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Gonadotropin-inhibitory hormone (GnIH) was first identified in Japanese quail to be an
inhibitor of gonadotropin synthesis and release. GnIH peptides have since been identified in
all vertebrates, and all share an LPXRFamide (X = L or Q) motif at their C-termini.The recep-
tor for GnIH is the G protein-coupled receptor 147 (GPR147), which inhibits cAMP signaling.
Cell bodies of GnIH neurons are located in the paraventricular nucleus (PVN) in birds and the
dorsomedial hypothalamic area (DMH) in most mammals. GnIH neurons in the PVN or DMH
project to the median eminence to control anterior pituitary function via GPR147 expressed
in gonadotropes. Further, GnIH inhibits gonadotropin-releasing hormone (GnRH)-induced
gonadotropin subunit gene transcription by inhibiting the adenylate cyclase/cAMP/PKA-
dependent ERK pathway in an immortalized mouse gonadotrope cell line (LβT2 cells).
GnIH neurons also project to GnRH neurons that express GPR147 in the preoptic area
(POA) in birds and mammals. Accordingly, GnIH can inhibit gonadotropin synthesis and
release by decreasing the activity of GnRH neurons as well as by directly inhibiting pitu-
itary gonadotrope activity. GnIH and GPR147 can thus centrally suppress testosterone
secretion and spermatogenesis by acting in the hypothalamic–pituitary–gonadal axis. GnIH
and GPR147 are also expressed in the testis of birds and mammals, possibly acting in
an autocrine/paracrine manner to suppress testosterone secretion and spermatogenesis.
GnIH expression is also regulated by melatonin, stress, and social environment in birds
and mammals. Accordingly, the GnIH–GPR147 system may play a role in transducing phys-
ical and social environmental information to regulate optimal testicular activity in birds and
mammals. This review discusses central and direct inhibitory effects of GnIH and GPR147
on testosterone secretion and spermatogenesis in birds and mammals.

Keywords: gonadotropin-inhibitory hormone, GPR147, gonadotropins, testosterone, spermatogenesis, melatonin,
stress, social environment

INTRODUCTION
Testicular activity is under the control of the gonadotropins,
luteinizing hormone (LH) and follicle-stimulating hormone
(FSH), which are synthesized in the anterior pituitary gland. LH
and FSH are released into the circulation and activate their recep-
tors expressed on Leydig cells and Sertoli cells, respectively, to
stimulate testosterone secretion and spermatogenesis in the testis
(1) (Figure 1). Spermatogenesis is a conserved process in verte-
brate testis, where spermatogonia develop into spermatocytes that
undergo meiosis to produce spermatids that enter spermiogenesis
and undergo a morphological transformation into spermatozoa
(2) (Figure 1). The process of germ cell development and mat-
uration can be divided into two distinct patterns in vertebrates,
one in anamniotes (fish and amphibia) and the other in amniotes
(reptiles, birds, and mammals). In anamniotes, spermatogene-
sis occurs in spermatocysts, which for most species develop in
seminiferous lobules. In amniotes, spermatogenesis occurs in sem-
iniferous tubules that possess a permanent population of Sertoli
cells, which support spermatogenesis and spermiogenesis, and

spermatogonia, and act as a germ cell reservoir for succeeding
bouts of spermatogenic activity (2) (Figure 1).

