacon) to
monitor the amplicons is developed in order to overcome this
problem (Leone et al., 1998). A molecular beacon-based real
time NASBA assay for the detection of L. monocytogenes in
cooked ham and smoked salmon slices was first described by
Nadal et al. (2007). Sequence from the mRNA transcript of
hly gene was used as a target for this assay and the detection
limit of this assay for L. monocytogenes was 400 CFU/mL. This
study also involved the use of a commercial NASBA kit, which
was NucliSens R© Basic Kit (bioMérieux) for the detection of
L. monocytogenes.

DNA microarrays, which were initially being applied for the
study of gene expression, could be used for the investigation of
microbial evolution and epidemiology as well as for the detection
of foodborne pathogens (Gasanov et al., 2005; Severgnini
et al., 2011). DNA microarrays comprise multiple specific
oligonucleotide probes (with sequence length ranges from 25
to 80 bp) or PCR probes which are coated on to glass
slides or chips. The target nucleic acid which can be either
DNA, mRNA or cDNA is labeled with fluorescent dye and
then applied to the DNA microarray. The target nucleic acid
will bind to its corresponding oligonucleotide probe and the
hybridization is detected by production of fluorescent signal
from probe-sample complex. DNA microarrays are capable of
detecting multiple foodborne pathogens simultaneously and

thus suitable for high-throughput analysis (De Boer and López,
2012; Law et al., 2015). An oligonucleotide DNA microarray
assay that can simultaneously detect and discriminate six
Listeria sp. including L. monocytogenes, L. ivanovii, L. innocua,
L. seeligeri, L. grayi, and L. welshimeri was performed by
Volokhov et al. (2002). The microarray assay was based on
iap, hly, inlB, plcA, plcB, and clpE genes for the identification
of Listeria species. Oligonucleotide DNA microarray was also
used for the simultaneous detection of different foodborne
bacterial pathogens which include L. monocytogenes, E. coli
O157:H7, Salmonella enterica and C. jejuni in food samples
(Suo et al., 2010). DNA microarrays provide high-throughput
analysis but the shortcoming is that large amounts of target
DNA or RNA are needed for these methods (Gasanov et al.,
2005).

The majority of bacterial genome sequences available today
have been generated using the Sanger chain termination
sequencing chemistries. Despite being very instrumental in the
rise of the field of genomics, it is time consuming as well as
resource intensive (Sanger et al., 1977; Medini et al., 2008). The
post-Sanger era sequencing technologies, the NGS technologies,
have been developed since 2005 to permit extremely rapid high-
throughput whole genome sequencing (WGS) hence providing
a broader application of comparative genomics (Medini et al.,
2008; Shendure and Ji, 2008; Letchumanan et al., 2015a). Due

TABLE 3 | Advantages and limitations of molecular methods for the detection and identification of L. monocytogenes.

Molecular
methods

Advantages Limitations Reference

Simple PCR • High sensitivity and specificity
• Accurate and reliable results

• Sensitivity may be affected by non-optimized protocols
and PCR inhibitors
• Requires DNA purification step

Mandal et al., 2011;
Letchumanan et al.,
2014; Law et al., 2015

Multiplex PCR • High sensitivity and specificity
• Enables simultaneous detection of multiple foodborne
pathogens

• Sensitivity may affected by non-optimized protocols and
PCR inhibitors
• Primer design and other mPCR conditions (e.g., primer
concentration, PCR buffer concentration, and quantities
of DNA template) are important

Markoulatos et al.,
2002; Mandal et al.,
2011; Law et al., 2015

Real-time/
quantitative
PCR

• Higher sensitivity and specificity than simple PCR
• More rapid than simple PCR and mPCR as
post-amplification products processing is not required
• Assay can be multiplexed
• Allows high-throughput analysis

• Costly
• Sensitivity may affected by PCR inhibitors
• Trained personnel is needed

Oravcová et al., 2005;
Mandal et al., 2011;
Letchumanan et al.,
2014; Law et al., 2015

LAMP • Higher sensitivity and specificity than PCR
• Cost-effective
• Simple
• Operates without thermal cycling system

• Complicated primer design Letchumanan et al.,
2014; Zhao et al.,
2014; Law et al., 2015

NASBA • Sensitive and specific
• Cost-effective
• Operates without thermal cycling system
• Enables the detection of viable bacteria

• Requires viable bacteria
• Might not be easy to handle RNA

Lauri and Mariani,
2009; Zhao et al.,
2014; Law et al., 2015

DNA microarray • High sensitivity and specificity
• Enables simultaneous detection of multiple foodborne
pathogens
• Allows high-throughput analysis

• Costly
• Trained personnel is needed
• Requires large amount of target DNA or RNA

Gasanov et al., 2005;
Lauri and Mariani,
2009; Law et al., 2015

NGS • High sensitivity and specificity
• Enables simultaneous detection of multiple foodborne
pathogens
• Allows high-throughput analysis
• Enable the analysis of whole genome of the pathogens

• Costly
• Trained personnel is needed
• Requires Bioinformatics skills for analysis and
interpretation
• Computationally intensive

Sabat et al., 2013;
Fournier et al., 2014
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to rapid decreasing costs for sequencers and reagents, a bacterial
genome sequence can be obtained within a few days for less than
US$500 (Didelot et al., 2012), and more than 36,000 bacterial
genome sequences are available in public databases (Reddy et al.,
2015). Other than serving as a detection tool, WGS is also a
feasible tool for retrospective epidemiological analyses and is
frequently used for the latter purpose. Genome sequencing of
several L. monocytogenes strains have revealed serotype- and
strain-specific characteristics of L. monocytogenes (Orsi et al.,
2008; Fretz et al., 2010; Gilmour et al., 2010) and provided novel
insights into the genomic causes underlying pathogenicity and
survival in food and food processing settings (Buchrieser and
Glaser, 2011).