The hypothalamic decapeptide gonadotropin-releasing hor-
mone (GnRH) is the primary factor that regulates gonadotropin
secretion. GnRH is produced in the preoptic area (POA) and
released at the median eminence to stimulate gonadotropin secre-
tion from the pituitary (Figure 1). GnRH was first identified in
mammals (6, 7) and subsequently in birds (8, 9) and other verte-
brates. Testicular steroids and inhibin can modulate gonadotropin
secretion by negative feedback. Although dopamine has been
reported as an inhibitor of gonadotropin secretion in several fishes
(10), no hypothalamic neuropeptide inhibitor of gonadotropin
secretion was known in vertebrates. In 2000, a hypothalamic
neuropeptide was shown to inhibit gonadotropin release from
the cultured quail anterior pituitary gland and it was named
gonadotropin-inhibitory hormone [GnIH; (11)] (Figure 1). GnIH
was originally identified in birds (11) and subsequently in vari-
ous vertebrates including mammals [for reviews, see Ref. (12–21)]
(Table 1). Based on extensive studies on birds and mammals,
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FIGURE 1 | Schematic model of central and direct actions of GnIH
on testicular activity in birds and mammals. Neuronal cell bodies
expressing gonadotropin-inhibitory hormone (GnIH) are located in the
paraventricular nucleus (PVN) in birds and the dorsomedial hypothalamic
area (DMH) in mammals. GnIH neurons in the PVN or DMH project to
the median eminence (ME) to control anterior pituitary function via GnIH
receptor (GPR147) expressed in gonadotropes. GnIH neurons also
project to gonadotropin-releasing hormone (GnRH) neurons that express
GPR147 in the preoptic area (POA) in birds and mammals. Accordingly,
GnIH may inhibit gonadotropin [luteinizing hormone (LH) and
follicle-stimulating hormone (FSH)] synthesis and release by decreasing

the activity of GnRH neurons as well as directly inhibiting pituitary
gonadotrope function. GnIH and/or GPR147 are also expressed in the
testis of birds (3, 4) and mammals (5), possibly acting in an
autocrine/paracrine manner to suppress testosterone secretion and
spermatogenesis. GnIH and GPR147 can thus suppress testosterone
secretion and spermatogenesis by acting at all levels of the
hypothalamic–pituitary–testicular axis. GnIH expression is further
regulated by melatonin, glucocorticoids, and the social environment in
birds and mammals suggesting an important role in appropriate
regulation of testicular activity seasonally, during times of stress and
when interacting with conspecifics in birds and mammals.
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Table 1 | Amino acid sequences of avian and mammalian GnIHs [LPXRFamide (X = L or Q) peptides].

Animal Name Sequence Reference

Birds Quail GnIH SIKPSAYLPLRFa Tsutsui et al. (11)

GnIH-RP-1a SLNFEEMKDWGSKNFMKVNTPT

VNKVPNSVANLPLRFa

Satake et al. (28)

GnIH-RP-2 SSIQSLLNLPQRFa Satake et al. (28)

Chicken GnIHa SIRPSAYLPLRFa Ikemoto et al. (29)

GnIH-RP-1a SLNFEEMKDWGSKNFLKVNTPT

VNKVPNSVANLPLRFa

Ikemoto et al. (29)

GnIH-RP-2a SSIQSLLNLPQRFa Ikemoto et al. (29)

Sparrow GnIHa SIKPFSNLPLRFa Osugi et al. (30)

GnIH-RP-1a SLNFEEMEDWGSKDIIKMNPF

TASKMPNSVANLPLRFa

Osugi et al. (30)

GnIH-RP-2a SPLVKGSSQSLLNLPQRFa Osugi et al. (30)

Starling GnIH SIKPFANLPLRFa Ubuka et al. (31)

GnIH-RP-1a SLNFDEMEDWGSKDIIKMNPFT

VSKMPNSVANLPLRFa

Ubuka et al. (31)

GnIH-RP-2a GSSQSLLNLPQRFa Ubuka et al. (31)

Zebra finch GnIH SIKPFSNLPLRFa Tobari et al. (32)

GnIH-RP-1a SLNFEEMEDWRSKDIIKMNPF

AASKMPNSVANLPLRFa

Tobari et al. (32)

GnIH-RP-2a SPLVKGSSQSLLNLPQRFa Tobari et al. (32)

Mammals Human RFRP-1 MPHSFANLPLRFa Ubuka et al. (33)

RFRP-3 VPNLPQRFa Ubuka et al. (33)

Macaque RFRP-1a MPHSVTNLPLRFa Ubuka et al. (34)

RFRP-3 SGRNMEVSLVRQVLNLPQRFa Ubuka et al. (34)

Bovine RFRP-1 SLTFEEVKDWAPKIKMNKPV

VNKMPPSAANLPLRFa

Fukusumi et al. (35)

RFRP-3 AMAHLPLRLGKNREDSLS

RWVPNLPQRFa

Yoshida et al. (36)

Ovine RFRP-1a SLTFEEVKDWGPKIKMNT

PAVNKMPPSAANLPLRFa

Clarke et al. (37)

RFRP-3a VPNLPQRFa Clarke et al. (37)

Rat RFRP-1a SVTFQELKDWGAKKDIKMS

PAPANKVPHSAANLPLRFa

Ukena et al. (38)

RFRP-3 ANMEAGTMSHFPSLPQRFa Ukena et al. (38)

Hamster RFRP-1 SPAPANKVPHSAANLPLRFa Ubuka et al. (39)

RFRP-3 TLSRVPSLPQRFa Ubuka et al. (39)

aPutative peptides. The C-terminal LPXRFamide (X = L or Q) motifs are shown in bold.

it appeared that GnIH can inhibit gonadotropin secretion by
decreasing the activity of GnRH neurons as well as directly inhibit-
ing pituitary gonadotropes [for reviews, see Ref. (12–21)]. GnIH
and its receptor (GPR147) are also expressed in the gonads of birds
(3, 4, 22, 23) and mammals (5, 24–26) including humans (27),
possibly acting in an autocrine/paracrine manner (Figure 1). This
review summarizes possible central and direct effects of GnIH and
GPR147 on testosterone secretion and spermatogenesis in birds
and mammals.

GnIH RECEPTOR AND CELL SIGNALING
Bonini et al. (40) have identified two G protein-coupled receptors
(GPCRs) for neuropeptide FF (NPFF), which has a PQRFamide
motif at its C-terminus, and named them as NPFF1 (identical
to GPR147) and NPFF2 (identical to GPR74). Hinuma et al.

(41) have reported a specific receptor for mammalian GnIH,
RFamide-related peptide (RFRP), and named it OT7T022, which
was identical to NPFF1 (GPR147). The binding affinities for
GPR147 and GPR74 and the signal transduction pathway were
examined, using various analogs of GnIHs (RFRPs) and NPFF.
RFRPs showed a higher affinity for GPR147, whereas NPFF had
potent agonistic activity for GPR74 (40, 42). Accordingly, GPR147
(NPFF1, OT7T022) was suggested to be the principal receptor for
GnIH (RFRP). It was also shown that GnIHs (RFRPs) suppress
cAMP production in Chinese hamster ovarian cells transfected
with GPR147 cDNA, suggesting that GPR147 couples to Gαi

protein (41).
Yin et al. (43) identified GnIH receptor (GPR147) in the

quail diencephalon and characterized its binding activity. First, a
cDNA encoding a putative GPR147 was cloned using PCR primers
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designed from the sequence of the receptor for RFRPs. The crude
membrane fraction of COS-7 cells transfected with the putative
GPR147 cDNA specifically bound GnIH, GnIH-related peptides
(-RPs), and RFRPs, which have an LPXRFamide (X = L or Q)
motif at their C-termini, in a concentration-dependent manner
(43). In contrast, C-terminal non-amidated GnIH failed to bind
the receptor. Accordingly, the C-terminal LPXRFamide (X = L or
Q) motif seems to be critical for its binding to GPR147 (43). It
was suggested that there is no functional difference among GnIH
and GnIH-RPs because GPR147 bound GnIH and GnIH-RPs with
similar affinities (43). Further studies are required to investigate if
GnIH and GnIH-RPs work additively or synergistically to achieve
their effects on the target cells that express GnIH-R.

Ikemoto and Park (29) cloned GnIH, GPR147, and GPR74
cDNAs in the chicken. GPR147 cDNA was expressed only in the
brain and pituitary, where GnIH may act directly on gonadotropes.
On the other hand, GPR74 cDNA was ubiquitously expressed in
various tissue and organs where GnIH action is unknown. Quail
GnIH and putative chicken GnIH inhibited Gαi2 mRNA expres-
sion in COS-7 cells transiently transfected with chicken GPR147
or GPR74. However, the effect of GnIHs on the inhibition of Gαi2

mRNA expression in COS-7 cells was about 100-fold stronger in
COS-7 cells transfected with GPR147 than GPR74 (29). These
results further suggest that GPR147 is the principal receptor for
GnIH in birds as in mammals.