A listeriosis outbreak in Oklahoma, USA in the year 1988
was linked to the consumption of turkey franks contaminated
with L. monocytogenes produced in a food processing facility in
Texas, USA (Centers for Disease Control, and Prevention [CDC],
1989). In 2000, 11 states in the US faced listeriosis outbreak
affecting 29 individuals including four fatalities, and it was linked
to consumption of deli turkey meat produced in the same facility
(Stone and Shoenberger, 2001; Olsen et al., 2005). Using NGS,
Orsi et al. (2008) revealed that the human listeriosis outbreak in
2000 in the USA was caused by a L. monocytogenes strain that
persisted in that food processing plant for over 12 years in which
the same strain has also been responsible for a sporadic case in
1988.

In 2008, L. monocytogenes serotype 1/2a caused an outbreak of
listeriosis associated with ready to eat meat products in Canada,
resulting in 22 deaths and at least 57 illnesses (Gilmour et al.,
2010). The authors reported the first real-time application of
WGS during an active listeriosis outbreak investigation using
the high-throughput to characterize two outbreak-associated
isolates of L. monocytogenes. In 2009 and 2010, another large
listeriosis outbreak occurred in Austria, Germany, and the
Czech Republic due to intake of a traditional Austrian cheese
called “Quargel,” an acid curd cheese with a red smear made
from skimmed pasteurized milk (Fretz et al., 2010). Molecular
typing via PFGE revealed that two different L. monocytogenes
strains, both serotype 1/2a (Pichler et al., 2011). From June
2009 to January 2010 Quargel outbreak clone 1 (QOC1) was
the culprit in 14 cases, including five with a lethal outcome
(Fretz et al., 2010). Whereas between December 2009 and
February 2010, Quargel outbreak clone 2 (QOC2) accounted
for 20 cases, which resulted in three deaths (Fretz et al., 2010).
Rychli et al. (2014) sequenced and analyzed the genomes of
both outbreak strains in order to retrospectively investigate the
extent of genetic diversity between the two strains. WGS analysis
revealed that these two strains have distinct in vitro virulence
potential despite originating from similar serovar (Rychli et al.,
2014).

The development of benchtop sequencers using NGS
technology such as 454 or GS FLXTM (Roche), MiSeq (Illumina)
and Ion Torrent Personal Genome Sequencer (PGM; Life
Technologies) will enable bacterial WGS even in small research
and clinical laboratories (Didelot et al., 2012). WGS has
already been actively used for the characterization of bacterial
isolates in several large outbreaks in the world (Gilmour et al.,

2010; Reuter et al., 2013) and also being used as a tool
for retrospective epidemiological analyses (Orsi et al., 2008;
Rychli et al., 2014). In the near future this technology is
likely to substitute currently used typing methodologies due
to its ultimate resolution and sensitivity (Sabat et al., 2013).
However, NGS also has its limitation. Until now, it is still
too laborious and time-consuming to obtain useful data for
routine surveillance (Fournier et al., 2014). Library preparation
and sequencing protocol requires adept and skillful technician;
however, this limitations are likely to be overcome due to
higher level of automation which will lead to a more streamline
processed. Bioinformatics analysis and interpretation, as well
as computational hardware are also another challenges to
be solved especially by small laboratories (Fournier et al.,
2014). In addition, a fundamentally unsolved question is
how the sequences should be examined for epidemiological
characterization (Sabat et al., 2013). More examples of studies
that involved the application of molecular methods for the
detection and identification of L. monocytogenes in food samples
are listed in Table 2.

There are many advantages of using molecular methods
for the detection and identification of L. monocytogenes. For
instance, the main advantages of molecular detection methods
are due to their high sensitivity and specificity. Nonetheless,
limitations can be found in these methods such as some
molecular methods can be costly, complex and require trained
personnel. The advantages and limitations of molecular methods
are summarized and listed in Table 3.

CONCLUSION

Early detection of L. monocytogenes contaminated food is
crucial as it can prevent the outbreaks of foodborne illness.
Till date, the culture reference methods mentioned in this
review are still applicable and being used in many studies.
Simple PCR and mPCR have been used routinely for rapid,
sensitive, and specific screening as well as confirmation of
L. monocytogenes. The introduction of LAMP and NASBA
allow accurate and cost-effective screening of L. monocytogenes.
For large number of samples, high-throughput assays such as
qPCR and DNA microarray are often used for the detection
of L. monocytogenes. Cultural and molecular techniques are
continuously being developed and improved in order to provide
higher sensitivity and specificity of L. monocytogenes detection.
The advancements of molecular methods allow the rapid
detection of L. monocytogenes in food samples with high
sensitivity and specificity whilst substituting the lengthy and
laborious conventional detection methods. Molecular methods
have provide many advantages, nonetheless, there are still some
limitations in these methods such as the need to use highly
advance technology that are costly compared to conventional
methods. The combined use of two or more detection methods
is also possible and may improve the accuracy of detecting
L. monocytogenes. Still, there are great potential for the
development and application of new techniques for foodborne
pathogens detection and analysis.
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