To further investigate the intracellular signaling pathway
responsible for the actions of GnIH and its possible interaction
with GnRH, Son et al. (44) used a mouse gonadotrope cell line,
LβT2. Using this cell line, this group established that mouse
GnIHs (mRFRPs) effectively inhibit GnRH-induced cAMP sig-
naling, indicating that mouse GnIHs (mRFRPs) function as
inhibitors of adenylate cyclase (AC). They further showed that
mouse GnIHs (mRFRPs) inhibit GnRH-stimulated ERK phos-
phorylation and gonadotropin subunit gene transcription. The
results indicated that mouse GnIHs (mRFRPs) inhibit GnRH-
induced gonadotropin subunit gene transcriptions by inhibiting
AC/cAMP/PKA-dependent ERK activation in LβT2 cells (44).

Shimizu and Bédécarrats (45) showed that GPR147 mRNA
levels fluctuate in an opposite manner to GnRH-receptor-III,
a pituitary specific form of GnRH receptor (GnRH-R), in the
chicken (46, 47) according to reproductive stages. They demon-
strated that the chicken GPR147 inhibits cAMP production, most
likely by coupling to Gαi. This inhibition significantly reduces
GnRH-induced cAMP responsive element activation in a dose-
dependent manner, and the ratio of GnRH/GnIH receptors was
a significant modulatory factor. From these results they pro-
posed that in avian species, sexual maturation is characterized
by a change in GnIH/GnRH receptor ratio, changing pituitary
sensitivity from GnIH inhibition of, to GnRH stimulation of,
gonadotropin secretion (45).

SUPPRESSION OF TESTICULAR ACTIVITY BY GnIH
INHIBITION OF GONADOTROPIN SECRETION
Gonadotropin-inhibitory hormone precursor mRNA was first
localized by Southern blot analysis of the RT-PCR products in the
quail brain. Within the samples from telencephalon, diencephalon,
mesencephalon, and cerebellum, GnIH precursor mRNA was only

expressed in the diencephalon (28). In situ hybridization for
GnIH precursor mRNA showed that cells expressing GnIH mRNA
are clustered in the paraventricular nucleus (PVN) in the hypo-
thalamus (48). Immunohistochemistry using an antibody raised
against avian GnIH has revealed that GnIH-ir neurons are clus-
tered in the PVN in quail and other birds (11, 30–32, 49, 50)
(Figure 1).

In mammals, GnIH (RFRP) precursor mRNA is expressed in
the dorsomedial hypothalamic area (DMH) in mouse and hamster
brains, as visualized by in situ hybridization (39, 51) (Figure 1).
Mammalian GnIH (RFRP) precursor mRNA is expressed in the
periventricular nucleus (PerVN), and in the area between the dor-
somedial nucleus (DMN) and the ventromedial nucleus (VMN) of
the hypothalamus in the rat brain (41, 52). GnIH (RFRP) mRNA
expressing neuronal cell bodies are localized in the intermediate
periventricular nucleus (IPe) of the hypothalamus in the macaque
(34), and in the DMN and PVN in the sheep (37).

Immunohistochemical studies using light and confocal
microscopy showed that GnIH (RFRP)-ir axon terminals are in
close contact with GnRH neurons in birds (50), rodents (39, 51),
monkeys (34), and humans (33) (Figure 1), suggesting direct
inhibition of GnRH cells by GnIH. Ubuka et al. (31) investi-
gated the interaction of GnIH neuronal fibers with GnRH neu-
rons in the European starling brain. Birds possess at least two
forms of GnRH in their brains. One form is GnRH1 which is
thought to be released at the median eminence to stimulate the
secretion of gonadotropins from the anterior pituitary (8, 9, 53–
57). The second form of GnRH, GnRH2 (58, 59), is thought
to influence reproductive behaviors in birds (60) and mam-
mals (61, 62). Double-label immunocytochemistry showed GnIH
axon terminals on GnRH1 and GnRH2 neurons in the songbird
brain (31, 50, 63) suggesting regulation of both gonadotropin
secretion and reproductive behavior. In situ hybridization of
starling GPR147 mRNA combined with GnRH immunocyto-
chemistry further showed the expression of GPR147 mRNA in
GnRH1 and GnRH2 neurons (31). Similarly, in Siberian ham-
sters, double-label immunocytochemistry revealed GnIH axon
terminals on GnRH neurons, with a subset of GnRH neurons
expressing GPR147 (39). Using immunomagnetic purification of
GnRH cells, single-cell nested RT-PCR, and in situ hybridization,
Rizwan et al. (64) showed that 33% of GnRH neurons expressed
GPR147, whereas GPR74 was not expressed in either population
in mice.

Central administration of GnIH inhibits the release of
gonadotropins in white-crowned sparrows (65), Syrian hamsters
(51), rats (66), and Siberian hamsters (39) as does peripheral
administration of GnIH (30, 51, 67). Direct application of mouse
GnIH (RFRP-3) to GnRH cells in mouse brain slices decreased
firing rate in a subpopulation of GnRH cells (68). GnIH (RFRP-
3) also inhibited firing of kisspeptin-activated vGluT2 (vesicular
glutamate transporter 2)-GnRH neurons as well as of kisspeptin-
insensitive GnRH neurons (69). These findings suggest that GnIH
may inhibit gonadotropin secretion by decreasing the activity
of GnRH neurons in addition to directly regulating pituitary
gonadotropes in birds and mammals (Figure 1). Importantly,
the inhibitory action of GnIH (RFRP-1 and RFRP-3) was only
observed in reproductively active long-day (LD) Siberian hamsters

Frontiers in Endocrinology | Experimental Endocrinology January 2014 | Volume 5 | Article 8 | 4

http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ubuka et al. GnIH inhibition of testicular activity

that have high gonadotropin concentration, and GnIH (RFRP-1
and RFRP-3) increased basal gonadotropin concentration in
reproductively inactive short-day (SD) hamsters (39).

Given the existence of GnIH-ir fibers at the median eminence in
birds (11, 30, 31, 48, 50), much of the work to date has focused on
the role of GnIH in pituitary gonadotrope regulation (Figure 1).
As indicated previously, GnIH suppresses gonadotropin synthesis
and/or release from cultured quail and chicken anterior pituitary
gland (11, 70). In mammals, abundant GnIH (RFRP)-ir fibers are
observed in the median eminence of sheep (37), macaque (34),
hamsters (71), and humans (33). As in birds, mammalian GnIH
(RFRP-3) inhibits gonadotropin synthesis and/or release from cul-
tured pituitaries in sheep (72) and cattle (73). Peripheral admin-
istration of GnIH (RFRP-3) also inhibits gonadotropin release in
sheep (37), rats (74), and cattle (73), suggesting actions on the
pituitary. Finally, GPR147 mRNA is expressed in gonadotropes
in the human pituitary (33). Together, these findings suggest
that GnIH and RFRP-3 act directly on the pituitary to inhibit
gonadotropin secretion, at least in these avian and mammalian
species (Figure 1).

Further evidence for a direct action of GnIH on the pituitary
comes from a study by Sari et al. (72) where they investigated the
effects of GnIH (RFRP-3) on the expression of gonadotropin β-
subunit genes in ovine pituitary cells. GnRH or vehicle pulses were
given to pituitary cells every 8 h for 24 h with and without GnIH
(RFRP-3) treatment. GnIH (RFRP-3) reduced LH and FSH secre-
tion stimulated by GnRH. GnIH (RFRP-3) also reduced GnRH-
stimulated LHβ and FSHβ subunit gene expressions. Further,
GnIH (RFRP-3) abolished GnRH-stimulated phosphorylation of
ERK in the pituitary (72).

To establish whether or not GnIH is endogenously released
into the anterior pituitary, Smith et al. (75) directly measured
GnIH (RFRP-3) in hypophyseal portal blood in ewes during
the non-breeding (anestrous) season and during the luteal and
follicular phases of the estrous cycle in the breeding season. Pul-
satile GnIH (RFRP-3) secretion was observed in the portal blood,
with pulse amplitude and pulse frequency being higher during
the non-breeding season. Additionally, the magnitude of the LH
response to GnRH was reduced by GnIH (RFRP-3) administration
in hypothalamo-pituitary-disconnected ewes, providing support
for important functionality of this pathway. Together, these data
provide convincing evidence that GnIH (RFRP-3) is secreted into
portal blood to act on pituitary gonadotropes, reducing the action
of GnRH in sheep (75).

To further establish the functional significance and mode of
action of GnIH, Ubuka et al. (67) investigated the role of GnIH on
gonadal development and maintenance in male quail. Continuous
peripheral administration of GnIH to mature birds via osmotic
pumps for 2 weeks decreased the expressions of gonadotropin
common α and LHβ subunit mRNAs in a dose-dependent manner.
As expected, plasma LH and testosterone concentrations were also
decreased dose dependently. Administration of GnIH to mature
birds further induced testicular apoptosis, primarily observed in
Sertoli cells, spermatogonia, and spermatocytes, and decreased
spermatogenic activity in the testis, either through direct actions of
GnIH at the level of the gonads (see below) or through decreased
gonadotropin and testosterone concentrations. In immature birds,

daily peripheral administration of GnIH for 2 weeks suppressed
normal testicular growth and the rise in plasma testosterone
concentrations. These results indicate that GnIH inhibits tes-
ticular development and maintenance either through decreased
gonadotropin synthesis and release or via direct actions on the
testes (67) (Figure 1).

GnIH AND GnIH RECEPTOR IN THE TESTIS
Vertebrate gonads are known to express many “neuropeptides.”
Bentley et al. (3) demonstrated the expression of GnIH and its
receptor in the avian reproductive system, including the gonads
and accessory reproductive organs of Passeriform and Galliform
birds. Binding sites for GnIH were identified via receptor fluo-
rography in the interstitial layer and seminiferous tubules of the
testis. Immunocytochemistry detected GnIH in testicular intersti-
tial cells and germ cells, and pseudostratified columnar epithelial
cells in the epididymis. In situ hybridization for GPR147 mRNA
produced a strong reaction product in the germ cells and inter-
stitium in the testes as well as pseudostratified columnar epithe-
lial cells. The distribution of GnIH and its receptor suggested a
potential for autocrine/paracrine regulation of testosterone pro-
duction and germ cell differentiation and maturation in birds (3)
(Figure 1).

To examine the functional significance of these findings,
McGuire and Bentley (4) investigated the action of GnIH and
GnIH receptor in the testis of house sparrow. GnIH precursor
mRNA was expressed in the interstitium and GPR147 mRNA
was expressed in the interstitium and spermatocytes (Figure 1).
GnIH significantly decreased the testosterone secretion from
gonadotropin-stimulated testis cultures (4), suggesting that GnIH
and GPR147 are expressed in Leydig cells to reduce the effect of
LH on testosterone secretion in an autocrine/paracrine manner
(Figure 1).

To examine the generality of the findings in birds, Zhao et al. (5)
examined GnIH (RFRP), GPR147, and GPR74 expression in the
testes of Syrian hamsters. GnIH (RFRP) expression was observed
in spermatocytes and in round to early elongated spermatids.
GPR147 protein was observed in myoid cells in all stages of sper-
matogenesis, pachytene spermatocytes, maturation division sper-
matocytes, and in round and late elongated spermatids. GPR74
proteins only appeared in late elongated spermatids. As in birds,
these findings suggest a possible autocrine and/or paracrine role
for GnIH (RFRP) in Syrian hamster testis, potentially contribut-
ing to the differentiation of spermatids during spermiogenesis (5)
(Figure 1).

Anjum et al. (76) investigated the changes in GnRH, GnIH,
and GnRH-R in the testis from birth to senescence in mice.
They found that increased staining of testicular GnRH-R coin-
cided with increased steroidogenic activity during pubertal and
adult stages, whereas decreased staining coincided with decreased
steroidogenic activity during senescence, suggesting a putative role
of GnRH during testicular pubertal development and senescence.
The significant decline in GnRH-R during senescence was sug-
gested to be due to a significant increase in GnIH synthesis during
senescence. These observations provide new perspectives in the
autocrine/paracrine control of testicular activity by GnRH and
GnIH (76).
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REGULATION OF GnIH GENE EXPRESSION
BY MELATONIN
Investigating the regulatory mechanisms of GnIH expression has
important implications for understanding the physiological role
of the GnIH system. Photoperiodic mammals regulate reproduc-
tive activities according to the annual cycle of changes in noc-
turnal secretion of melatonin (77). Despite the accepted dogma
that birds do not use seasonal changes in melatonin secretion
to time their reproductive effort (78, 79), there is some evi-
dence that melatonin is involved in the regulation of several
seasonal processes, including gonadal activity, gonadotropin secre-
tion, and timing of egg-laying (80–83). Therefore, Ubuka et al.
(84) investigated the action of melatonin on the expression of
GnIH in quail, a highly photoperiodic bird species. Because the
pineal gland and eyes are the major sources of melatonin in
quail (85), Ubuka et al. (84) tested the effects of pinealectomy
(Px) combined with orbital enucleation (Ex) (Px plus Ex) and
melatonin administration on the expression of GnIH precursor
mRNA and GnIH peptide. Px plus Ex decreased the expression of
GnIH precursor mRNA and the content of mature GnIH pep-
tide in the hypothalamus; melatonin administration caused a
dose-dependent increase in GnIH precursor mRNA and GnIH
peptide. Additionally, Mel1c mRNA, a melatonin receptor subtype,
was expressed in GnIH-ir neurons in the PVN. Melatonin recep-
tor autoradiography further revealed the binding of melatonin in
the PVN. The results suggested that melatonin acts directly on
GnIH neurons through its receptor to induce expression of GnIH
(84) (Figure 1). In agreement with this possibility, a later study
showed that melatonin can stimulate GnIH release from the quail
hypothalamus (86).

Opposite action of melatonin on the inhibition of GnIH
(RFRP) expression was shown in Syrian and Siberian hamsters,
both photoperiodic mammals (39, 87, 88). GnIH (RFRP) mRNA
levels and the number of GnIH (RFRP)-ir cell bodies were reduced
in sexually quiescent Syrian and Siberian hamsters acclimated
to SD photoperiod, compared to sexually active animals main-
tained under LD photoperiod. The photoperiodic effects on GnIH
(RFRP) expression were abolished in Px hamsters and injections
of LD hamsters with melatonin reduced the expression of GnIH
(RFRP) to SD levels (39, 87). There are also reports showing
that the expression of GnIH (RFRP) is regulated by melatonin
and season in sheep (89, 90) and rats (91). These results demon-
strate that as in quail, GnIH (RFRP), expression is photoperiodi-
cally modulated via a melatonin-dependent process in mammals
(Figure 1).

Given the localization of GnIH in gonadal tissue, McGuire et al.
(23) investigated the possibility that melatonin affects sex steroid
secretion and GnIH expression in the gonads of European star-
lings. Starling gonads expressed mRNAs for GnIH, GPR147, and
melatonin receptors (Mel1b and Mel1c). GnIH and GPR147 expres-
sion in the testes was relatively low during the breeding season. The
expression levels of Mel1b and Mel1c were correlated with GnIH
and GPR147 expression, and melatonin up-regulated the expres-
sion of GnIH mRNA in starling gonads before the breeding sea-
son. GnIH and melatonin significantly decreased the testosterone
secretion from gonadotropin-stimulated testes in vitro prior to,
but not during, the breeding season. Thus, local inhibition of

testosterone secretion appears to be regulated seasonally at the
level of the testis by a mechanism involving melatonin and gonadal
GnIH in birds (23) (Figure 1).

BY STRESS
Stress can lead to reproductive dysfunction across vertebrates (92).
To explore whether or not stress might act to inhibit reproduction
through the GnIH system, Calisi et al. (93) examined the effects of
capture-handling stress on GnIH expression in male and female
adult house sparrows. More GnIH-positive neurons were observed
in fall birds versus those sampled in the spring, and GnIH-positive
neurons were increased significantly by capture-handling stress in
spring birds. These data imply that stress influences GnIH early
during the breeding season, but not after birds have commit-
ted to reproduction (93) (Figure 1). McGuire et al. (94) tested
the hypothesis that the gonads are directly influenced by stress
hormones, showing that physiologically relevant concentrations
of corticosterone can directly up-regulate GnIH expression and
decrease the testosterone secretion from gonadotropin-stimulated
testes prior to the breeding season (Figure 1). These findings
suggest that, stress acts on both central and gonadal GnIH cell
populations to inhibit reproductive function.

In agreement with the findings in house sparrows, Kirby et al.
(95) showed that both acute and chronic immobilization stress
lead to an up-regulation of the expression of GnIH (RFRP) in the
DMH of adult male rats associated with the inhibition of down-
stream hypothalamic–pituitary–testicular activity. Adrenalectomy
blocked the stress-induced increase in GnIH (RFRP) expression.
Immunohistochemistry revealed that 53% of GnIH (RFRP) cells
express receptors for glucocorticoids, suggesting that adrenal glu-
cocorticoids act directly on GnIH (RFRP) cells to increase GnIH
expression. Together, these data suggest that GnIH is an important
integrator of stress-induced suppression of reproductive function
(95) (Figure 1).

Son et al. investigated the mechanism by which glucocorti-
coids influence GnIH gene expression. As in sparrows and rats,
GR mRNA was expressed in GnIH neurons in the PVN of quail
suggesting direct modulation of GnIH in this species. Although
acute corticosterone treatment had no effect on GnIH mRNA
expression, chronic treatment with corticosterone increased GnIH
mRNA expression in the quail diencephalon. Using a rat GnIH
(RFRP)-expressing neuronal cell line, the authors confirmed the
co-expression of GR mRNA and established that continuous
corticosterone treatment increased GnIH (RFRP) mRNA expres-
sion. They further demonstrated that corticosterone directly reg-
ulates GnIH gene transcription by recruitment of GR to its
promoter at the glucocorticoid responsive element (GRE) (You
Lee Son, Takayoshi Ubuka, Narihiro Misato, Yujiro Fukuda,
Itaru Hasunuma, Kazutoshi Yamamoto, and Kazuyoshi Tsutsui,
unpublished observation) (Figure 1).

BY SOCIAL INTERACTION
To examine the impact of mating competition on GnIH, Calisi
et al. (96) manipulated nesting opportunities for pairs of European
starlings and examined brain GnIH mRNA and GnIH content
as well as GnRH content. By limiting the number of nest boxes
and thus the number of social pairing and nesting opportunities,
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they observed that birds with nest boxes had significantly fewer
numbers of GnIH-producing cells than those without nest boxes
and this relationship reversed once eggs had been laid. On the
other hand, GnRH content did not vary with nest box owner-
ship. These data suggest that GnIH may serve as a modulator
of reproductive function in response to social environment (96)
(Figure 1).

It is known that the presence of a female bird as well as cop-
ulation rapidly decrease plasma testosterone concentrations in
male quail (97, 98). Tobari et al. sought to explore the neuro-
chemical mechanism translating social stimuli into reproductive
physiology and behavior. They observed that visual presentation
of a female quail decreased plasma LH and testosterone concen-
trations and this effect was likely to be caused by activation of
GnIH neurons in the male quail hypothalamus (Yasuko Tobari,
You Lee Son, Takayoshi Ubuka, Yoshihisa Hasegawa, Kazuyoshi
Tsutsui, unpublished observation) (Figure 1). Together with the
findings in starlings, these findings point to a prominent role for
GnIH in mediating the impact of social stimuli on the reproductive
axis.

SUMMARY
As described in the present review, GnIH, acting via GPR147, can
suppress the testosterone secretion and spermatogenesis by act-
ing at all levels of the hypothalamic–pituitary–gonadal axis of
birds and mammals. GPR147 is expressed in GnRH cells, pituitary
gonadotropes, and at the level of the testis and studies described
herein at the organismal and cell culture levels provide functional
evidence for control at each locus. Additionally, GnIH expression
is regulated by melatonin, glucocorticoids, and the social envi-
ronment. Together, these findings highlight a prominent role for
GnIH–GPR147 in integrating physical and social environmental
information to regulate reproductive activities appropriately in
birds and mammals.
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